Kovalchuk, Igor
Permanent URI for this collection
Browse
Browsing Kovalchuk, Igor by Title
Now showing 1 - 20 of 23
Results Per Page
Sort Options
- ItemAgrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera(Frontiers Media, 2016) Maheshwari, Priti; Kovalchuk, IgorThe present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar – Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 D 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development.
- ItemAncestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes(BioMed Central, 2014) Yao, Youli; Robinson, Alexandra M.; Zucchi, Fabiola C. R.; Robbins, Jerrah C.; Babenko, Olena M.; Kovalchuk, Olga; Kovalchuk, Igor; Olson, David M.; Metz, Gerlinde A. S.Abstract Background: Chronic stress is considered to be one of many causes of human preterm birth (PTB), but no direct evidence has yet been provided. Here we show in rats that stress across generations has downstream effects on endocrine, metabolic and behavioural manifestations of PTB possibly via microRNA (miRNA) regulation. Methods: Pregnant dams of the parental generation were exposed to stress from gestational days 12 to 18. Their pregnant daughters (F1) and grand-daughters (F2) either were stressed or remained as non-stressed controls. Gestational length, maternal gestational weight gain, blood glucose and plasma corticosterone levels, litter size and offspring weight gain from postnatal days 1 to 30 were recorded in each generation, including F3. Maternal behaviours were analysed for the first hour after completed parturition, and offspring sensorimotor development was recorded on postnatal day (P) 7. F0 through F2 maternal brain frontal cortex, uterus and placenta miRNA and gene expression patterns were used to identify stress-induced epigenetic regulatory pathways of maternal behaviour and pregnancy maintenance. Results: Progressively up to the F2 generation, stress gradually reduced gestational length, maternal weight gain and behavioural activity, and increased blood glucose levels. Reduced offspring growth and delayed behavioural development in the stress cohort was recognizable as early as P7, with the greatest effect in the F3 offspring of transgenerationally stressed mothers. Furthermore, stress altered miRNA expression patterns in the brain and uterus of F2 mothers, including the miR-200 family, which regulates pathways related to brain plasticity and parturition, respectively. Main miR-200 family target genes in the uterus, Stat5b, Zeb1 and Zeb2, were downregulated by multigenerational stress in the F1 generation. Zeb2 was also reduced in the stressed F2 generation, suggesting a causal mechanism for disturbed pregnancy maintenance. Additionally, stress increased placental miR-181a, a marker of human PTB. Conclusions: The findings indicate that a family history of stress may program central and peripheral pathways regulating gestational length and maternal and newborn health outcomes in the maternal lineage. This new paradigm may model the origin of many human PTB causes.
- ItemDepletion of eukaryotic initiation factor 5B (eIF5B) reprograms the cellular transcriptome and leads to activation of endoplasmic reticulum (ER) stress and c-Jun N-terminal Kinase (JNK).(Springer, 2021) Bressler, Kamiko R.; Ross, Joseph A.; Ilnytskyy, Slava; Vanden Dungen, Keiran; Taylor, Katrina; Patel, Kush; Zovoilis, Athanasios; Kovalchuk, Igor; Thakor, NehalDuring the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.
- ItemThe elucidation of stress memory inheritance in Brassica rapa plants(Frontiers Media, 2015) Bilichak, Andriy; Ilnytskyy, Yaroslav; Woycicki, Rafal; Kepeshchuk, Nina; Fogen, Dawson; Kovalchuk, IgorPlants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs) are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome) from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally,we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally,we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants
- ItemEnvironmental intervention as a therapy for adverse programming by ancestral stress(Nature Research, 2016) McCreary, J. Keiko; Erickson, Zachary T.; Hao, XongXin; Ilnytskyy, Yaroslav; Kovalchuk, Igor; Metz, Gerlinde A. S.Ancestral stress can program stress sensitivity and health trajectories across multiple generations. While ancestral stress is uncontrollable to the filial generations, it is critical to identify therapies that overcome transgenerational programming. Here we report that prenatal stress in rats generates a transgenerationally heritable endocrine and epigenetic footprint and elevated stress sensitivity which can be alleviated by beneficial experiences in later life. Ancestral stress led to downregulated glucocorticoid receptor and prefrontal cortex neuronal densities along with precocious development of anxiety-like behaviours. Environmental enrichment (EE) during adolescence mitigated endocrine and neuronal markers of stress and improved miR-182 expression linked to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) regulation in stressed lineages. Thus, EE may serve as a powerful intervention for adverse transgenerational programming through microRNA-mediated regulation of BDNF and NT-3 pathways. The identification of microRNAs that mediate the actions of EE highlights new therapeutic strategies for mental health conditions and psychiatric disease.
