
CLASSES OF ARRANGEMENT GRAPHS IN THREE DIMENSIONS

Elspeth J. Nickle
B.Sc, University of Lethbridge, 2002

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Elspeth Nickle 2005

Abstract

A 3D arrangement graph G is the abstract graph induced by an arrangement of planes in general

position where the intersection of any two planes forms a line of intersection and an intersection

of three planes creates a point. The properties of three classes of arrangement graphs — four, five

and six planes — are investigated. For graphs induced from six planes, specialized methods were

developed to ensure all possible graphs were discovered. The main results are: the number of 3D

arrangement graphs induced by four, five and six planes are one, one and 43 respectively; the three

classes are Hamiltonian; and the 3D arrangement graphs created from four and five planes are planar

but none of the graphs created from six planes are planar.

iii

Acknowledgements

First, I wish to thank my supervisor, Stephen Wismath, for his encouragement, guidance, and

kindness throughout the process. I especially appreciated his unstinting patience, the valuable dis-

cussions and his many helpful insights during the writing phase. I am also grateful to my co-

supervisor, Daya Gaur, for his useful suggestions and his exceptional care and attention in reviewing

my work

In addition, I wish to extend a special thanks to the University of Lethbridge in general, and the

Department of Mathematics and Computer Science in particular, for a very positive and supportive

environment in which to study. I also enjoyed my fellow students in the Computational Geometry

Laboratory who never ceased to provide fun, interest and help when needed.

Finally, but far from least, I am deeply indebted to my husband, Ron Teather, for his inex-

haustible support, his unwavering love — and for putting up with all my erratic hours.

Lethbridge, July 2005
Elspeth Nickle

iv

Contents

1 Introduction, Previous Research and Research Goal 1
1.1 Introduction . 1
1.2 Prior Research in 2D Arrangement Graphs and Arrangements 3
1.3 The Research Goal of this Thesis . 10

2 Terminology 11
2.1 Arrangements of Planes and Lines . 11
2.2 Wire Model . 12
2.3 Arrangement Graphs . 13
2.4 Additional Terminology for Analysing the Classes of AG3Dn and AG2Dn 14

3 General Properties of AG3Dn 18
3.1 General Properties of 3D Arrangement Graphs . 18
3.2 4-Plane Arrangement Graphs (AG3D4) . 19
3.3 5-Plane Arrangement Graphs (AG3D5) . 20

3.3.1 Types of degree-3 points in r . 29

4 Properties of AG3D6 30
4.1 Background to Studying the Graphs in AG3D6 . 30

4.1.1 Methods for constructing arrangements 32
4.2 The Methodology - Five Main Steps . 33

4.2.1 Step One - Generates all the ways the points in r can be partitioned into two
subsets . 34

4.2.2 Step Two - Generates all the valid ways a new plane P6 can partition the
points of r into two subsets . 36

4.2.3 Correctness of procedures in Step Two . 37
4.2.4 Results for Step One and Step Two . 39
4.2.5 Overview of Step Three - Determining all the equivalence classes of possi-

ble planes for r . 39
4.2.6 Step Four - Identifying isomorphic graphs of AG3D6 and the cardinality of

AG3D6 . 40
4.2.7 Step Five - Checking that each of the 43 graphs is an arrangement graph . . 40

4.3 The Heart of the Methodology - Details for Step Three 41
4.3.1 Preliminaries for Step Three . 43
4.3.2 Constructing i-lines from intersections due to cut partial structs 45

v

4.3.3 Circular ordering and constructing i-lines from intersections with no pre-
fixed points . 48

4.3.4 Constructing i-lines from intersections produced by both pre-fixed and pre-
located points . 52

4.3.5 Consistency . 56
4.3.6 Determining the number of variations possible 57
4.3.7 Number of variations when P6 misses r 62
4.3.8 The data structures used in Steps Two and Three 64
4.3.9 Algorithm for the sub steps in Step Three 68

4.4 Results for AG3D6 . 72
4.4.1 Cardinality . 72
4.4.2 Hamiltonicity . 72
4.4.3 Planarity . 72
4.4.4 Summary . 74

5 Discussion and Open Problems 75

A List of Specialized Graphical Software Packages Used 80

B Hamiltonian Cycles in AG3D6 - Part 1 82

vi

List of Tables

1.1 The properties of various classes of arrangement graphs 3

4.1 No. of variations for different cases of pre-located and pre-fixed points 58
4.2 First 2D data structure of X for r . 64
4.3 Second 2D data structure of X for r . 65
4.4 Second 2-D data structure of Y for r . 66
4.5 Valid sequences in the second array for data structure Z 70

vii

List of Figures

1.1 A representation of a 5-plane arrangement graph 2
1.2 G is transformed into a tri-connected graph G∗ 4

2.1 A set of planes P inducing a W3D(P) and the corresponding graph 14
2.2 Direction in relation to an extreme point A . 15
2.3 I-line L intersects with P beyond A . 15
2.4 The extremities of i-line L . 15

3.1 A drawing of the graph s in AG3D4 . 20
3.2 A wire model of the graph in AG2D4 when the structs of AG2D3 are not cut 22
3.3 A wire model of the single graph in AG2D4 when the structs of AG2D3 are cut . . . 22
3.4 The orientation of P5 determines how it intersects with s 23
3.5 Determining the three new points in the P4 plane 24
3.6 The relationships of the points in planes P4 and P5 25
3.7 Only one possibility for the points in P5 with regard to s 25
3.8 The wire model r of the single graph κ in AG3D5 26
3.9 The five planes of r . 27
3.10 The single graph in AG3D5 drawn planar . 27
3.11 The single graph in AG3D5 is Hamiltonian . 28
3.12 The wire model r is symmetric . 29

4.1 Wire models of the six graphs in AG2D5 . 32
4.2 The wire model r . 35
4.3 The labels on the five planes P1,P2, ...P5 of r . 35
4.4 A set of joined line segments stretched out to form a straight line 38
4.5 Sixth plane P6 in one position . 42
4.6 Sixth plane P6 in second position . 42
4.7 Reversing Seq if a dead end is encountered . 47
4.8 The wire model w of plane P1 and the struct of a new i-line l inside τ with the

intersections {(2,3), (3,5), (4, 2), (1, 2)} . 49
4.9 The set L of i-lines produced by rotating clockwise around w 50
4.10 The set L of i-lines produced by rotating counter-clockwise around w 51
4.11 An example of the 2 possibilities from two pre-located points with a gap 53
4.12 An example of the 4 possibilities from one pre-located point 53
4.13 Order of points in Seq depends on whether points pre-fixed or pre-located 54
4.14 Examples where x and y are not degree 4 . 54

viii

4.15 Example where the cut partial struct on lx is contained in w but not in A 55
4.16 Examples where either x or y is degree 4 . 56
4.17 The four new points a, b, c and d cannot be joined by a new i-line 57
4.18 Two pre-fixed points produces three variations . 59
4.19 Two side-by-side pre-located points in w leads to three variations 60
4.20 If two points are required to fill the gap, only one variation is produced 60
4.21 Three versions of three pre-fixed points give rise to two variations each 61
4.22 If there are three pre-fixed points, the gap on τ is not always filled in 61
4.23 The points and i-lines of the wire model r . 65
4.24 Plane P1 with two new points p11 and p13 . 66
4.25 An example of data structure Z for P1 and arbitrary new i-line l 68
4.26 For a new i-line l interacting with w in a plane of r, examples of valid and invalid

sequences for Z . 69
4.27 An instance of AG3D6 Graph No 12 . 73
4.28 An instance of AG3D6 Graph No 38 . 73

