Burg, Theresa
Permanent URI for this collection
Browse
Browsing Burg, Theresa by Issue Date
Now showing 1 - 20 of 21
Results Per Page
Sort Options
- ItemOverview of seabird genetics(University of the Azores, 2005) Burg, Theresa M.Briefly explains the importance of using genetics to study seabirds.
- ItemSampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frenquencies(Public Library of Science, 2012) Hale, Marie L.; Burg, Theresa M.; Steeves, Tammy E.One of the most common questions asked before starting a new population genetic study using microsatellite allele frequencies is ‘‘how many individuals do I need to sample from each population?’’ This question has previously been answered by addressing how many individuals are needed to detect all of the alleles present in a population (i.e. rarefaction based analyses). However, we argue that obtaining accurate allele frequencies and accurate estimates of diversity are much more important than detecting all of the alleles, given that very rare alleles (i.e. new mutations) are not very informative for assessing genetic diversity within a population or genetic structure among populations. Here we present a comparison of allele frequencies, expected heterozygosities and genetic distances between real and simulated populations by randomly subsampling 5–100 individuals from four empirical microsatellite genotype datasets (Formica lugubris, Sciurus vulgaris, Thalassarche melanophris, and Himantopus novaezelandia) to create 100 replicate datasets at each sample size. Despite differences in taxon (two birds, one mammal, one insect), population size, number of loci and polymorphism across loci, the degree of differences between simulated and empirical dataset allele frequencies, expected heterozygosities and pairwise FST values were almost identical among the four datasets at each sample size. Variability in allele frequency and expected heterozygosity among replicates decreased with increasing sample size, but these decreases were minimal above sample sizes of 25 to 30. Therefore, there appears to be little benefit in sampling more than 25 to 30 individuals per population for population genetic studies based on microsatellite allele frequencies.
- ItemGenetic evidence supports boreal chickadee (Poecile hudsonicus) x black-capped chickadee (Poecile atricapillus) hybridization in Atlantic Canada(Ottawa Field-Naturalists' Club, 2012) Lait, Linda Amy; Lauff, Randolph F.; Burg, Theresa M.Both morphological and genetic evidence support a hybridization event between a Boreal Chickadee (Poecile hudsonicus) and a Black-capped Chickadee (Poecile atricapillus) in Atlantic Canada. Plumage of the hybrid was intermediate to both parental species, with buffy sides and a dark brown cap on the head. Mitochondrial DNA control region showed the female lineage to be from a Boreal Chickadee, while Z-linked markers showed mixed Boreal Chickadee × Black-capped Chickadee heritage, likely representing an F1 hybrid. This is the first documented case of hybridization between these species in eastern North America, and it adds to the increasing evidence supporting intrageneric avian hybridization.
- ItemAn anomalous northern saw-whet owl (Aegolius acadicus) egg(Ottawa Field-Naturalists' Club, 2012) Burg, Theresa M.; Lauff, Randolph F.An anomalously large and coloured egg was found within a clutch of the Northern Saw-whet Owl (Aegolius acadicus) in Nova Scotia; all other eggs of the clutch were within the normal size and colour range for the species. Analysis of three mitochondrial genes suggests all eggs in the clutch were laid by Northern Saw-whet Owl(s) with similar genetic make-up. This is the first report of an anomalous egg from this species, and a rare example of added pigment.
- ItemGenetic signals of demographic expansion in downy woodpecker (Picoides pubescens) after the last North American glacial maximum(Public Library of Science, 2012) Pulgararín-R, Paulo C.; Burg, Theresa M.The glacial cycles of the Pleistocene have been recognized as important, large-scale historical processes that strongly influenced the demographic patterns and genetic structure of many species. Here we present evidence of a postglacial expansion for the Downy Woodpecker (Picoides pubescens), a common member of the forest bird communities in North America with a continental distribution. DNA sequences from the mitochondrial tRNA-Lys, and ATPase 6 and 8 genes, and microsatellite data from seven variable loci were combined with a species distribution model (SDM) to infer possible historical scenarios for this species after the last glacial maximum. Analyses of Downy Woodpeckers from 23 geographic areas suggested little differentiation, shallow genealogical relationships, and limited population structure across the species’ range. Microsatellites, which have higher resolution and are able to detect recent differences, revealed two geographic groups where populations along the eastern edge of the Rocky Mountains (Montana, Utah, Colorado, and southern Alberta) were genetically isolated from the rest of the sampled populations. Mitochondrial DNA, an important marker to detect historical patterns, recovered only one group. However, populations in Idaho and southeast BC contained high haplotype diversity and, in general were characterized by the absence of the most common mtDNA haplotype. The SDM suggested several areas in the southern US as containing suitable Downy Woodpecker habitat during the LGM. The lack of considerable geographic structure and the starburst haplotype network, combined with several population genetic tests, suggest a scenario of demographic expansion during the last part of Pleistocene and early Holocene.