- ItemEpigenetic modifications during angiosperm gametogenesis(Frontiers Media, 2012) Migicovsky, Zoë; Kovalchuk, IgorAngiosperms do not contain a distinct germline, but rather develop gametes from game-tophyte initials that undergo cell division.These gametes contain cells that give rise to an endosperm and the embryo. DNA methylation is decreased in the vegetative nucleus(VN) and central cell nuclei (CCN) resulting in expression of transposable elements (TEs). It is thought that the siRNAs produced in response to TE expression are able to travel to the sperm cells and egg cells (EC) from VN and CCN, respectively, in order to enforce silencing there. Demethylation during gametogenesis helps ensure that even newly integrated TEs are expressed and therefore silenced by the resulting siRNA production. A final form of epi-genetic control is modification of histones, which includes accumulation of the H3 variant HTR10 in mature sperm that is then completely replaced following fertilization.In females, the histone isoforms present in the EC and CCN differ, potentially helping to differentiate the two components during gametogenesis.
- ItemEvidence for ancestral programming of resilience in a two-hit stress model(Frontiers Media, 2017) Faraji, Jamshid; Soltanpour, Nabiollah; Ambeskovic, Mirela; Zucchi, Fabiola C. R.; Beaumier, Pierre; Kovalchuk, Igor; Metz, Gerlinde A. S.In a continuously stressful environment, the effects of recurrent prenatal stress (PS) may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS) were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA) axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2. Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK) pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second “hit” by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress.
- ItemGenomic and epigenomic changes in the progeny of cold-stressed Arabidopsis thaliana plants(MDPI, 2024) Rahman, Ashif; Yadav, Narendra Singh; Byeon, Boseon; Ilnytskyy, Yaroslav; Kovalchuk, IgorPlants are continuously exposed to various environmental stresses. Because they can not escape stress, they have to develop mechanisms of remembering stress exposures somatically and passing it to the progeny. We studied the Arabidopsis thaliana ecotype Columbia plants exposed to cold stress for 25 continuous generations. Our study revealed that multigenerational exposure to cold stress resulted in the changes in the genome and epigenome (DNA methylation) across generations. Main changes in the progeny were due to the high frequency of genetic mutations rather than epigenetic changes; the difference was primarily in single nucleotide substitutions and deletions. The progeny of cold-stressed plants exhibited the higher rate of missense non-synonymous mutations as compared to the progeny of control plants. At the same time, epigenetic changes were more common in the CHG (C = cytosine, H = cytosine, adenine or thymine, G = guanine) and CHH contexts and favored hypomethylation. There was an increase in the frequency of C to T (thymine) transitions at the CHH positions in the progeny of cold stressed plants; because this type of mutations is often due to the deamination of the methylated cytosines, it can be hypothesized that environment-induced changes in methylation contribute to mutagenesis and may be to microevolution processes and that RNA-dependent DNA methylation plays a crucial role. Our work supports the existence of heritable stress response in plants and demonstrates that genetic changes prevail.