B.1 AG3D6: Graph No. 1 . 82
B.2 AG3D6: Graph No. 2 . 82
B.3 AG3D6: Graph No. 3 . 83
B.4 AG3D6: Graph No. 4 . 83
B.5 AG3D6: Graph No. 5 . 83
B.6 AG3D6: Graph No. 6 . 83
B.7 AG3D6: Graph No. 7 . 83
B.8 AG3D6: Graph No. 8 . 83
B.9 AG3D6: Graph No. 9 . 84
B.10 AG3D6: Graph No. 10 . 84
B.11 AG3D6: Graph No. 11 . 84
B.12 AG3D6: Graph No. 12 . 84
B.13 AG3D6: Graph No. 13 . 84
B.14 AG3D6: Graph No. 14 . 84
B.15 AG3D6: Graph No. 15 . 85
B.16 AG3D6: Graph No. 16 . 85
B.17 AG3D6: Graph No. 17 . 85
B.18 AG3D6: Graph No. 18 . 85
B.19 AG3D6: Graph No. 19 . 85
B.20 AG3D6: Graph No. 20 . 85
B.21 AG3D6: Graph No. 21 . 86
B.22 AG3D6: Graph No. 22 . 86
B.23 AG3D6: Graph No. 23 . 86
B.24 AG3D6: Graph No. 24 . 86
B.25 AG3D6: Graph No. 25 . 86
B.26 AG3D6: Graph No. 26 . 86
B.27 AG3D6: Graph No. 27 . 87
B.28 AG3D6: Graph No. 28 . 87
B.29 AG3D6: Graph No. 29 . 87

ix

B.30 AG3D6: Graph No. 30 . 87
B.31 AG3D6: Graph No. 31 . 87
B.32 AG3D6: Graph No. 32 . 87
B.33 AG3D6: Graph No. 33 . 88
B.34 AG3D6: Graph No. 34 . 88
B.35 AG3D6: Graph No. 35 . 88
B.36 AG3D6: Graph No. 36 . 88
B.37 AG3D6: Graph No. 37 . 88
B.38 AG3D6: Graph No. 38 . 88
B.39 AG3D6: Graph No. 39 . 89
B.40 AG3D6: Graph No. 40 . 89
B.41 AG3D6: Graph No. 41 . 89
B.42 AG3D6: Graph No. 42 . 89
B.43 AG3D6: Graph No. 43 . 89

x

Chapter 1

Introduction, Previous Research and Research

Goal

1.1 Introduction

The goal of this thesis is to study the properties of 3-dimensional (3D) arrangement graphs, a class

of graphs induced by arbitrary arrangements of planes. Given a set of planes in general position,

where no four planes intersect at a common point and no pair of planes are parallel, the intersection

of any two planes then forms a line of intersection, and an intersection of three planes creates a

point. Informally, as shown in the representation in Figure 1.1, an arrangement graph is created

with the vertices represented by the points, and the edges represented by the segments of the lines

of intersection between two intersection points. The simplest instance of an arrangement graph is a

tetrahedron formed by four planes. An instance of the next simplest, an arrangement graph formed

by five planes, is shown in Figure 1.1.

While a body of work exists on the properties of 2-dimensional (2D) arrangement graphs (those

induced by a set of lines in the plane instead of a set of planes in 3-space), to the best of our

knowledge no corresponding body of work exists regarding 3D arrangement graphs.

The field of modern graph theory is generally considered to have started with Euler in 1736 with

his imaginative solution to the Königsberg Bridge Problem [11]. Graphs are a superb tool for rep-

resenting information concerning a set of objects and the relationships among the set. They are used

extensively in a large number of fields, including mathematics and computer science, in a multitude

1

Figure 1.1: A representation of a 5-plane arrangement graph

of different applications to simplify mathematical problems, and to communicate information and

relationships.

Because of the interesting mathematical properties graphs exhibit and their use in representing

information, there is an ongoing interest in increasing what is known concerning different types and

classes of graphs. This thesis undertakes to make a contribution to the field of algorithmic graph

theory by investigating the properties of arrangement graphs in 3-space, in order to augment what is

already known about arrangement graphs in 2-space. Because it is challenging to visualize and anal-

yse instances of these graphs in 3-space, the tools and strategies used are frequently computational

in nature. Hence the thesis has a very computational flavour.

The classes of 3D arrangement graphs consisting of four, five and six planes were systematically

investigated and a number of properties, including cardinality up to isomorphism, hamiltonicity and

planarity, were determined. The results are summarized in Table 1.

In order to derive the properties of each class of graphs, first the cardinality of the class is

established. Each “distinct” model of an arrangement graph, made up of lines of intersection and

intersection points, is an instance of the abstract arrangement graph in 3-space. To determine the

2

Table 1.1: The properties of various classes of arrangement graphs
Property 4-planes 5-planes 6-planes

Cardinality 1 1 43
Hamiltonicity yes yes yes

Planarity yes yes no

cardinality up to isomorphism, all the different ways a new plane P can be added to each distinct

instance Q of a graph with (n−1) planes are explored. The different ways are categorized first with

regard to the number of edges cut in Q (each cut edge giving rise to a new point) and second, with

respect to where the remaining new points of intersection can be located in the space surrounding

Q. An instance of every possible graph for n planes in 3-space is produced. For the cases of

four and five planes, the number of different possible instances is small and the analysis of these

instances can be managed by discussing their geometry in visual terms. For six planes, the number

of different instances is just under 250 and requires computational methods to catalogue and analyse

each example. Once the cardinality is established, then other basic properties such as Hamiltonicity

and planarity are explored.

This research also makes use of a number of results and ideas from another field, computational

geometry, which studies arrangements of lines and planes. Although arrangement graphs, as defined

in this thesis, have only recently been explored (discussed further in Section 1.2), the arrangement

structure from which they are derived has enormous importance in computational geometry (also

discussed in Section 1.2). The systematic investigations undertaken in this thesis have implications

as to how the structure of the arrangement can be viewed. In this regard, this thesis also contributes

to the considerable body of research concerning arrangements in computational geometry.

1.2 Prior Research in 2D Arrangement Graphs and Arrangements

As mentioned above, a small but significant body of work exists investigating 2D arrangement

graphs. To the best of our knowledge, no studies on the properties of 3D arrangement graphs have

3

xx

Figure 1.2: G is transformed into a tri-connected graph G∗

been published. Even though the focus of this study is on 3D arrangement graphs, reviewing the re-

sults of the 2D studies can suggest interesting and useful directions for the study of 3D arrangement

graphs.

One of the critical problems is identifying whether a given graph G is a 2D arrangement graph

or not. Bose et al. [2] refer to this as the Arrangement Graph Recognition Problem and establish

that it is NP-Hard. This is remarkable given the fact they also show each arrangement graph G has

a unique embedding in the plane.

An arbitrary 2D arrangement graph G is planar and can be augmented with an extra vertex x

and extra edges joining x to every other vertex that is not degree 4. The effect is to transform G into

a tri-connected graph G∗ as shown in Figure 1.2. Then, using a result from Whitney [21] (which

establishes that there is a unique embedding of any planar tri-connected graph in the plane), G∗ is

embedded. Afterwards, x and the extra incident edges on x are deleted leaving the original graph

G now embedded in the plane. At this point, it is straightforward to determine the sets of edges

incident on each of the vertices. Even so, Bose et al. [2] show that, despite the fact that the unique

embedding of a tri-connected graph permits the structure of graph G to be derived, the problem of

recognizing whether a given graph is an arrangement graph is still NP-Hard. For this, they turn to the

Pseudoline Stretchability problem which states that it is NP-Hard to decide whether the pseudolines

4

(curves in the plane) of a given arrangement of pseudolines can be “stretched” or straightened out

so that all the pseudolines are straight. They reduce the Pseudoline Stretchability problem to the

Arrangement Graph Recognition problem.

