Demeler, Borries
Permanent URI for this collection
Browse
Browsing Demeler, Borries by Subject "Analytical ultracentrifugation"
Now showing 1 - 19 of 19
Results Per Page
Sort Options
- Item2D analysis of polydisperse core-shell nanoparticles using analytical ultracentrifugation(Royal Society of Chemistry, 2017) Walter, Johannes; Gorbet, Gary E.; Akdas, Tugce; Segets, Doris; Demeler, Borries; Peukert, WolfgangAccurate knowledge of the size, density and composition of nanoparticles (NPs) is of major importance for their applications. In this work the hydrodynamic characterization of polydisperse core–shell NPs by means of analytical ultracentrifugation (AUC) is addressed. AUC is one of the most accurate techniques for the characterization of NPs in the liquid phase because it can resolve particle size distributions (PSDs) with unrivaled resolution and detail. Small NPs have to be considered as core–shell systems when dispersed in a liquid since a solvation layer and a stabilizer shell will significantly contribute to the particle's hydrodynamic diameter and effective density. AUC measures the sedimentation and diffusion transport of the analytes, which are affected by the core–shell compositional properties. This work demonstrates that polydisperse and thus widely distributed NPs pose significant challenges for current state-of-the-art data evaluation methods. The existing methods either have insufficient resolution or do not correctly reproduce the core–shell properties. First, we investigate the performance of different data evaluation models by means of simulated data. Then, we propose a new methodology to address the core–shell properties of NPs. This method is based on the parametrically constrained spectrum analysis and offers complete access to the size and effective density of polydisperse NPs. Our study is complemented using experimental data derived for ZnO and CuInS2 NPs, which do not have a monodisperse PSD. For the first time, the size and effective density of such structures could be resolved with high resolution by means of a two-dimensional AUC analysis approach.
- ItemA new UltraScan module for the characterization and quantification of analytical buoyant density equilibrium experiments to determine AAV capsid loading(Springer, 2023) Savelyev, Alexey; Brookes, Emre H.; Henrickson, Amy; Demeler, BorriesA method for characterizing and quantifying peaks formed in an analytical buoyant density equilibrium (ABDE) experiment is presented. An algorithm is derived to calculate the concentration of the density forming gradient material at every point in the cell, provided the rotor speed, temperature, meniscus position, bottom of the cell position, and the loading concentration, molar mass, and partial specific volume of the density gradient-forming material are known. In addition, a new peak fitting algorithm has been developed which allows the user to automatically quantify the peaks formed in terms of density, apparent partial specific volume, and relative abundance. The method is suitable for both ionic and non-ionic density forming materials and can be used with data generated from the UV optical system as well as the AVIV fluorescence optical system. These methods have been programmed in a new UltraScan-III module (us_abde). Examples are shown that demonstrate the application of the new module to adeno-associated viral vector preparations and proteins.
- ItemCoordination of di-acetylated histone ligands by the ATAD2 bromodomain(MDPI, 2021) Evans, Chiara M.; Phillips, Margaret; Malone, Kiera L.; Tonelli, Marco; Cornilescu, Gabriel; Cornilescu, Claudia; Holton, Simon J.; Gorjánácz, Mátyás; Wang, Liping; Carlson, Samuel; Gay, Jamie C.; Nix, Jay C.; Demeler, Borries; Markley, John L.; Glass, Karen C.The ATPase Family, AAA domain-containing protein 2 (ATAD2) bromodomain (BRD) has a canonical bromodomain structure consisting of four -helices. ATAD2 functions as a coactivator of the androgen and estrogen receptors as well as the MYC and E2F transcription factors. ATAD2 also functions during DNA replication, recognizing newly synthesized histones. In addition, ATAD2 is shown to be up-regulated in multiple forms of cancer including breast, lung, gastric, endometrial, renal, and prostate. Furthermore, up-regulation of ATAD2 is strongly correlated with poor prognosis in many types of cancer, making the ATAD2 bromodomain an innovative target for cancer therapeutics. In this study, we describe the recognition of histone acetyllysine modifications by the ATAD2 bromodomain. Residue-specific information on the complex formed between the histone tail and the ATAD2 bromodomain, obtained through nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, illustrates key residues lining the binding pocket, which are involved in coordination of di-acetylated histone tails. Analytical ultracentrifugation, NMR relaxation data, and isothermal titration calorimetry further confirm the monomeric state of the functionally active ATAD2 bromodomain in complex with di-acetylated histone ligands. Overall, we describe histone tail recognition by ATAD2 BRD and illustrate that one acetyllysine group is primarily engaged by the conserved asparagine (N1064), the “RVF” shelf residues, and the flexible ZA loop. Coordination of a second acetyllysine group also occurs within the same binding pocket but is essentially governed by unique hydrophobic and electrostatic interactions making the di-acetyllysine histone coordination more specific than previously presumed.
