Techniques and technologies for far-infrared astronomy
Loading...
Date
2019
Authors
Sitwell, Geoffrey R. H.
University of Lethbridge. Faculty of Arts and Science
Journal Title
Journal ISSN
Volume Title
Publisher
Lethbridge, Alta. : Universtiy of Lethbridge, Department of Physics and Astronomy
Abstract
Far infrared astronomy is pivotal to our understanding of how the universe evolved, from
the earliest galaxies to ongoing star and planet formation. Observations in the far infrared,
however, are limited by thermal radiation in optics, and low spatial resolution.
Reducing the noise brought about by thermal radiation of optical systems used in far
infrared astronomy requires cryogenically cooled components. It is therefore important to understand
how the physical properties of structural materials change in the cryogenic regime in
order to understand their behaviour at operational temperatures. The design of a dedicated
cryogenic materials testing site for probing thermal contraction and thermal conductivity of
materials is presented.
The characterization of two nanometer precision metrology systems is discussed, and
the systems are used to measure the thermal contraction of aluminium and carbon fibre
reinforced polymers to temperatures below 10 K. Suggestions for improvements in the experimental
procedure are provided.
Description
Keywords
cryogenically cooled component testing , far infrared astronomy , materials testing cryostat , nanometer precision metrology system , thermal radiation interference reduction , Dissertations, Academic