For 3D arrangement graphs, the analogous problem would be the 3D Arrangement Graph

Recognition Problem, defined as determining whether a given graph is a 3D arrangement graph

or not. Unfortunately, there is no graph theoretic result which guarantees a unique embedding for

a 3D arrangement graph. Indeed, for a given arbitrary graph, there could be an exponential num-

ber of ways that the graph might be represented as a set of planes in 3-space. As a result, it is

not clear whether the 3D Arrangement Graph Recognition Problem is even in NP. Hence, the 3D

Arrangement Graph Recognition Problem is unresolved at this point and remains an interesting

open problem.

Another question is whether 3D arrangement graphs are Hamiltonian. A graph is Hamiltonian

if it contains a cycle which traverses all vertices, passing through each vertex exactly once. Bose

et al. [2] show that not all 2D arrangement graphs are Hamiltonian with an example of a 7-line 2D

arrangement graph which is not Hamiltonian. In this case, the degree-2 vertices are arranged in such

a way that a Hamiltonian cycle is impossible. Eu et al. [8] also studied Hamiltonicity in a sub-class

of 2D arrangements called sail arrangements. A sail arrangement contains exactly three convex

vertices and each line of the 2D arrangement contributes at least one edge to the outside boundary

of the arrangement. Sail arrangements are not explicitly defined as arrangement graphs by Eu. et

al [8], however the sets of edges and vertices of these sail arrangements are exactly the components

of a 2D arrangement graph. Eu et al. establish that a Hamiltonian cycle can always be found for

these arrangements.

Another paper by Felsner et al. [9] studies whether Hamiltonian paths and cycles can be con-

structed for specific classes of arrangement graphs. They examine graphs constructed from pseudo-

circle arrangements (a family of simple closed curves on the sphere S which have exactly two points

in common at which they cross) and projective plane pseudoline arrangements (a family of simple

closed curves where every two curves have exactly one point in common). They demonstrate that

5

pseudo-circle arrangements with n≥ 3 circles and projective arrangements with n≥ 4 lines are al-

ways 4-connected. Then, applying a well-known theorem of Tutte which states that all 4-connected

graphs are Hamiltonian, they are able to prove these types of arrangements are Hamiltonian. Felsner

et al. [9] also demonstrate that every projective arrangement with an odd number of pseudolines can

be decomposed into two separate edge disjoint Hamiltonian paths.

While these results, derived for pseudocircle and projective plane pseudoline arrangements, are

interesting, the focus of this thesis is Euclidean 3-space so they are not directly applicable to this

study. In this thesis, the three classes of 3D arrangement graphs investigated are all shown to be

Hamiltonian but it is still an open question whether all 3D arrangement graphs are Hamiltonian.

Nevertheless, a tentative conjecture is made that 3D arrangement graphs are Hamiltonian, and the

reasons for this are further discussed in Chapter 5.

Research into arrangements does not always deal with the entire arrangement. One of the com-

ponents of an arrangement that has received considerable attention in the literature is its envelope,

defined as the polygon composed of the bounded edges of all the unbounded faces in the subdivi-

sion induced by an arrangement of lines. It is the same as the boundary of an instance w of a 2D

arrangement graph. Knowing the structure of the envelope for w is sufficient to compute a number of

useful attributes of w such as the diameter, the minimum (or maximum) (x, y) co-ordinates, and the

convex hull. Two papers, one by Keil [16] and the other by Eu et al. [8] (mentioned earlier) address

various properties of envelopes and possibilities for uncovering envelopes efficiently. In Keil’s[16]

paper, given a set of n lines in the plane, an algorithm is presented for efficiently constructing the

envelope of the arrangement. The portion of the envelope for each of the 2n open regions around

the outside of the envelope is constructed by making use of the slope information to determine two

convex polygonal chains for each open region. The algorithm runs in O(n) time if the slopes of the

n indexed lines are sorted, or in O(n logn) time if the slopes are unsorted and sorting is required as

a preliminary step.

Eu et al. [8] also investigate envelopes and their geometric properties, characterizing various

envelope polygons in terms of classes of polygons - convex, star-shaped and L-convex. In addition,

Eu et al. [8] produce a method, which incorporates Keil’s algorithm, for testing whether a given

6

arbitrary simple polygon of n vertices is induced by an arrangement of lines. A new sub-procedure

A is developed which, if the polygon is an envelope, can successfully sort the edges of a polygon

in order of orientation in O(n) time. In the full procedure, A is first used to sort the edges of an

arbitrary polygon in order of orientation. If the method does not output the edges in sorted order,

then the polygon cannot be an envelope. If it does, these edges can be extended to create a set L

of sorted lines. Then using Keil’s algorithm, the envelope for L is built. If the given polygon is

identical to the constructed envelope, then the given polygon must be an envelope polygon. Each

method runs in O(n) time so together the two methods only require O(n) time.

In 3D, the corresponding structure to the envelope in 2D is a polyhedron, a region of enclosed

space whose boundary is formed by a set of flat faces. Although the idea of developing an envelope

polyhedron as a way to study 3D arrangement graphs is an interesting approach, it was not the focus

of the study. This could be a rewarding direction for further research into 3D arrangement graphs.

In assessing what background material and tools might be useful for this thesis, it is clear that

many of the concepts used to directly study arrangements of lines and planes are also relevant.

Arrangements of lines and planes have been investigated extensively for over a hundred years -

the classic works by Grünbaum [14], [13] (Chapter 18), and Edelsbrunner [6] provide surveys of

past results. Much of ongoing interest in arrangements stems from its position as one of the fun-

damental structures in computational geometry. Arrangements (of lines, planes and hyperplanes)

can be translated into configurations of points and vice versa via a duality transformation so that

questions involving a set of points often can be efficiently solved as problems involving sets of

lines. Arrangements are also important in motion planning and computer graphics problems. Fi-

nally, arrangements are strongly related to two other important structures in computational geome-

try, Voronoi diagrams and convex hulls. Therefore, arrangements are featured in many classic and

contemporary solutions to problems in computational geometry.

Constructing an arrangement is one of the fundamental questions already addressed in the com-

putational geometry literature on arrangements. Edelsbrunner et al. [7] developed the first O(nd)

algorithm for constructing an arrangement of n hyperplanes in d-dimensional space. They used

7

an incremental construction methodology for inserting an additional plane into an already exist-

ing arrangement of planes. This incremental construction algorithm with some modifications still

remains very much the method of choice for constructing a complete arrangement. (For recent

examples of this algorithm with some modifications, see [4], [20] and [15]). In the incremental

algorithm, as each new plane is inserted into an already existing arrangement, only the affected

cells of the underlying arrangement are updated. Hence, in 3-space, the algorithm describes how to

insert a new plane into an already existing arrangement of planes in O(n2) time, leading to an O(n3)

algorithm for building the whole arrangement.