- ItemDNA supercoiling-induced shapes alter minicircle hydrodynamic properties(Oxford University Press, 2023) Waszkiewicz, Radost; Ranashinghe, Maduni; Fogg, Jonathan M.; Catanese, Daniel J.; Ekiel-Jezewska, Maria L.; Lisicki, Maciej; Demeler, Borries; Zechiedrich, Lynn; Szymczak, PiotrDNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.
- ItemInvestigating RNA-RNA interactions through computational and biophysical analysis(Oxford University Press, 2023) Mrozowich, Tyler; Park, Sean M.; Waldl, Maria; Henrickson, Amy; Tersteeg, Scott; Nelson, Corey R.; De Klerk, Anneke; Demeler, Borries; Hofacker, Ivo L.; Wolfinger, MIchael T.; Patel, Trushar R.Numerous viruses utilize essential long-range RNA–RNA genome interactions, specifically flaviviruses. Using Japanese encephalitis virus (JEV) as a model system, we computationally predicted and then biophysically validated and characterized its long-range RNA–RNA genomic interaction. Using multiple RNA computation assessment programs, we determine the primary RNA–RNA interacting site among JEV isolates and numerous related viruses. Following in vitro transcription of RNA, we provide, for the first time, characterization of an RNA–RNA interaction using size-exclusion chromatography coupled with multi-angle light scattering and analytical ultracentrifugation. Next, we demonstrate that the 5′ and 3′ terminal regions of JEV interact with nM affinity using microscale thermophoresis, and this affinity is significantly reduced when the conserved cyclization sequence is not present. Furthermore, we perform computational kinetic analyses validating the cyclization sequence as the primary driver of this RNA–RNA interaction. Finally, we examined the 3D structure of the interaction using small-angle X-ray scattering, revealing a flexible yet stable interaction. This pathway can be adapted and utilized to study various viral and human long-non-coding RNA–RNA interactions and determine their binding affinities, a critical pharmacological property of designing potential therapeutics.
- ItemKDM2B recruitment of the polycomb group complex, PRC1.1, requires cooperation between PCGF1 and BCORL1(Elsevier, 2016) Wong, Sarah J.; Gearhart, Micah D.; Taylor, Alexander B.; Nanyes, David R.; Ha, Daniel J.; Robinson, Angela K.; Artigas, Jason A.; Lee, Oliver J.; Demeler, Borries; Hart, P. John; Bardwell, Vivian J.; Kim, Chongwoo A.KDM2B recruits H2A-ubiquitinating activity of a non-canonical Polycomb Repression Complex 1 (PRC1.1) to CpG islands, facilitating gene repres sion. We investigated the molecular basis of recruit ment using in vitro assembly assays to identify minimal components, subcomplexes, and domains required for recruitment. A minimal four-component PRC1.1 complex can be assembled by combining two separately isolated subcomplexes: the DNA binding KDM2B/SKP1 heterodimer and the hetero dimer of BCORL1 and PCGF1, a core component of PRC1.1. The crystal structure of the KDM2B/ SKP1/BCORL1/PCGF1 complex illustrates the crucial role played by the PCGF1/BCORL1 hetero dimer. The BCORL1 PUFD domain positions resi dues preceding the RAWUL domain of PCGF1 to create an extended interface for interaction with KDM2B, which is unique to the PCGF1-containing PRC1.1 complex. The structure also suggests how KDM2B might simultaneously function in PRC1.1 and an SCF ubiquitin ligase complex and the possible molecular consequences of BCOR PUFD internal tandem duplications found in pediatric kidney and brain tumors.
