Classes of arrangement graphs in three dimensions
Loading...
Date
2005
Authors
Nickle, Elspeth J.
University of Lethbridge. Faculty of Arts and Science
Journal Title
Journal ISSN
Volume Title
Publisher
Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2005
Abstract
A 3D arrangement graph G is the abstract graph induced by an arrangement of planes in general
position where the intersection of any two planes forms a line of intersection and an intersection
of three planes creates a point. The properties of three classes of arrangement graphs — four, five
and six planes — are investigated. For graphs induced from six planes, specialized methods were
developed to ensure all possible graphs were discovered. The main results are: the number of 3D
arrangement graphs induced by four, five and six planes are one, one and 43 respectively; the three
classes are Hamiltonian; and the 3D arrangement graphs created from four and five planes are planar
but none of the graphs created from six planes are planar.
Description
x, 89 leaves : ill. (some col.) ; 29 cm
Keywords
Graph theory , Computer graphics , Geometrical constructions , Graphic methods , Dissertations, Academic