The main purpose of the incremental algorithm as presented in[7] is to efficiently build a hierar-

chical structure of the arrangement. The data structure used to store the arrangement is an incidence

graph which records the relationships among the different types of faces, where points are 0-faces,

lines 1-faces, faces 2-faces, and polytopes (or convex polyhedrons) 3-faces. Given a category of

face, for example k-faces, the incidence graph contains a node for each k-face. Then the relation-

ships of each k-face to all the (k− 1)-faces and (k + 1)-faces with which it is incident are also

recorded in the incidence graph. However the relationships among the faces at the same level in

the hierarchy are not recorded. Fortunately, different data structures have been developed which get

around this problem and can be used in connection with this algorithm. Examples are Baumgart’s

winged-edge structure [20] or Guibas and Stolfi’s [20] quad-edge structure.

For this thesis, the ideas behind the incremental algorithm provide two important perspectives.

The first is that it is possible to “freeze” the unaffected parts of the arrangement and only update

the relatively small part of the arrangement where changes have occurred. The second is that it

is possible to analyse the effect of introducing an additional plane into the arrangement. Thus,

the algorithm from Edelsbrunner et al. [7] provided the inspiration for regarding an instance of an

arrangement graph of n planes as an instance of an underlying arrangement graph of (n−1) planes

plus one additional plane.

Another fundamental question which has been addressed in the computational geometry liter-

ature is counting the number of different possible arrangements. Edelsbrunner [6] refers to two

8

arrangements which are the same as combinatorially equivalent. To establish combinatorial equiva-

lence, an analysis of all the different types of cells or k-faces found in the arrangement is required.

In the 3D case, the planes induce a division of the space into k-faces where k is 0≤ k < 3 and refers

to the dimension of the cell. Hence, the number of different arrangements involves analysing 0-faces

(points), 1-faces (line segments) and 2-faces (faces). Clearly the components of arrangements stud-

ied from this perspective overlap with the components of arrangement graphs (vertices and edges),

but include elements that arrangement graphs do not (faces). Nonetheless, it is useful to explore

Edelsbrunner’s concept of combinatorial equivalence.

Combinatorial equivalence has three different aspects. The first is a one-to-one correspondence

between the planes of two arrangements g and h. The second is a one-to-one correspondence be-

tween all the k-faces of g and the k-faces of h. The third is a one-to-one correspondence between

the position vectors attached to the k-faces in g and h. A position vector specifies the location of a

k-face relative to the individual planes of a set H of planes. Again, in the 3D case, each plane in H,

denoted by h1,h2,,hn, creates three sub-spaces:

• the space that is on one side of hi and denoted by a + sign
• the space that is on the other side of hi and denoted by a − sign
• the points on the plane itself which are denoted as 0.

Then the relative positions of point p in the space where there are a set H of n planes can be identified

by a position vector u with n entries from the set { +, 0, -}. By convention, the vertical direction

is chosen as the “distinguished” one so that points can be characterized as above each hi (+), below

hi (-) or on hi (0). The effect of using position vectors in this manner is that two arrangements,

exactly the same, except that one has an orientation that is exactly opposite to the other, would not

be considered combinatorially equivalent.

Therefore, the concept of combinatorial equivalence requires some modification to be used in

the context of a number of possible different arrangement graphs. In the field of graph theory, the

notion of a distinguished vertical direction used to count the number of graphs is not a conven-

tional one. Nonetheless, Edelsbrunner’s approach ([6], p.11) and a considerable body of work in

the oriented matroid field ([1], [10]) use position vectors and sign vectors (an alternate name for

position vectors) to help establish the combinatorial complexity of different arrangements. For this

9

thesis, position vectors are not used but the notion behind position vectors inspired the development

of a method for segmenting the lines of intersection into different portions. Each portion could be

uniquely identified and, as will be shown in later chapters, allowed further methods to be developed

for systematically investigating all the graphs which could be created from adding an additional

plane to an already existing arrangement graph.

1.3 The Research Goal of this Thesis

The primary goal of this thesis is to establish the structure and properties of classes of 3D arrangement

graphs. The purpose of this is to augment the research work already done regarding the properties of

2D arrangement graphs, and to extend what is known about arrangement graphs and arrangements

in general. This study took the form of a careful investigation of the simplest classes, arrangements

graphs of four, five and six planes.

Three basic properties of these graph classes were researched: cardinality, Hamiltonicity and

planarity. Each of these properties is of interest to graph theorists and together, they give an idea of

the scope and importance of the class of graphs. In the course of developing solutions to these ques-

tions, an in-depth appraisal of the structures in arrangement graphs was conducted. In particular,

establishing the cardinality of 3D arrangement graphs composed of six planes entailed developing

an extensive methodology to catalogue and evaluate all the possible ways that a set of six planes

could interact with each other. In turn, investigating the classes of arrangement graphs also led to a

number of insights regarding the complexity of the structures of the underlying arrangements from

which wire models of these graphs were derived.

10

Chapter 2

Terminology

This chapter defines terms which will be used to define and describe arrangement graphs in a

rigourous fashion. Some of these terms are already well established in the literature; others are

new and defined specifically for this investigation.

It is worth noting that while arrangement graphs, like all graphs, are abstract, many of the

properties of these graphs result from the geometry of arranging n planes in general position in

ℜ3. Hence, it is often useful to refer to the “geometric” instances of the graph, or how a “wire

model” of an instance of the graph class exists in ℜ3. Therefore, in addition to the terminology for

describing the graphs, a number of terms are introduced for describing wire models of instances of

these graphs. Since a wire model is a concrete realization of a graph, any properties that we can

establish for wire models also directly apply to the associated (abstract) graph.

The definitions are arranged in four categories: terms which refer to arrangements of planes,

terms for wire models of graphs, terms for arrangement graphs (once we have the terminology from

the first two categories as a foundation) and terms which will be useful for discussing and proving

the properties of arrangement graphs.

2.1 Arrangements of Planes and Lines

For the following terms, let P be a finite set of n planes in general position in ℜ3 and let L be a

finite set of k lines in ℜ2.

11

• arrangement A(P) - the connected regions induced by P , in ℜ3 with n≥ 3 and traditionally

denoted as the arrangement A(P). In ℜ3, the regions of A(P) are composed of cells of 0,

1, 2 and 3 dimensions where a 0-dimensional cell corresponds to a point, a 1-dimensional

cell a line, a 2-dimensional cell a face, and a 3-dimensional cell a facet. We are primarily

interested in the regions of 0 and 1 dimensions, in other words, the points and lines induced

by the planes in ℜ3. Furthermore, we insist that the planes be in general position, i.e., each set

of three planes must intersect to create a unique point, giving rise to exactly (n
3) intersection

points and (n
2) lines of intersection.

• i-line - the line of intersection between two planes in A(P). Note that the i-line l between

two planes P1 and P2 appears as a line embedded in each of the planes. In P1, l is where P2

cuts through P1, and in P2 where P1 cuts through P2.

• arrangement A(L) - the connected regions induced by L , in ℜ2 with k≥ 2 and traditionally

denoted as the arrangement A(L). In contrast to A(P), the regions of A(L) are limited to

cells of 0, 1 and 2 dimensions. As above, we are interested in the points (0-dimension cell)

and lines (1-dimension cell) induced by the lines in ℜ2, and similarly require the lines to be

in general position, giving rise to exactly (k
2) intersection points.

• points of intersection or points - These are defined as the 0-dimensional cells where three

planes intersect in A(P), or, in the 2D case, where two lines intersect in A(L). We will use

the terms points and points of intersection interchangeably.

2.2 Wire Model

• partial struct - Let A and B be two points on an i-line L such that there are no other points

on L between A and B. The partial struct is defined as the line segment between A and B.

• full struct or struct - A full struct is the aggregate of all the partial structs along a specific

i-line. It can readily be seen that in A(P) each full struct contains (n−3) partial structs and

(n−2) points, one for each of the n−2 planes intersecting the i-line. In 2D, for A(L), each

12

full struct contains (k−2) partial structs and (k−1) points. We will use the terms full struct

and struct interchangeably.