- ItemMeasuring molecular interactions in solution using multi-wavelength analytical ultracentrifugation: combining spectral analysis with hydrodynamics(Portland Press, 2019) Demeler, BorriesIn 1926, the Swedish scientist Theodor Svedberg was awarded the Nobel Prize in Chemistry for his work on a disperse system, and for studying the colloidal properties of proteins. This work was, to a large extent, made possible by his invention of a revolutionary tool, the analytical ultracentrifuge. These days, technological advances in hardware and computing have transformed the field of analytical ultracentrifugation (AUC) by enabling entirely new classes of experiments and modes of measurement unimaginable by Svedberg, making AUC once again an indispensable tool for modern biomedical research. In this article these advances and their impact on studies of interacting molecules will be discussed, with particular emphasis on a new method termed multi-wavelength analytical ultracentrifugation (MWL-AUC). Novel detectors allow us to add a second dimension to the separation of disperse and heterogeneous systems: in addition to the traditional hydrodynamic separation of colloidal mixtures, it is now possible to identify the sedimenting molecules by their spectral absorbance properties. The potential for this advance is significant for the study of a large range of systems. A further advance has occurred in data management and computational capabilities, opening doors to improved analysis methods, as well as direct networking with the instrument, facilitating data acquisition and data handling, and significant increases in data density from faster detectors with higher resolution capability.
- ItemMethods for the design and analysis of analytical ultracentrifugation experiments(Wiley, 2024) Demeler, BorriesAnalytical ultracentrifugation experiments play an integral role in the solution-phase characterization of biological macromolecules and their interactions. This unit discusses the design of sedimentation velocity and sedimentation equilibrium experiments performed with a Beckman Proteomelab XL-A or XL-I analytical ultracentrifuge and with a Beckman Optima AUC. Instrument settings and experimental design considerations are explained, and strategies for the analysis of experimental data with the UltraScan data analysis software package are presented. Special attention is paid to the strengths and weaknesses of the available detectors, and guidance is provided on how to extract maximum information from analytical ultracentrifugation experiments.
- ItemMoving analytical ultracentrifugation software to a good manufacturing practices (GMP) environment(Public Library of Science, 2020) Savelyev, Alexey; Gorbet, Gary E.; Henrickson, Amy; Demeler, BorriesRecent advances in instrumentation have moved analytical ultracentrifugation (AUC) closer to a possible validation in a Good Manufacturing Practices (GMP) environment. In order for AUC to be validated for a GMP environment, stringent requirements need to be satisfied; analysis procedures must be evaluated for consistency and reproducibility, and GMP capable data acquisition software needs to be developed and validated. These requirements extend to multiple regulatory aspects, covering documentation of instrument hardware functionality, data handling and software for data acquisition and data analysis, process control, audit trails and automation. Here we review the requirements for GMP validation of data acquisition software and illustrate software solutions based on UltraScan that address these requirements as far as they relate to the operation and data handling in conjunction with the latest analytical ultracentrifuge, the Optima AUC by Beckman Coulter. The software targets the needs of regulatory agencies, where AUC plays a critical role in the solution-based characterization of biopolymers and macromolecular assemblies. Biopharmaceutical and regulatory agencies rely heavily on this technique for characterizations of pharmaceutical formulations, biosimilars, injectables, nanoparticles, and other soluble therapeutics. Because of its resolving power, AUC is a favorite application, despite the current lack of GMP validation. We believe that recent advances in standards, hardware, and software presented in this work manage to bridge this gap and allow AUC to be routinely used in a GMP environment. AUC has great potential to provide more detailed information, at higher resolution, and with greater confidence than other analytical techniques, and our software satisfies an urgent need for AUC operation in the GMP environment. The software, including documentation, are publicly available for free download from Github. The multi-platform software is licensed by the LGPL v.3 open source license and supports Windows, Mac and Linux platforms. Installation instructions and a mailing list are available from ultrascan.aucsolutions.com
- ItemMulti‑speed sedimentation velocity implementation in UltraScan‑III(Springer, 2018) Gorbet, Gary E.; Mohapatra, Subhashree; Demeler, BorriesA framework for the global analysis of multi-speed analytical ultracentrifugation sedimentation velocity experiments is presented. We discuss extensions to the adaptive space–time finite element fitting methods implemented in UltraScan-III to model sedimentation velocity experiments where a single run is performed at multiple rotor speeds, and describe extensions in the optimization routines used for fitting experimental data collected at arbitrary multi-speed profiles. Our implementa- tion considers factors such as speed dependent rotor stretching, the resulting radial shifting of the finite element solution’s boundary conditions, and changes in the associated time-invariant noise. We also address the calculation of acceleration rates and acceleration zones from existing radial acceleration and time records, as well as utilization of the time state object available at high temporal resolution from the new Beckman Optima AUC instrument. Analysis methods in UltraScan-III support unconstrained models that extract reliable information for both the sedimentation and the diffusion coefficients. These methods do not rely on any assumptions and allow for arbitrary variations in both sedimentation and diffusion transport. We have adapted these routines for the multi-speed case, and developed optimized and general grid based fitting methods to handle changes in the information content of the simulation matrix for different speed steps. New graphical simulation tools are presented that assist the investigator to estimate suitable grid metrics and evaluate information content based on edit profiles for individual experiments.