- ItemMolecular markers reveal limited population genetic structure in a North American corvid, Clark's nutcracker (Nucifraga columbiana)(Public Library of Science, 2013) Dohms, Kimberly M.; Burg, Theresa M.The genetic impact of barriers and Pleistocene glaciations on high latitude resident species has not been widely investigated. The Clark’s nutcracker is an endemic North American corvid closely associated with Pinus-dominated forests. The nutcracker’s encompasses known barriers to dispersal for other species, and glaciated and unglaciated areas. Clark’s nutcrackers also irruptively disperse long distances in search of pine seed crops, creating the potential for gene flow among populations. Using the highly variable mitochondrial DNA control region, seven microsatellite loci, and species distribution modeling, we examined the effects of glaciations and dispersal barriers on population genetic patterns and population structure of nutcrackers. We sequenced 900 bp of mitochondrial control region for 169 individuals from 15 populations and analysed seven polymorphic microsatellite loci for 13 populations across the Clark’s nutcracker range. We used species distribution modeling and a range of phylogeographic analyses to examine evolutionary history. Clark’s nutcracker populations are not highly differentiated throughout their range, suggesting high levels of gene flow among populations, though we did find some evidence of isolation by distance and peripheral isolation. Our analyses suggested expansion from a single refugium after the last glacial maximum, but patterns of genetic diversity and paleodistribution modeling of suitable habitat were inconclusive as to the location of this refugium. Potential barriers to dispersal (e.g. mountain ranges) do not appear to restrict gene flow in Clark’s nutcracker, and postglacial expansion likely occurred quickly from a single refugium located south of the ice sheets.
- ItemLimited geographic genetic structure detected in a widespread Palearctic corvid, Nucifraga caryocatactes(Peer J, Ltd, 2014) Dohms, Kimberly M.; Burg, Theresa M.The Eurasian or spotted nutcracker (Nucifraga caryocatactes) is a widespread resident corvid found throughout the Palearctic fromCentral Europe to Japan. Characterized by periodic bouts of irruptive dispersal in search of Pinus seed crops, this species has potential for high levels of gene flow across its range. Previous analysis of 11 individuals did not find significant range-wide population genetic structure.We investigated population structure using 924 base pairs of mitochondrial DNA control region sequence data from 62 individuals from 12 populations distributed throughout the nutcracker’s range.We complemented this analysis by incorporating additional genetic data frompreviously published sequences.High levels of genetic diversity and limited population genetic structure were detected suggesting that potential barriers to dispersal do not restrict gene flow in nutcrackers.
- ItemGene flow of a forest-dependent bird across a fragmented landscape(Public Library of Science, 2015) Adams, Rachael V.; Burg, Theresa M.Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the finescale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation.
- ItemPopulation genetic isolation and limited connectivity in the purple finch (Haemorhous purpureus)(Wiley, 2016) Macfarlane, Colin B. A.; Natola, Libby; Brown, Mike W.Using a combination of mitochondrial and z- linked sequences, microsatellite data, and spatio- geographic modeling, we examined historical and contemporary factors influencing the population genetic structure of the purple finch (Haemorhous purpureus). Mitochondrial DNA data show the presence of two distinct groups corresponding to the two subspecies, H. p. purpureus and H. p. californicus. The two subspecies likely survived in separate refugia during the last glacial maximum, one on the Pacific Coast and one east of the Rocky Mountains, and now remain distinct lineages with little evidence of gene flow between them. Southwestern British Columbia is a notable exception, as subspecies mixing between central British Columbia and Vancouver Island populations suggests a possible contact zone in this region. Z- linked data support two mitochondrial groups; however, Coastal Oregon and central British Columbia sites show evidence of mixing. Contemporary population structure based on microsatellite data identified at least six genetic clusters: three H. p. purpureus clusters, two H. p. californicus clusters, and one mixed cluster, which likely resulted from high site fidelity and isolation by distance, combined with sexual selection on morphological characters reinforcing subspecies differences.
