Control of substrate utilization by O-islands and S-loops in Escherichia coli O157:H7
Loading...
Date
2011
Authors
Paquette, Sarah-Jo
Journal Title
Journal ISSN
Volume Title
Publisher
Lethbridge, Alta. : University of Lethbridge, Dept. of Biological Sciences, c2011
Abstract
Escherichia coli O157:H7 is an enteric pathogen that can cause severe gastrointestinal disease, sometimes leading to hospitalization and death. These bacteria have a variety of virulence factors that can be encoded for on pathogenicity islands (PAIs). The goal of this study was to characterize specific E. coli O157:H7 PAI deletion mutants using three methods: Phentotype Microarrays (PM), growth curves and survival curves were used to elucidate possible roles for the PAIs. Results from the PM study suggest that PAIs have a role in carbon substrate utilization; i.e., four of the O-island (OI) deletion mutants (OI-87, 98, 102 and 172) and an S-Loop (SL-72) deletion mutant exhibited differences in substrate utilization (gains and losses in utilization) compared to parental O157:H7 strains EDL933 (OI) and Sakai (SL), respectively. All of the mutants with the exception of the OI-135 mutant exhibited differences in level of substrate utilization for substrates shown to have important roles in the bacterium. Cell growth results showed that three OI deletion mutants (OI-55, 87 and 102) and the SL (SL-72) mutant exhibited a difference in rate of growth compared to the parental strains. Cell viability results showed that seven of the OI deletion mutants (OI-51, 55, 98, 108, 135, 172 and 176) exhibited different rates of decline in cell number when transferred to sterile water compared to the parental strain. The results show that removal of PAIs from E. coli O157:H7 can affect carbon utilization, growth and survival demonstrating the importance of PAIs in the ecology of these bacteria.
Description
xx, 208 leaves : ill. (some col.) ; 29 cm
Keywords
Escherichia coli O157:H7 -- Research , Escherichia coli O157:H7 -- Genetics -- Experiments , Mutagenesis , DNA microarrays , Gene expression , Microbial mutation , Dissertations, Academic