• 3D wire model or W3D(P) - consists of points and line segments induced by A(P) as

follows:

– the points in W3D(P) correspond to the points in A(P).

– the line segments W3D(P) are partial structs as defined earlier in this section.

• 2D wire model or W2D(L) - consists of points and line segments induced by A(L) as

follows:

– the points in W2D(L) correspond to the points in A(L).

– the line segments W2D(L) are partial structs as defined earlier in this section.

• extreme point on a struct or an i-line - the point dividing the portion of the i-line that is a

struct, and therefore part of W3D(P) or W2D(L), and the portion of the i-line that is not part

of W3D(P) or W2D(L). There is an extreme point at each end of each struct.

2.3 Arrangement Graphs

• 3D arrangement graph - denoted as G(P) and defined as the graph whose vertex set corre-

sponds to the points in W3D(P) and whose edges correspond to the partial structs in W3D(P).

• 2D arrangement graph - denoted as H(L) and defined as the graph whose vertex set corre-

sponds to the points in W2D(L) and whose edges correspond to the partial structs in W2D(L).

• classes of 3D arrangement graphs - The set of graphs created by a set of n planes is denoted

by AG3Dn.

• classes of 2D arrangement graphs - The set of graphs created by a set of k lines is denoted

by AG2Dk.

13

Plane 3

Plane 4

Plane 1

Plane 2

(a) The planes that induce W3D(P)

(b) the wire model W3D(P)
(c) the corresponding
graph (not drawn planar)

p1

p2 p3

p4

p1
p2

p3 p4

Figure 2.1: A set of planes P inducing a W3D(P) and the corresponding graph

Figure 2.1 shows an example of how a set of planes induces a wire model of an arrangement

graph. Note that the graph can be drawn in a multitude of different ways, some of which appear

very different from the underlying arrangement of planes.

2.4 Additional Terminology for Analysing the Classes of AG3Dn and

AG2Dn

The first two terms below define the two possible ways that i-line L and the struct on L can be

traversed; the last two terms precisely describe specific parts and points of l. For these definitions,

let A and B be the two extreme points on i-line L and hence the end points of the struct.

• Direction beyond the extreme point - In relation to an extreme point A on a struct of an

i-line L, the Direction beyond the extreme point is the direction towards that part of L which

is not part of the struct. (Figure 2.2)

14

extreme
point A

Direction beyond the
extreme point

struct
i-line L extreme

point B

Direction toward the
opposite end

Figure 2.2: Direction in relation to an extreme point A

extreme
point BPlane P

new point A’

struct
i-line L

extreme
point A

Figure 2.3: I-line L intersects with P beyond A

extreme point
extreme point

Extremity

Extremity

Figure 2.4: The extremities of i-line L

• Direction toward the opposite end of the struct - For the extreme point A on a struct of L,

this defines the direction which traverses the struct to reach the other extreme point B at the

opposite end of the struct. (Figure 2.2)

When a new plane Pi is added to a wire model m, new intersections occur in two ways — either

by Pi cutting partial structs of m or where Pi cuts the i-lines of m beyond the ends of their extreme

points.

• Intersection beyond an extreme point - This refers to the intersection A′ of a plane Pi and

i-line L which occurs beyond the extreme point A on L. (Figure 2.3)

• i-line extremity - For an i-line L which contains a struct, an extremity is the ray from one

of its extreme points to infinity. Figure 2.4 shows that each i-line L has two extremities: one

15

is the portion of L beyond one of its extreme points, the other is the portion of L beyond the

other extreme point. See Figure 2.4.

For deriving the number of possible graphs for AG3D6, a number of definitions for determining

whether graphs are equivalent to each other were used. In the following discussion, two graphs G1

and G2 will be used to denote two graphs with sets of vertices V1 and V2 respectively.

• Graph isomorphism - Two graphs G1 and G2 are isomorphic if and only if there is a function

f from V1 onto V2 where uv is an edge joining two vertices u and v in G1 if and only if there

is an edge f (u) f (v) joining two vertices f (u) and f (v) in G2.

If two graphs are isomorphic, it is possible to rename the vertices of one graph with the labels

of the vertices in the other. Everywhere there is an edge in one graph, there will be a corresponding

edge in the other graph. Therefore, it is clear that the two graphs have the same structure.

• Equivalence class of graphs - When all graphs that are isomorphic to each other are grouped

together in one class, they are said to form an equivalence class of graphs.

The next definition is used in connection with deciding whether two arrangement graphs are

equivalent to each other. A new arrangement graph of n planes will be created incrementally by

adding a plane P to an underlying wire model Q of an arrangement graph with (n− 1) planes. A

number of new points are created, one on each i-line in the underlying wire model, and one portion

of each i-line is intersected, either a partial struct or an extremity. Obviously there are an infinite

number of ways P can be added to Q. However, if two planes P1 and P2 cut exactly the same list

of partial structs and i-line extremities in Q, then it is clear that the two new wire models created

have the same adjacency lists and the graphs induced by these wire models are isomorphic to each

other. When considering the number of possible arrangement graphs, therefore, only one example

of the wire models produced from a set of planes R which cut the same list of partial structs and

extremities needs to be considered. All the planes in R may have different orientations but, in terms

of inducing arrangement graphs, they are all equivalent. This motivates the following definition

which is used to decide which sets of planes are equivalent.

16

• Equivalence class of planes - All sets R of n planes each which cut exactly the same list of

partial structs and extremities of the i-lines in an underlying wire model Q of an arrangement

graph forms an equivalence class of planes.

17

Chapter 3

General Properties of AG3Dn

First, two properties of all classes of 3D arrangement graphs are presented which can be readily

derived from the definitions in the terminology section. After this, a number of other properties are

listed which will be used in discussions and proofs throughout the thesis. Finally, the two simplest

classes of 3D arrangement graphs - AG3D4 and AG3D5 - are examined. These two classes provide

a number of insights into the general form and structure of arrangement graphs and help provide a

good foundation for studying other classes of graphs, in particular AG3D6.

3.1 General Properties of 3D Arrangement Graphs

Let P be a set of n planes in general position.

Property 1. The number of vertices in a 3D arrangement graph is (n
3).

There is a vertex for each point in an associated wire model. From the definition of the

arrangement A(P), each set of three planes intersects to create a unique point so there are (n
3)

points, and hence the same number of vertices.

Property 2. The number of edges in a 3D arrangement graph is

n · (n−1) · (n−3)/2.

Each pair of planes in A(P) creates a line of intersection and thus there are n · (n− 1)/2 i-

lines. For any given i-line l in a wire model of an arrangement graph, all the other n− 2 planes

18

intersect l. Thus, on l, there are (n−2) points of intersection and (n−3) partial structs (the number

of intervening line segments between the points on l). Therefore in any wire model, there are

n · (n−1) · (n−3)/2 partial structs. Hence the graph has the same number of edges.

Property 3. If one plane is removed from the wire model of a graph in AG3Dn, the result is a wire

model of a graph in AG3Dn−1.

Observation 1. Each plane of a wire model of a graph in AG3Dn contains a wire model of a graph

in AG2Dn−1.

Each plane of a wire model in AG3Dn must contain (n−1) lines in general position. Hence, the

conditions required for creating a wire model of a graph in AG2Dn−1 are met. This result is also

stated without proof in [6] p. 93.

Property 4. The degree of each vertex of a graph in AG3Dn must be one of 3, 4, 5 or 6.