- ItemInfluence of landscape features on the microgeographic genetic structure of a resident songbird(2016-08-08) Adams, Rachael V.; Lazerte, Stefanie E.; Burg, Theresa M.Variation in landscape features influence individual dispersal and as a result can affect both gene flow and genetic variation within and between populations. The landscape of British Columbia, Canada, is already highly heterogeneous due to natural ecological and geological transitions, but disturbance from human mediated processes has further fragmented continuous habitat, particularly in the central plateau region. In this study, we evaluated the effects of landscape heterogeneity on the genetic structure of a common resident songbird, the black-capped chickadee (Poecile atricapillus). Previous work revealed significant population structuring in British Columbia which could not be explained by physical barriers, so our aim was to assess the pattern of genetic structure at a microgeographic scale and determine the effect of different landscape features on genetic differentiation. A total of 399 individuals from 15 populations were genotyped for fourteen microsatellite loci revealing significant population structuring in this species. Individual and population based analyses revealed as many as nine genetic clusters with isolation in the north, the central plateau and the south. Moreover, a mixed modelling approach that accounted for non-independence of pairwise distance values revealed a significant effect of land cover and elevation resistance on genetic differentiation. These results suggest that barriers in the landscape influence dispersal which has led to the unexpectedly high levels of population isolation. Our study demonstrates theimportance of incorporating additional landscape features when interpreting patterns of population differentiation. Despite taking a microgeographic approach, our results have opened up additional questions concerning the processes influencing dispersal and gene flow at the local scale.
- ItemMultilocus genetic analysis and spatial modeling reveal complex population structure and history in a widespread resident North America passerine (Perisoreus canadensis)(Wiley, 2017) Dohms, Kimberly M.; Graham, Brendan A.; Burg, Theresa M.An increasing body of studies of widely distributed, high latitude species shows a variety of refugial locations and population genetic patterns. We examined the effects of glaciations and dispersal barriers on the population genetic patterns of a widely distributed, high latitude, resident corvid, the gray jay (Perisoreus canadensis), using the highly variable mitochondrial DNA (mtDNA) control region and microsatellite markers combined with species distribution modeling. We sequenced 914 bp of mtDNA control region for 375 individuals from 37 populations and screened seven loci for 402 individuals from 27 populations across the gray jay range. We used species distribution modeling and a range of phylogeographic analyses (haplotype diversity, ΦST, SAMOVA, FST, Bayesian clustering analyses) to examine evolutionary history and population genetic structure. MtDNA and microsatellite markers revealed significant genetic differentiation among populations with high concordance between markers. Paleodistribution models supported at least five potential areas of suitable gray jay habitat during the last glacial maximum and revealed distributions similar to the gray jay’s contemporary during the last interglacial. Colonization from and prolonged isolation in multiple refugia is evident. Historical climatic fluctuations, the presence of multiple dispersal barriers, and highly restricted gene flow appear to be responsible for strong genetic diversification and differentiation in gray jays.
- ItemPleistocene glacial cycles and physical barriers influence phylogeographic structure in Black-capped chickadees (Poecile atricapillus), a widespread North American passerine(Canadian Science Publishing, 2018) Hindley, J.; Graham, Brendan A.; Burg, Theresa M.The nonmigratory Black-capped Chickadee (Poecile atricapillus (Linnaeus, 1766)) has a continent-wide distribution extending across large parts of North America. To investigate the phylogeographic structure and verify possible refugia during the last glacial maximum, we sequenced a 678 bp region of the mitochondrial control region from 633 Black-capped Chickadees at 35 sites across North America and performed paleoecological distribution modeling. Two genetically distinct groups were found using multiple analyses: one in Newfoundland (Canada) and a widespread continental group, with additional substructure evident in western continental populations. While gene flow is low throughout the range, it is especially low in peripheral populations. The Newfoundland population has remained isolated from continental populations for at least 65 000 years and contains a number of fixed nucleotide differences. Within the continental populations, Black-capped Chickadees are subdivided into Pacific Coast, Alaska (USA), southeast Rockies, and main-northeast groups consistent with late Pleistocene vicariance events. Evidence of secondary contact was identified between Pacific and main-northeast populations in northwest British Columbia (Canada) and between southeast Rockies and main-northeast groups in Montana (USA). Paleoecological distribution modeling predicted suitable habitat in Alaska, off the coast of Newfoundland, and several locations across the southern United States during the last glacial maximum, whereas suitable habitat during the last interglacial was more similar to the contemporary distribution.