- ItemGenomic and epigenomic responses to chronic stress involve miRNA-mediated programming(Public Library of Science, 2012) Babenko, Olena M.; Golubov, Andrey; Ilnytskyy, Yaroslav; Kovalchuk, Igor; Metz, Gerlinde A. S.Stress represents a critical influence on motor system function and has been shown to impair movement performance. We hypothesized that stress-induced motor impairments are due to brain-specific changes in miRNA and protein-encoding gene expression. Here we show a causal link between stress-induced motor impairment and associated genetic and epigenetic responses in relevant central motor areas in a rat model. Exposure to two weeks of mild restraint stress altered the expression of 39 genes and nine miRNAs in the cerebellum. In line with persistent behavioural impairments, some changes in gene and miRNA expression were resistant to recovery from stress. Interestingly, stress up-regulated the expression of Adipoq and prolactin receptor mRNAs in the cerebellum. Stress also altered the expression of Prlr, miR-186, and miR-709 in hippocampus and prefrontal cortex. In addition, our findings demonstrate that miR-186 targets the gene Eps15. Furthermore, we found an age-dependent increase in EphrinB3 and GabaA4 receptors. These data show that even mild stress results in substantial genomic and epigenomic changes involving miRNA expression and associated gene targets in the motor system. These findings suggest a central role of miRNA-regulated gene expression in the stress response and in associated neurological function.
- ItemGenomic instability in liver cells caused by an LPS-induced bystander-like effect(Public Library of Science, 2013) Kovalchuk, Igor; Walz, Paul; Thomas, James E.; Kovalchuk, OlgaBacterial infection has been linked to carcinogenesis, however, there is lack of knowledge of molecular mechanisms that associate infection with the development of cancer. We analyzed possible effects of the consumption of heat-killed E. coli O157:H7 cells or its cellular components, DNA, RNA, protein or lipopolysaccharides (LPS) on gene expression in naı¨ve liver cells. Four week old mice were provided water supplemented with whole heat-killed bacteria or bacterial components for a two week period. One group of animals was sacrificed immediately, whereas another group was allowed to consume uncontaminated tap water for an additional two weeks, and liver samples were collected, post mortem. Liver cells responded to exposure of whole heat-killed bacteria and LPS with alteration in cH2AX levels and levels of proteins involved in proliferation, DNA methylation (MeCP2, DNMT1, DNMT3A and 3B) or DNA repair (APE1 and KU70) as well as with changes in the expression of genes involved in stress response, cell cycle control and bile acid biosynthesis. Other bacterial components analysed in this study did not lead to any significant changes in the tested molecular parameters. This study suggests that lipopolysaccharides are a major component of Gram-negative bacteria that induce molecular changes within naı¨ve cells of the host.
- ItemLifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation(Public Library of Science, 2014) Zucchi, Fabiola C. R.; Yao, Youli; Ilnytskyy, Yaroslav; Robbins, Jerrah C.; Soltanpour, Nasrin; Kovalchuk, Igor; Kovalchuk, Olga; Metz, Gerlinde A. S.Prenatal stress (PS) represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1) if PS modulates recovery following cortical ischemia in adulthood; (2) if a second hit by adult stress (AS) exaggerates stress responses and ischemic damage; and (3) if tactile stimulation (TS) attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health.
- ItemMaternal stress induces eipgenetic signatures of psychiatric and neurological diseases in the offspring(Public Library of Science, 2013) Zucchi, Fabiola C. R.; Yao, Youli; Ward, Isaac D.; Ilnytskyy, Yaroslav; Olson, David M.; Benzies, Karen; Kovalchuk, Igor; Kovalchuk, Olga; Metz, Gerlinde A. S.The gestational state is a period of particular vulnerability to diseases that affect maternal and fetal health. Stress during gestation may represent a powerful influence on maternal mental health and offspring brain plasticity and development. Here we show that the fetal transcriptome, through microRNA (miRNA) regulation, responds to prenatal stress in association with epigenetic signatures of psychiatric and neurological diseases. Pregnant Long-Evans rats were assigned to stress from gestational days 12 to 18 while others served as handled controls. Gestational stress in the dam disrupted parturient maternal behaviour and was accompanied by characteristic brain miRNA profiles in the mother and her offspring, and altered transcriptomic brain profiles in the offspring. In the offspring brains, prenatal stress upregulated miR-103, which is involved in brain pathologies, and downregulated its potential gene target Ptplb. Prenatal stress downregulated miR-145, a marker of multiple sclerosis in humans. Prenatal stress also upregulated miR-323 and miR-98, which may alter inflammatory responses in the brain. Furthermore, prenatal stress upregulated miR-219, which targets the gene Dazap1. Both miR-219 and Dazap1 are putative markers of schizophrenia and bipolar affective disorder in humans. Offspring transcriptomic changes included genes related to development, axonal guidance and neuropathology. These findings indicate that prenatal stress modifies epigenetic signatures linked to disease during critical periods of fetal brain development. These observations provide a new mechanistic association between environmental and genetic risk factors in psychiatric and neurological disease.