- ItemNanoscale structure determination of Murray Valley encephalitis and Powassan virus non-coding RNAs(MDPI, 2020) Mrozowich, Tyler; Henrickson, Amy; Demeler, Borries; Patel, Trushar R.Viral infections are responsible for numerous deaths worldwide. Flaviviruses, which contain RNA as their genetic material, are one of the most pathogenic families of viruses. There is an increasing amount of evidence suggesting that their 5’ and 3’ non-coding terminal regions are critical for their survival. Information on their structural features is essential to gain detailed insights into their functions and interactions with host proteins. In this study, the 5’ and 3’ terminal regions of Murray Valley encephalitis virus and Powassan virus were examined using biophysical and computational modeling methods. First, we used size exclusion chromatography and analytical ultracentrifuge methods to investigate the purity of in-vitro transcribed RNAs. Next, we employed small-angle X-ray scattering techniques to study solution conformation and low-resolution structures of these RNAs,which suggest that the 3’ terminal regions are highly extended as compared to the 5’ terminal regions for both viruses. Using computational modeling tools, we reconstructed 3-dimensional structures of each RNA fragment and compared them with derived small-angle X-ray scattering low-resolution structures. This approach allowed us to reinforce that the 5’ terminal regions adopt more dynamic structures compared to the mainly double-stranded structures of the 3’ terminal regions.
- ItemA new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein(BioMed Central, 2016) Smirnova, Ekaterina; Kwan, Jamie J.; Siu, Ryan; Gao, Xin; Zoidl, Georg; Demeler, Borries; Saridakis, Vivian; Donaldson, Logan W.CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions. Results We demonstrate that the crystal structure of the Sterile Alpha Motif (SAM) domain tandem (SAM1-SAM2) oligomer from CASKIN2 is different than CASKIN1, with the minimal repeating unit being a dimer, rather than a monomer. Analytical ultracentrifugation sedimentation velocity methods revealed differences in monomer/dimer equilibria across a range of concentrations and ionic strengths for the wild type CASKIN2 SAM tandem and a structure-directed double mutant that could not oligomerize. Further distinguishing CASKIN2 from CASKIN1, EGFP-tagged SAM tandem proteins expressed in Neuro2a cells produced punctae that were distinct both in shape and size. Conclusions This study illustrates a new way in which neuronal SAM domains can assemble into large macromolecular assemblies that might concentrate and amplify synaptic responses.
- ItemPih1p-Tah1p puts a lid on hexameric AAA+ ATPases Rvb1/2p(Cell Press, 2017) Tian, Shaoxiong; Yu, Ge; He, Huan; Zhao, Yu; Liu, Peilu; Marshall, Alan G.; Demeler, Borries; Stagg, Scott M.; Li, HongThe Saccharomyces cerevisiae (Sc) R2TP complex affords an Hsp90-mediated and nucleotide-driven chaperone activity to proteins of small ribonucleoprotein particles (snoRNPs). The current lack of structural information on the ScR2TP complex, however, prevents a mechanistic understanding of this biological process. We characterized the structure of the ScR2TP complex made up of two AAA+ ATPases, Rvb1/2p, and two Hsp90 binding proteins, Tah1p and Pih1p, and its interaction with the snoRNP protein Nop58p by a combination of analytical ultracentrifugation, isothermal titration calorimetry, chemical crosslinking, hydrogen-deuterium exchange, and cryoelectron microscopy methods. We find that Pih1p-Tah1p interacts with Rvb1/2p cooperatively through the nucleotide-sensitive domain of Rvb1/2p. Nop58p further binds Pih1p-Tahp1 on top of the dome-shaped R2TP. Consequently, nucleotide binding releases Pih1p-Tah1p from Rvb1/2p, which offers a mechanism for nucleotide-driven binding and release of snoRNP intermediates.