- ItemThe influence of latitude, geographic distance, and habitat discontinuities on genetic variation in a high latitude montane species(Nature Publishing Group, 2018) Hindley, John A.; Graham, Brendan A.; Pulgarin-R., P. C.; Burg, Theresa M.Examining the factors that influence contemporary genetic patterns is important given the alarming rate at which natural environments are changing. In particular habitat fragmentation and climate change are expected to influence the distribution and diversity of natural populations. In this study we used both mitochondrial control region (mtDNA) and microsatellite data to answer the following questions about genetic diversity and divergence in mountain chickadees (Poecile gambeli) a resident bird species in western North America: (1) Do populations exhibit similar levels of genetic diversity across the range? (2) What is the genetic affinity of western populations in Oregon and Washington? (3) Do genetic patterns exhibit isolation by distance, or are genetic patterns more heavily influenced by habitat discontinuity? We tested the effects of isolation by distance and habitat distribution on genetic structure by analyzing 266 samples from 17 sites across western Canada and the United States. We found a near significant relationship between genetic diversity and latitude, however, our results indicate that overall, latitude is not a strong predictor of genetic diversity. Our analyses of populations in Oregon and Washington revealed a mismatch between patterns detected with mtDNA and microsatellite data. In particular, Washington clustered with the Coast Range/Cascades/Rocky Mountain mtDNA group, but with populations in southern Oregon/California based on microsatellite data. These results suggest the presence of a contact zone in Washington between the two mtDNA clades Coast Range/Cascades/Rocky Mountain and southern Oregon/California clades. Finally, our study revealed a greater effect of isolation by distance than isolation by habitat for both mtDNA and microsatellite data. Overall the isolation by distance signal was greater for mtDNA than microsatellite patterns. The greater signal of isolation by distance on mtDNA patterns likely reflects the strong effects of Pleistocene glaciations in shaping genetic patterns in western North America.
- ItemLandscape effects on the contemporary genetic structure of Ruffed Grouse (Bonasa umbellus) populations(Wiley, 2019) Jensen, Ashley M.; O'Neil, Nicholas P.; Iwaniuk, Andrew N.; Burg, Theresa M.The amount of dispersal that occurs among populations can be limited by landscape heterogeneity, which is often due to both natural processes and anthropogenic activity leading to habitat loss or fragmentation. Understanding how populations are structured and mapping existing dispersal corridors among populations is imperative to both determining contemporary forces mediating population connectivity, and informing proper management of species with fragmented populations. Furthermore, the contemporary processes mediating gene flow across heterogeneous landscapes on a large scale are understudied, particularly with respect to widespread species. This study focuses on a widespread game bird, the Ruffed Grouse (Bonasa umbellus), for which we analyzed samples from the western extent of the range. Using three types of genetic markers, we uncovered multiple factors acting in concert that are responsible for mediating contemporary population connectivity in this species. Multiple genetically distinct groups were detected; microsatellite markers revealed six groups, and a mitochondrial marker revealed four. Many populations of Ruffed Grouse are genetically isolated, likely by macrogeographic barriers. Furthermore, the addition of landscape genetic methods not only corroborated genetic structure results, but also uncovered compelling evidence that dispersal resistance created by areas of unsuitable habitat is the most important factor mediating population connectivity among the sampled populations. This research has important implications for both our study species and other inhabitants of the early successional forest habitat preferred by Ruffed Grouse. Moreover, it adds to a growing body of evidence that isolation by resistance is more prevalent in shaping population structure of widespread species than previously thought.