- ItemNon-coding RNAs match the deleted genomic regions in humans(Nature Research, 2016) Byeon, Boseon; Kovalchuk, IgorRNA is transcribed from DNA, and therefore, there should be no RNA transcript from the deleted DNA region. Our study attempted to analyse whether any RNA cache that maps the deleted regions is present in human cells. Using data from the 1000 genome project, we selected 41 CEPH (CEU) and 38 Yoruba (YRI) samples that included the data for the entire genome sequence and ncRNA and mRNA sequences. Aligning the ncRNA reads against the genomic DNA in individual samples has revealed that 229 out of 1114 homozygous deletions have ncRNA reads that map to them. Further analysis has revealed that ncRNA reads that map the deleted regions are enriched around the deletion ends and at genic regions of the genome. The read enrichment at deletion ends suggests that these ncRNAs are likely some form of double-strand break induced RNAs. Our analysis suggests that human cells may contain a residual ncRNA cache that is possibly propagated across generations.
- ItemPattern recognition on read positioning in next generation sequencing(Public Library of Science, 2016) Byeon, Boseon; Kovalchuk, IgorThe usefulness and the utility of the next generation sequencing (NGS) technology are based on the assumption that the DNA or cDNA cleavage required to generate short sequence reads is random. Several previous reports suggest the existence of sequencing bias of NGS reads. To address this question in greater detail, we analyze NGS data from four organisms with different GC content, Plasmodium falciparum (19.39%), Arabidopsis thaliana (36.03%), Homo sapiens (40.91%) and Streptomyces coelicolor (72.00%). Using machine learning techniques, we recognize the pattern that the NGS read start is positioned in the local region where the nucleotide distribution is dissimilar from the global nucleotide distribution. We also demonstrate that the mono-nucleotide distribution underestimates sequencing bias, and the recognized pattern is explained largely by the distribution of multinucleotides (di-, tri-, and tetra- nucleotides) rather than mono-nucleotides. This implies that the correction of sequencing bias needs to be performed on the basis of the multi-nucleotide distribution. Providing companion software to quantify the effect of the recognized pattern on read positioning, we exemplify that the bias correction based on the mono-nucleotide distribution may not be sufficient to clean sequencing bias.
- ItemThe progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression(Public Library of Science, 2012) Bilichak, Andriy; Ilnytskyy, Yaroslav; Hollunder, Jens; Kovalchuk, IgorPlants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 59 and 39 ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants.
- ItemRelationship between desiccation tolerance and biofilm formation in shiga toxin-producing Escherichia coli(MDPI, 2024) Javed, Muhammad Qasim; Kovalchuk, Igor; Yevtushenko, Dmytro P.; Yang Xianqin; Stanford, KimShiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has emerged as a potential antimicrobial hurdle. This study focused on 254 genetically diverse E. coli strains collected from cattle, carcass hides, hide-off carcasses, and processing equipment. Of these, 141 (55.51%) were STEC and 113 (44.48%) were generic E. coli. The biofilm-forming capabilities of these isolates were assessed, and their desiccation tolerance was investigated to understand the relationships between growth temperature, relative humidity (RH), and bacterial survival. Only 28% of the STEC isolates had the ability to form biofilms, compared to 60% of the generic E. coli. Stainless steel surfaces were exposed to different combinations of temperature (0 °C or 35 °C) and relative humidity (75% or 100%), and the bacterial attachment and survival rates were measured over 72 h and compared to controls. The results revealed that all the strains exposed to 75% relative humidity (RH) at any temperature had reduced growth (p < 0.001). In contrast, 35 °C and 100% RH supported bacterial proliferation, except for isolates forming the strongest biofilms. The ability of E. coli to form a biofilm did not impact growth reduction at 75% RH. Therefore, desiccation treatment at 75% RH at temperatures of 0 °C or 35 °C holds promise as a novel antimicrobial hurdle for the removal of biofilm-forming E. coli from challenging-to-clean surfaces and equipment within food processing facilities.