This follows from the construction of an arrangement graph. If the point in the associated wire

model is the extreme point on all three i-lines incident on the point, the point will be degree 3. If it

is the extreme point on two i-lines, it will be degree 4, if extreme on one i-line, it will be degree 5,

and if extreme on none, it will be degree 6.

Property 5. Each struct in a wire model of a graph in AG3Dn is contained in exactly two planes of

the wire model.

Property 6. Each point in a wire model of a graph in AG3Dn is contained in three planes of the

wire model.

3.2 4-Plane Arrangement Graphs (AG3D4)

Three key properties of the class AG3D4 can be readily determined.

Lemma 1. The cardinality of AG3D4 is one.

19

a

b

c

d

3D representaion of
tetrahedron (AG4)

d

b c

a

Drawn planar with
Hamiltonian cycle in
bold

Figure 3.1: A drawing of the graph s in AG3D4

Proof. Consider a wire model of any four planes. These planes create four points and each of these

four points is connected to the remaining three points. Therefore there is only one wire model

possible which is a tetrahedron where each point is degree 3. See Figure 3.1. Hence it follows that

there is only one graph σ in AG3D4.

In the rest of this study, the single graph in AG3D4 will be denoted as σ and the wire model of

σ will be denoted as s. Next, the properties of σ are examined.

Lemma 2. The graph σ is planar and Hamiltonian.

Proof. Figure 3.1 shows that σ is planar and Hamiltonian.

Corollary 1. The only wire model (and the only graph) in AG2D3 is a triangle.

A triangle is the only possible graph for three lines arranged in a plane so that each line intersects

the other two.

3.3 5-Plane Arrangement Graphs (AG3D5)

The results listed below follow directly from Properties 1 and 2 and the definition of an arrangement

A(P).

20

• Each graph in AG3D5 has 10 vertices, six more than for the graph in AG3D4, and 20 edges,

14 more than in AG3D4.

• In a wire model r of a graph in AG3D5, there are three points and two partial structs on each

i-line.

• There are 10 i-lines in r.

To study AG3D5, another plane is added to the tetrahedron wire model of AG3D4 and all the

different ways that the new plane can interact with the tetrahedron are enumerated. To assist in this

analysis, first two useful lemmas are presented. The first, Lemma 3, considers the case in 2D of

adding another line in general position to the only graph in AG2D3 (a triangle).

Lemma 3. The cardinality up to isomorphism of the class of 2D arrangement graphs AG2D4 is one

and the graph always has one degree-4 vertex.

Proof. From Corollary 1, the only graph for AG2D3 is a triangle. If another line is added, there are

two cases to consider. The first is that a new i-line l does not intersect any of the partial structs in

the triangle. The second is that l does intersect the triangle.

In the first case, l cannot be parallel to any of the other i-lines in the triangle. Without loss of

generality, let the i-lines containing structs structb and structc in Figure 3.2 intersect with l beyond

p2 and p1 respectively. The i-line containing structa must intersect with l beyond either p1 or p2.

Again, without loss of generality, let the i-line containing structa intersect with l beyond p1. Three

new points are created. Point p1 is degree 4, p2 is degree 3, and p1 remains degree 2. Since the

three i-lines in the plane of s form a triangle, no matter how l is introduced, the result will be the

same as in Figure 3.2.

In the second case, l slices through a triangle in the plane, and must cut exactly two out of the

three partial structs. The third struct is extended to intersect with l. The resulting wire model, shown

in Figure 3.3, is clearly isomorphic to the wire model in Figure 3.2 .

Therefore the cardinality of AG2D4 is one and the resulting 2D graph always has one degree-4

vertex.

21

structa

structb

structc

p1

p2
p3

i-line l - old points
- new points

Figure 3.2: A wire model of the graph in AG2D4 when the structs of AG2D3 are not cut

- old points
- new points

structa

structb

structc

p1

p2
p3

i-line l

Figure 3.3: A wire model of the single graph in AG2D4 when the structs of AG2D3 are cut

In the rest of this study, the unique graph in AG2D4 will be designated as ω and the wire model

of this graph will be referred to as w. The next lemma considers the effect on the wire model s of

the unique graph in AG3D4 when an additional plane P5 introduced so that it does not cut any of the

partial structs of s. Plane P5 must be in general position to the set of planes involved in s in order to

form an arrangement of five planes.

Lemma 4. If a fifth plane P5 is introduced in general position so that no structs in the wire model s

of the graph in AG3D4 are cut, exactly one of the degree-3 points in s is transformed into a degree-6

point.

Proof. Allow the plane P5 to move towards s until it comes into contact with s. Since P5 is in

general position, it cannot contact the three points in one of the planes of s simultaneously because

this would imply that P5 is parallel to one of the planes of s. Similarily, it cannot contact two points

22

p1

p2

p1

p2

P5

P5

s s

Figure 3.4: The orientation of P5 determines how it intersects with s

simultaneously since this would imply that P5 is parallel to one of the i-lines of s. As a result, P5

must initially contact a single point p1 in s. Imagine then that P5 is backed off slightly so that it

breaks contact with s. Clearly the three i-lines incident on p1 must intersect with P5 beyond p1.

From the construction of the tetrahedron s, note that each of the remaining three points in s

shares a specific i-line with point p1. Because P5 in general position with respect to the original

planes in the tetrahedron, it follows that, without loss of generality, any other point p2 in s can

have at most two of its i-lines intersect with P5 beyond p2. Therefore, any other point in s at most

can be transformed into a degree-5 point. Note that p1 becomes a degree-6 point as shown in

Figure 3.4.

This lemma establishes that, if P5 does not intersect s, it is the orientation of P5 with respect to s,

not the distance of P5 from s, that determines how the i-lines of s will intersect with P5. This result

is useful because it determines how one of the points in s is affected by the introduction of a new

plane P5. Using this result, other implications of introducing P5 can be uncovered.

Theorem 1. The cardinality of AG3D5 is one.

Proof. As in Lemma 3, there are two cases. First, a fifth plane P5 is introduced into a wire model s

of σ so that no structs of s are cut. In the second case, the original structs of s are cut.

No structs of s are cut.

From Lemma 4, three of the six structs in s must be extended beyond one of the points in s,

turning that point into a degree-6 point. Without loss of generality, assume that this point is p1 in

23

i-line
fromP5

(a) (b)

Legend
 - original points of
 tetrahedron
 - points on new
 i-line

i-line
fromP5

Figure 3.5: Determining the three new points in the P4 plane

Figure 3.4. The fourth plane P4 is shown in Figure 3.5(a) and does not contain p1. Then, three

new points are created in P4 by extending the existing structs in P4 to intersect with the new i-line

resulting from P5. By Lemma 3, there is only graph in AG2D4 so the points in P4 must be arranged

as shown in Figure 3.5(b).

Now consider the way the points in the new plane P5 are configured. In Figure 3.6, the three

new points connected to p1 form a triangle in P5 which is a scalar copy of the one in P4 but inverted.

The other three new points in P5 form a straight line and are the same three points as in P4 because

this line is the line of intersection between P4 and P5. Furthermore, since the points in P5 are a wire

model of the only graph in AG2D4, they also form the same pattern as in Figure 3.5(b). The two

planes are attached as shown in Figure 3.6. Again because the tetrahedron is symmetric, no matter

which point p1 is chosen as the degree-6 starting point, the relationship of the points in the new

plane P5 to the points in the plane of s which does not contain p1 is always the same. Figure 3.7 is

augmented by adding point p1 (now the degree-6 point) and the last three structs are added. This

result shows there is only one wire model possible when P5 is introduced so that none of the structs

of the tetrahedron are cut.