- ItemLiving on the edge: comparative phylogeography and phylogenetics of Oreohelix land snails at their range edge in Western Canada(BioMed Central, 2020) Dempsey, Zach W.; Goater, Cameron P.; Burg, Theresa M.Background: The biodiversity and distributions of terrestrial snails at local and regional scales are influenced by their low vagility and microhabitat specificity. The accessibility of large-bodied species and their characteristically high levels of genetic polymorphism make them excellent ecological and evolutionary models for studies on the phylogeography, phylogenetics, and conservation of organisms in fragmented populations. This study aims to elucidate the biodiversity, systematics, and distributions of genetic lineages within the genus Oreohelix at the northern and western periphery of their range. Results: We found four mitochondrial clades, three of which are putative subspecies of Oreohelix subrudis. One clade was geographically widespread, occurring within numerous sites in Cypress Hills and in the Rocky Mountains, a second was geographically restricted to the Rocky Mountains in Alberta, and a third was restricted to the Cypress Hills region. A fourth clade was the small-bodied species, O. cooperi. ITS2 sequence and screening data revealed three genetic clusters, of which one was O. cooperi. Cluster 1 contained most individuals in COI clade X and some from clade B and cluster 2 was predominantly made up of individuals from COI clades B and B′ and a few from clade X. ITS2 alleles were shared in a narrow contact zone between two COI clades, suggestive of hybridization between the two. Conclusions: A sky island known as Cypress Hills, in southeastern Alberta, Canada, is a biodiversity hotspot for terrestrial land snails in the genus Oreohelix. The observed phylogeographic patterns likely reflect reproductive isolation during the Last Glacial Maximum, followed by secondary contact due to passive, long-range dispersal resulting from low vagility, local adaptation, and complex glacial history.
- ItemGeolocator tagging links distributions in the non-breeding season to population genetic structure in a sentinel North Pacific seabird(Public Library of Science, 2020) Hipfner, J. Mark; Prill, Marie M.; Studholme, Katharine R.; Domalik, Alice D.; Tucker, Strahan; Jardine, Catherine; Maftei, Mark; Wright, Kenneth G.; Beck, Jessie N.; Bradley, Russell W.; Carle, Ryan D.; Good, Thomas P.; Hatch, Scott A.; Hodum, Peter J.; Ito, Motohiro; Pearson, Scott F.; Rojek, Nora A.; Slater, Leslie; Watanuki, Yutaka; Will, Alexis P.; Bindoff, Aidan D.; Crossin, Glenn T.; Drever, Mark C.; Burg, Theresa M.We tested the hypothesis that segregation in wintering areas is associated with population differentiation in a sentinel North Pacific seabird, the rhinoceros auklet (Cerorhinca mono cerata). We collected tissue samples for genetic analyses on five breeding colonies in the western Pacific Ocean (Japan) and on 13 colonies in the eastern Pacific Ocean (California to Alaska), and deployed light-level geolocator tags on 12 eastern Pacific colonies to delineate wintering areas. Geolocator tags were deployed previously on one colony in Japan. There was strong genetic differentiation between populations in the eastern vs. western Pacific Ocean, likely due to two factors. First, glaciation over the North Pacific in the late Pleistocene might have forced a southward range shift that historically isolated the eastern and western populations. And second, deep-ocean habitat along the northern continental shelf appears to act as a barrier to movement; abundant on both sides of the North Pacific, the rhinoceros auklet is virtually absent as a breeder in the Aleutian Islands and Bering Sea, and no tagged birds crossed the North Pacific in the non-breeding season. While genetic differentiation was strongest between the eastern vs. western Pacific, there was also extensive differentiation within both regional groups. In pairwise comparisons among the eastern Pacific colonies, the standardized measure of genetic differentiation (Fꞌ ST) was negatively correlated with the extent of spatial overlap in wintering areas. That result supports the hypothesis that segregation in the non-breeding season is linked to genetic structure. Philopatry and a neritic foraging habit probably also contribute to the structuring. Widely distributed, vulnerable to anthropogenic stressors, and exhibiting extensive genetic structure, the rhinoceros auklet is fully indicative of the scope of the conservation challenges posed by seabirds.
- ItemCryptic genetic diversity and cytonuclear discordance characterize contact among Canada Jay (Perisoreus canadensis) morphotypes in western North America(Oxford Academic, 2021) Graham, Brendan A.; Cicero, Carla; Strickland, Dan; Woods, John G.; Coneybeare, Howard; Dohms, Kimberly M.; Szabo, Ildiko; Burg, Theresa M.Three distinct Canada jay (Perisoreus canadensis) morphotypes with easily recognizable plumage traits come into contact in western North America. Recent work demonstrated high genetic structure across the species’ range; however, patterns of genetic variation in these contact zones remain unknown. We categorized 605 individuals into one of three morphotypes (Pacific, Rocky Mountain, and Boreal) based on plumage, and genotyped individuals at the mtDNA control region and 12 microsatellite loci to assess the extent of hybridization between morphotypes. Our data showed cryptic genetic diversity and high cytonuclear discordance among morphotypes within contact zones, which is likely the result of recent and historical admixture. The distributions of the Boreal and Pacific morphotypes each showed a strong association with a single, distinct genetic group, whereas the Rocky Mountain morphotype exhibited higher genetic diversity and was associated with multiple genotypes. Our analyses show the importance of considering both plumage and genetic traits when examining contact zones between closely related taxa. Finally the data presented in this study reaffirm that the Pacific morphotype is distinct from the Boreal and Rocky Mountain morphotypes based on genetic, phenotypic and ecological data, indicating that the Pacific morphotype should be re-elevated to a full species.