- ItemProceedings of the 25th Analytical Ultracentrifugation workshops and symposium(Springer, 2023) Demeler, Borries; Gilbert, Robert; Patel, Trushar R.The 25th International Analytical Ultracentrifugation (AUC) Workshops and Symposium (AUC2022) took place at the University of Lethbridge in Lethbridge, Canada, in July 2022. In total, 104 attendees (Attendance Profile: 104 attendees, 69 in-person, 35 remote. Brazil 1, Canada 24, China 1, Czech Republic 2, Finland 1, France 3, Germany 22, India 3, Italy 1, Japan 4, Spain 1, Switzerland 3, Taiwan 1, United Kingdom 5, United States 32) participated in the event and presented the latest advances in the field. While the primary focus of the conference was to showcase the applications of AUC in chemical, life sciences, and nanoparticle disciplines, several presentations also integrated complementary methods, such as isothermal titration calorimetry, microscale thermophoresis, light scattering (static and dynamic), small-angle X-ray scattering, X-ray crystallography, and cryo-electron microscopy. Additionally, the delegates gained valuable hands-on experience from 20 workshops covering a broad range of applications, experimental designs and systems, and the latest software innovations in solution biophysics. The AUC2022 special volume highlights the sustained innovation, utility and relevance of AUC and related solution biophysical methods across various disciplines, including biochemistry, structural biology, synthetic polymer chemistry, carbohydrate chemistry, protein and nucleic acid characterization, nano-science, and macromolecular interactions.
- ItemSDS-induced hexameric oligomerization of myotoxin-II from Bothrops asper assessed by sedimentation velocity and nuclear magnetic resonance(Springer, 2023) Henrickson, Amy; Montina, Tony; Hazendonk, Paul; Lomonte, Bruno; Neves-Ferreira, Ana Gisele C.; Demeler, BorriesWe report the solution behavior, oligomerization state, and structural details of myotoxin-II purified from the venom of Bothrops asper in the presence and absence of sodium dodecyl sulfate (SDS) and multiple lipids, as examined by analytical ultracentrifugation and nuclear magnetic resonance. Molecular functional and structural details of the myotoxic mechanism of group II Lys-49 phospholipase A2 homologues have been only partially elucidated so far, and conflicting observations have been reported in the literature regarding the monomeric vs. oligomeric state of these toxins in solution. We observed the formation of a stable and discrete, hexameric form of myotoxin-II, but only in the presence of small amounts of SDS. In SDS-free medium, myotoxin-II was insensitive to mass action and remained monomeric at all concentrations examined (up to 3 mg/ml, 218.2 μM). At SDS concentrations above the critical micelle concentration, only dimers and trimers were observed, and at intermediate SDS concentrations, aggregates larger than hexamers were observed. We found that the amount of SDS required to form a stable hexamer varies with protein concentration, suggesting the need for a precise stoichiometry of free SDS molecules. The discovery of a stable hexameric species in the presence of a phospholipid mimetic suggests a possible physiological role for this oligomeric form, and may shed light on the poorly understood membrane-disrupting mechanism of this myotoxic protein class.
- ItemSimultaneous identification of spectral properties and sizes of multiple particles in solution with subnanometer resolution(Wiley, 2016) Karabudak, Engin; Brookes, Emre; Lesnyak, Vladimir; Gaponik, Nikolai; Eychmuller, Alexander; Walter, Johannes; Segets, Doris; Peukert, Wolfgang; Wohlleben, Wendel; Demeler, Borries; Colfen, HelmutWe report an unsurpassed solution characterization technique based on analytical ultracentrifugation, which demonstrates exceptional potential for resolving particle sizes in solution with sub-nm resolution. We achieve this improvement in resolution by simultaneously measuring UV/Vis spectra while hydrodynamically separating individual components in the mixture. By equipping an analytical ultracentrifuge with a novel multi-wavelength detector, we are adding a new spectral discovery dimension to traditional hydrodynamic characterization, and amplify the information obtained by orders of magnitude. We demonstrate the power of this technique by characterizing unpurified CdTe nanoparticle samples, avoiding tedious and often impossible purification and fractionation of nanoparticles into apparently monodisperse fractions. With this approach, we have for the first time identified the pure spectral properties and band-gap positions of discrete species present in the CdTe mixture.