The structs of s are cut.

For the second case P5 is allowed to slice through s in two ways, first by cutting three i-lines in

s and then four i-lines in s. First, assume that P5 cuts three i-lines. Then it can be easily seen that

P5 produces a smaller tetrahedron within the larger tetrahedron. Thus this case can be reinterpreted

as the four planes of the smaller tetrahedron being the “original” planes and the remaining plane as

the “fifth” plane introduced into the arrangement. Therefore, this situation is equivalent to the case

24

P5

P4

new points common to
both P4 and P5
original tetrahedron
points in P4

new points in P5

Figure 3.6: The relationships of the points in planes P4 and P5

P5

P4

new points common to
both P4 and P5
original tetrahedron
points in P4

new points in P5

Figure 3.7: Only one possibility for the points in P5 with regard to s

above where no structs are cut.

Finally, let P5 slice through s cutting four structs of s. Then three of the four original planes

and P5 can be selected to form a tetrahedron outside of the original s. Once again, the four planes

creating this new tetrahedron can be considered to be the “original” ones. The last plane, which

does not cut any of the structs in this newly formed tetrahedron, can be relabelled as the “fifth”

plane. Therefore this case is also equivalent to the case where no structs are cut.

Thus, this proves there is only one wire model of a graph in AG3D5 possible and that the

cardinality of AG3D5 is one.

25

Figure 3.8: The wire model r of the single graph κ in AG3D5

In the rest of this study, the one graph in AG3D5 will be designated as κ and the wire model

of this graph will be referred to as r. The wire model r is shown in Figure 3.8. Because there is

only one graph in AG3D5, the five planes, the 10 points and 10 i-lines of AG3D5 can be assigned

individual labels. The labelling adopted is shown in Figure 3.9 and will be used throughout the rest

of the thesis.

Theorem 2. AG3D5 is planar.

Proof. The graph drawing in Figure 3.10 demonstrates that the single graph in AG3D5 is planar.

26

P1 P2

P3

Degree of Points

degree-3 points - 1, 2, 3, 4
degree-4 points - 5, 6, 7
degree-5 points - 8, 9
degree-6 point - 10

pt 1
i-line 4

i-line 3

i-line 1
i-line 2

i-line 9

P5

i-line 8

i-line 6

i-line 3

i-line 10

P4
i-line 9

i-line 2

i-line 5

i-line 10

p 8

p 7

p 3 pt 6

p 4

p 1 pt 5

p 4

p10

p 7

p 9 p 5

pt 1p1i-line 4

i-line 7

i-line 8

p 2

p 4

p 10

p 8

p 9p 6
p 6

i-line 7

i-line 6

i-line 1

i-line 5

pt 2

p 7

p 5

p 2

p 3

p 8 p 10

p 2

p 1

p 9

pt 3

p 6

p 3

pt 5

Figure 3.9: The five planes of r

1

2

3

4

5

6

7

8
9

10

Figure 3.10: The single graph in AG3D5 drawn planar

27

wire model u

tetrahedron h

Figure 3.11: The single graph in AG3D5 is Hamiltonian

Theorem 3. AG3D5 is Hamiltonian.

Proof. The wire model r of the single graph in AG3D5 in Figure 3.11 can be viewed as a tetrahedron

h, consisting of points p4, p7, p8 and p10, attached to a wire model u of a single graph in AG2D4,

consisting of points p1, p6, p3, p5, p2 and p9. In r:

• one point in h is attached to three points forming one of the two triangles in u

• one point in h is attached to two points in the quadrilateral in u

• one point in h is attached to one point in the second triangle in u

• the final point in h is not attached to u

One of the Hamiltonian cycles in r is traced out in Figure 3.11.

28

Figure 3.12: The wire model r is symmetric

3.3.1 Types of degree-3 points in r

There are two types of degree-3 points in any wire model r. Points p2 and p4 are always points on a

triangle in the planes where they are found, but p1 and p3 are not. For example, p1 in Figure 3.9 is

a point on a quadrilateral in planes P4 and P5 but a point on a triangle in P1. These differences will

have implications in the study of AG3D6.

Definition: - A degree-3-tri point is contained in a triangular face in each plane of AG3D5, whereas

a degree-3-quad point is contained in a quadrilateral face in at least one plane of AG3D5.

Property 7. AG3D5 is symmetric about a plane through i-line2 and p10.

Proof. This can be established from the construction of r and can clearly be seen in Figure 3.12.

29

Chapter 4

Properties of AG3D6

4.1 Background to Studying the Graphs in AG3D6

An incremental approach is again used and all the different ways that a sixth plane can be added to

the wire model of the single graph in AG3D5 are investigated. Recall the notation introduced earlier:

• For AG3D5, the single graph is denoted as κ and the corresponding wire model as r.

• For AG3D4, the single graph is denoted as σ and the corresponding wire model (a tetrahedron)

as s.

• For AG2D4, the single graph is denoted as ω and the corresponding wire model as w.

Finally, u will denote an arbitrary graph in AG3D6.

To create u, imagine a sixth plane P6 is added to r. The discussion below speaks of P6 as

“interacting” with r. This means that all the i-lines in r either intersect with P6 within the structs of

r or in the i-lines’ extremities. Even if P6 completely misses r, it will still “interact” with r in that

the ten structs of r must be extended along their respective i-lines to the points where they intersect

with P6. Similarily, in each of the planes of r, P6 interacts with the 2D wire model w. Here, the

image of P6 is an additional i-line which intersects with each of the other i-lines contained in the

plane.

The intuitive approach is to count all possible ways of adding a sixth plane P6 in general position

to r. The obvious difficulty with this approach is how to write an algorithm to accomplish it. The

30

methodology selected for this study is to investigate the effect of a sixth plane on r, and for this, it

is clear that a sixth plane must intersect with each of the i-lines in r. Each i-line has four different

portions, two partial structs and two extremities. Therefore, each distinct equivalence class of a

sixth plane must interact with exactly 10 portions of the i-lines of r, one portion per i-line. Since

r has 40 portions, a brute force algorithm would consider (40
10) subsets of portions and determine

which ones represent valid interactions with a sixth plane.

However, by considering the structure of r, many invalid subsets can be eliminated. For exam-

ple, two partial structs from the same struct m cannot both be included in the same list of cut partial

structs as this would imply the sixth plane intersects m twice. This is prohibited if the sixth plane is

in general position. Where it is clear that the intersections created by the cut partial structs do not

allow a straight line in a particular plane, then it is also clear that it would not permit a valid plane

in the 3D arrangement of planes. If the location of the points does allow a new line in a plane of r, it

is said to support a new line, or if there are 10 new points which allow a new plane in 3D, then the

10 points are said to support a new plane. After filtering all the possible sets of i-line portions, 245

possibilities remain, and the associated graphs are generated. Some of these resulting graphs may

not be valid arrangement graphs if some of the distinct sets of 10 new intersection points added to

these graphs do not support a plane.

Nonetheless, all 245 graphs are processed using a graph isomorphism software package called

Nauty [18] which determines which are isomorphic. Nauty determines there are 43 equivalence

classes of graphs.

Finally, each of the 43 graphs is checked to ensure it is a valid arrangement graph, and indeed

all are arrangements graphs. They are presented in Appendix B. The graphs and a wire model for

each are also provided on a web-site (www.cs.uleth.ca/∼nickle/arrangements) in a format

suitable for computational processing.