- ItemComparative phylogeographic analysis suggests a shared history among eastern North American boreal forest birds(Oxford Academic, 2021) Ralston, Joel; FitzGerald, Alyssa M.; Burg, Theresa M.; Starkloff, Naima C.; Warkentin, Ian G.; Kirchman, Jeremy J.Phylogeographic structure within high-latitude North American birds is likely shaped by a history of isolation in refugia during Pleistocene glaciations. Previous studies of individual species have come to diverse conclusions regarding the number and location of likely refugia, but no studies have explicitly tested for biogeographic concordance in a comparative phylogeographic framework. Here we use a hierarchical approximate Bayesian computation analysis of mitochondrial DNA sequences from 653 individuals of 6 bird species that are currently co-distributed in the boreal forest of North America to test for biogeographic congruence. We find support for congruent phylogeographic patterns across species, with shallow divergence dating to the Holocene within each species. Combining genetic results with paleodistribution modeling, we propose that these species shared a single Pleistocene refugium south of the ice sheets in eastern North America. Additionally, we assess modern geographic genetic structure within species, focusing on Newfoundland and disjunct high-elevation populations at the southern periphery of ranges. We find evidence for a “periphery effect” in some species with significant genetic structure among peripheral populations and between peripheral and central populations. Our results suggest that reduced gene flow among peripheral populations, rather than discordant biogeographic histories, can explain the small differences in genetic structure and levels of genetic diversity among co-distributed boreal forest birds
- ItemIntrogression between Sphyrapicus nuchalis and S. varius sapsuckers in a hybrid zone in west-central Alberta(Wiley-Blackwell, 2021) Natola, Libby; Curtis, Ashley; Hudon, Jocelyn; Burg, Theresa M.Studying species interactions at hybrid zones allows biologists to understand the forces that promote speciation. Hybridization among Sphyrapicus nuchalis, S. varius and S. ruber has long been acknowledged, and hybrid zones between S. nuchalis/S. ruber and S. varius/S. ruber have been characterized with both genetic and genomic data. Using a combination of next-generation restriction site-associated DNA sequencing (RAD-Seq) and traditional genetic methods, we examined patterns of introgression in the poorly characterized S. nuchalis/S. varius contact zone; the two most similar species in the complex, though they are not each other's closest relatives. We found high introgression rates, with several early and many advanced generation hybrids along a 275 km stretch of Rocky Mountain foothill, pointing to a well-established hybrid zone with hybrid individuals backcrossing with individuals from the parental species and each other. Plumage colouration in the hybrid zone was a relatively poor indicator of parental or hybrid status, which could be attributed to the possible involvement of few large effect genes.
- ItemDo phylogeny and habitat influence admixture among four North American chickadee (family: Paridae) species?(Wiley-Blackwell, 2021) Graham, Brendan A.; Gazeley, Ian; Otter, Ken A.; Burg, Theresa M.Hybridization is an important aspect of speciation, yet questions remain about the ecological and environmental factors that influence hybridization among wild populations. We used microsatellite genotyping data and collected land cover and environmental data for four North American chickadee species: black-capped Poecile atricapillus, mountain P. gambeli, chestnut-backed P. rufescens and boreal P. hudsonicus chickadees. Combining these datasets, we sought to examine whether there is evidence of admixture between four widely distributed North American chickadee species; whether admixture takes place more often between more closely related species pairs or between species pairs with more similar ecological preferences; and whether certain habitat types have higher rates of admixture than others. We detected admixture for five of the six species pairs analyzed (chestnut-backed–mountain chickadee pair showed no evidence of admixture), and found rates of admixture varied geographically, and within taxa pairs. Admixture was higher among less closely related species than more closely related species, although habitat similarity was not a significant predictor. Finally, rates of admixture were higher in urban parkland habitats than deciduous, mixed or coniferous forest habitats. Our work indicates admixture occurs frequently among North American parids, and habitat and environmental variation may play an important role in the frequency and geographic distribution of hybridization.