- ItemRole of epigenetic factors in response to stress and establishment of somatic memory of stress exposure in plants(MDPI, 2023) Kovalchuk, IgorAll species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants are adapted to their environments through generations of exposure to all elements. Many plant species have the capacity to acclimate or adapt to certain stresses using the mechanism of priming. In most cases, priming is a somatic response allowing plants to deal with the same or similar stress more efficiently, with fewer resources diverted from growth and development. Priming likely relies on multiple mechanisms, but the differential expression of non-coding RNAs, changes in DNA methylation, histone modifications, and nucleosome repositioning play a crucial role. Specifically, we emphasize the role of BRM/CHR17, BRU1, FGT1, HFSA2, and H2A.Z proteins as positive regulators, and CAF-1, MOM1, DDM1, and SGS3 as potential negative regulators of somatic stress memory. In this review, we will discuss the role of epigenetic factors in response to stress, priming, and the somatic memory of stress exposures.
- ItemThe stimulatory effect of CaCl2, NaCl and NH4NO3 salts on the ssDNA-binding activity of RecA depends on nucleotide cofactor and buffer pH(Korean Society for Biochemistry and Molecular Biology, 2011) Ziemienowicz, Alicja; Seyed Mohammad, Reza Rahavi; Kovalchuk, IgorThe single-stranded DNA binding activity of the Escherichia coli RecA protein is crucial for homologous recombination to occur. This and other biochemical activities of ssDNA binding proteins may be affected by various factors. In this study, we analyzed the effect of CaCl2, NaCl and NH4NO3 salts in combination with the pH and nucleotide cofactor effect on the ssDNA-binding activity of RecA. The studies revealed that, in addition to the inhibitory effect, these salts exert also a stimulatory effect on RecA. These effects occur only under very strict conditions, and the presence or absence and the type of nucleotide cofactor play here a major role. It was observed that in contrast to ATP, ATPγS prevented the inhibitory effect of NaCl and NH4NO3, even at very high salt concentration. These results indicate that ATPγS most likely stabilizes the structure of RecA required for DNA binding, making it resistant to high salt concentrations.
- ItemA systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication(Frontiers Media, 2013) Yao, Youli; Kathiria, Palak; Kovalchuk, IgorIn the past, we showed that loca linfection of tobacco leaves with either tobacco mosaic virus or oilseed rape mosaic virus (ORMV) resulted in a systemic increase in the homologous recombination frequency (HRF). Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plant sinfected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60–96 h post-infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial in oculums and the time of viral replication.
- ItemTransgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins(Public Library of Science, 2010) Boyko, Alexander; Blevins, Todd; Yao, Youli; Golubov, Andrey; Bilichak, Andriy; Ilnytskyy, Yaroslav; Hollunder, Jens; Meins, Frederick; Kovalchuk, IgorEpigenetic states and certain environmental responses in mammals and seed plants can persist in the next sexual generation. These transgenerational effects have potential adaptative significance as well as medical and agronomic ramifications. Recent evidence suggests that some abiotic and biotic stress responses of plants are transgenerational. For example, viral infection of tobacco plants and exposure of Arabidopsis thaliana plants to UVC and flagellin can induce transgenerational increases in homologous recombination frequency (HRF). Here we show that exposure of Arabidopsis plants to stresses, including salt, UVC, cold, heat and flood, resulted in a higher HRF, increased global genome methylation, and higher tolerance to stress in the untreated progeny. This transgenerational effect did not, however, persist in successive generations. Treatment of the progeny of stressed plants with 5-azacytidine was shown to decrease global genomic methylation and enhance stress tolerance. Dicer-like (DCL) 2 and DCL3 encode Dicer activities important for small RNAdependent gene silencing. Stress-induced HRF and DNA methylation were impaired in dcl2 and dcl3 deficiency mutants, while in dcl2 mutants, only stress-induced stress tolerance was impaired. Our results are consistent with the hypothesis that stress-induced transgenerational responses in Arabidopsis depend on altered DNA methylation and smRNA silencing pathways.