- ItemStructural characterization of the extracellular domain of CASPR2 and insights into its association with the novel ligand Contactin1(ASBMB Publications, 2015) Rubio-Marrero, Eva N.; Vincelli, Gabriele; Jeffries, Cy M.; Shaikh, Tanvir R.; Pakos, Irene S.; Ranaivoson, Fanomezana M.; von Daake, Sventja; Demeler, Borries; De Jaco, Antonella; Perkins, Guy; Ellisman, Mark H.; Trewhella, Jill; Comoletti, DavideContactin-associated protein-like 2 (CNTNAP2) encodes for CASPR2, a multidomain single transmembrane protein belonging to the neurexin superfamily that has been implicated in a broad range of human phenotypes including autism and language impairment. Using a combination of biophysical techniques, including small angle x-ray scattering, single particle electron microscopy, analytical ultracentrifugation, and bio-layer interferometry, we present novel structural and functional data that relate the architecture of the extracellular domain of CASPR2 to a previously unknown ligand, Contactin1 (CNTN1). Structurally, CASPR2 is highly glycosylated and has an overall compact architecture. Functionally, we show that CASPR2 associates with micromolar affinity with CNTN1 but, under the same conditions, it does not interact with any of the other members of the contactin family. Moreover, by using dissociated hippocampal neurons we show that microbeads loaded with CASPR2, but not with a deletion mutant, co-localize with transfected CNTN1, suggesting that CNTN1 is an endogenous ligand for CASPR2. These data provide novel insights into the structure and function of CASPR2, suggesting a complex role of CASPR2 in the nervous system.
- ItemSystematic noise removal from analytical ultracentrifugation data with UltraScan(Springer Link, 2023) Mortezazadeh, Saeed; Demeler, BorriesA method for removing time- and radially invariant noise from sedimentation velocity and sedimentation equilibrium experiments performed in an analytical ultracentrifuge is presented. The method averages repeat radial incident light measurements as a function of the photomultiplier response at different wavelengths to remove the majority of the time-invariant noise contributions from intensity data measurements. The results of this method are compared to traditional absorbance data generated with a buffer reference and the Beckman Optima AUC data acquisition program, and with the standard UltraScan refinement workflow. The method avoids the amplification of stochastic noise inherent in the absorbance scan subtraction traditionally employed in sedimentation velocity and equilibrium data. In addition, the collection of intensity data frees up the reference channel for additional samples, doubling the capacity of the instrument. In comparison to absorbance data, the residual mean square deviation of a fitted sedimentation velocity experiment without additional noise correction by UltraScan was improved by a factor of 4.5 when using the new method. This improvement benefits sedimentation equilibrium experiments as well as analytical buoyant density equilibrium experiments where routine time-invariant noise correction calculations cannot be performed.
- ItemTwo-dimensional grid optimization for sedimentation velocity analysis in the analytical ultracentrifuge(Springer, 2018) Kim, Haram; Brookes, Emre; Cao, Weiming; Demeler, BorriesSedimentation velocity experiments performed in the analytical ultracentrifuge are modeled using finite-element solutions of the Lamm equation. During modeling, three fundamental parameters are optimized: the sedimentation coefficients, the diffusion coefficients, and the partial concentrations of all solutes present in a mixture. A general modeling approach consists of fitting the partial concentrations of solutes defined in a two-dimensional grid of sedimentation and diffusion coefficient combinations that cover the range of possible solutes for a given mixture. An increasing number of grid points increase the resolution of the model produced by the subsequent analysis, with denser grids giving rise to a very large system of equations. Here, we evaluate the efficiency and resolution of several regular grids and show that traditionally defined grids tend to provide inadequate coverage in one region of the grid, while at the same time being computationally wasteful in other sections of the grid. We describe a rapid and systematic approach for generating efficient two-dimensional analysis grids that balance optimal information content and model resolution for a given signal-to-noise ratio with improved calculation efficiency. These findings are general and apply to one- and two-dimensional grids, although they no longer represent regular grids. We provide a recipe for an improved grid-point spacing in both directions which eliminates unnecessary points, while at the same time providing a more uniform resolution that can be scaled based on the stochastic noise in the experimental data.