Even though an incremental approach is used to study AG3D6, the procedures used to create

and analyse the graphs in AG3D6 are very different from those used to study the wire model r. This

is because there are more ways for a new plane P6 to interact with r. When a fifth plane P5 is added

to s, there are only three possible ways that P5 can interact with s, but when P6 is added to r, it can

31

(a)
(b)

(c)
(d)

(e) (f)

Figure 4.1: Wire models of the six graphs in AG2D5

completely miss r or it can cut a variety of numbers of partial structs in r. Section 4.2.4 shows that

P6 can cut either 3, 5, 6, 7, 8 or 9 partial structs of r and that, in all, there are 33 distinct ways that

P6 can interact with r.

Secondly, recall that no matter how P5 interacts with a plane of s, the same wire model w is

always produced in each plane of s. On the contrary, when P6 interacts with w in a plane of r there

are six possible outcomes. A set of wire models for the six graphs in AG2D5 is shown in Figure 4.1.

As a result, it is clear that there will be considerably more variety in the class of graphs in AG3D6

than there will be in the class of AG3D5.

4.1.1 Methods for constructing arrangements

To build the arrangements for this study, the algorithm presented in Edelsbrunner et al.[7] was

considered. However, it became apparent that this algorithm did not meet the specific requirements

32

of this study. It is well suited to efficiently building the data structures to store an arrangement, but

only after all the intersections of a set of planes have been specified. However, uncovering all the

different ways that a set of planes can intersect with each other is the main challenge of this study.

So it would be necessary to modify Edelsbrunner’s approach. Secondly, as mentioned previously in

Chapter 1.2, the incidence graph, which stores the arrangement in Edelsbrunner’s algorithm, does

not directly store adjacency list information. Given these considerations, specialized data structures

and methodologies to fit the needs of this study were developed, while at the same time still retaining

the incremental-plane approach.

4.2 The Methodology - Five Main Steps

A high-level overview of the algorithm is that, for Steps One through Four, it uncovers distinct

instances of sets of 10 new points placed in a fashion that is consistent with the points supporting

a plane. Then in Step 5 a wire model of the graph is constructed and co-ordinates for the points of

the wire model are generated. Note that, until this final check is done, there is no guarantee that

the points actually support a plane. For each equivalence class of (possible) graphs in AG3D6, the

10 new points do support a plane but it is necessary to do the fifth step to prove this conclusively.

The algorithm is useful because it eliminates all the invalid sets of point locations and all graphs

which are isomorphic to each other. In the final analysis, only 43 cases need to be checked out of a

theoretical possible number of (40
10).

The first two steps address the task of generating a list of all the outcomes of the different ways

a sixth plane P6 could intersect sets of partial structs in r. Note that, at this stage, the points created

in the extremities of the i-lines are not considered. The output of Step Two is all the valid ways that

P6 can slice through r. In terms of equivalence classes, only part of the information to identify each

equivalence class is available at this point, namely which partial structs in r are cut.

The third step focusses on procedures to identify all the possible ways the remaining new points

in P6 can be placed in the extremities of the existing i-lines. Each time a set of 10 positions for

the new intersections is identified that is consistent with the points supporting a plane is found,

33

the graph is output. The fourth step prunes the list of graphs to eliminate the graphs which are

isomorphic to each other. Finally, the fifth step checks an example of each equivalence class of

graphs to determine whether an actual wire model arrangement of six planes can be constructed for

that equivalence class.

4.2.1 Step One - Generates all the ways the points in r can be partitioned into two

subsets

The task of determining the effect on a sixth plane P6 on r is supported by the following observation:

Observation 2. A new plane P6, inserted into r, partitions all the points in r into two subsets.

Each equivalence class of a sixth plane intersecting with r produces different subsets of points.

Hence, to examine all the different ways a sixth plane can intersect r, it is necessary to consider

all the ways the points in r can be partitioned into two subsets. For this, the set of indices C,

corresponding to the ten points in r, are split into two subsets, A and A′, where A′ is the complement

of A. Clearly, dividing C into two by isolating the points of A is the same as dividing C by isolating

the points of A′. Therefore, it is not necessary to generate and store the corresponding A′ for each

distinct A. As a result, the procedure below only outputs distinct instances of A. Notice that the two

subsets, C and /0, are a pair of valid subsets and represent the case where P6 completely misses r.

For this situation, the set C will be stored. The procedure in Step One is as follows:

Input: the set of indices C corresponding to the ten points in r. The set of indices adopted are the

labels previously assigned to r (Figure 4.3).

Procedure:

Generate and output all the combinations of the indices of C.

Output: the power set of C.

34

Figure 4.2: The wire model r

P1 P2

P3

Degree of Points

degree-3 points - 1, 2, 3, 4
degree-4 points - 5, 6, 7
degree-5 points - 8, 9
degree-6 point - 10

pt 1
i-line 4

i-line 3

i-line 1
i-line 2

i-line 9

P5

i-line 8

i-line 6

i-line 3

i-line 10

P4
i-line 9

i-line 2

i-line 5

i-line 10

p 8

p 7

p 3 pt 6

p 4

p 1 pt 5

p 4

p10

p 7

p 9 p 5

pt 1p1i-line 4

i-line 7

i-line 8

p 2

p 4

p 10

p 8

p 9p 6
p 6

i-line 7

i-line 6

i-line 1

i-line 5

pt 2

p 7

p 5

p 2

p 3

p 8 p 10

p 2

p 1

p 9

pt 3

p 6

p 3

pt 5

Figure 4.3: The labels on the five planes P1,P2, ...P5 of r

35

4.2.2 Step Two - Generates all the valid ways a new plane P6 can partition the points

of r into two subsets

In Step Two, the first goal is to transform the output from Step One into a list of partial structs cut.

Then, the second goal is to eliminate the lists of partial structs which do not meet the necessary

criteria (defined below) for a valid intersection of a new plane P6 with r. For this step, two lemmas

are required.

Lemma 5. A new plane P6 inserted in general position into r cannot cut the same struct twice.

Proof. If P6 intersects two different partial structs from the same struct, it clearly cannot be in

general position because general position requires that each plane intersects with every other plane

exactly once.

When a new plane P6 cuts r, a set of new i-lines l1, l2, . . . , l5 are created, one i-line per plane

P1, P2, . . . , P5 respectively. Each new line li represents the line of intersection between P6 and Pi.

The next lemma considers the implications of the fact the line of intersection is straight.

Lemma 6. If plane P6 cuts a face f in the wire model w of the single graph ω in AG2D4, it cuts the

boundary of f in exactly two places.

Proof. Each of the faces f produced in w is convex meaning that, for each pair of distinct points

a,b in f , the line segment with endpoints a and b is also contained in f . Therefore, if three (or

more) partial structs of f are cut, it is impossible to join the cut points on these partial structs with a

straight line. However, for the new line l to represent the image of plane P6 in w, it must be possible

to represent it as straight. Similarly if a face f of w has only one partial struct cut, this implies that

the new line l is a ray (a line that begins at a certain point and extends forever in one direction only).

If l is a ray, it cannot represent P6 in the plane Px. Therefore the line l representing P6 cuts each face

f in exactly two places.

While the power set of C consists of lists of points from r, the discussion above refers to the list

of cut partial structs, not lists of points. Note that each point in r is attached to at most six points

36

because, from Property 4, no point can have degree greater than six. For this study, a data structure

X was developed (to be described briefly in Section 4.3.1 and in detail in Section 4.3.8) which stores

the complete list of partial structs for r. Therefore, it is not difficult to identify the partial structs

associated with each point and hence relatively simple to transform the lists from points to partial

structs. The procedure for Step Two is as follows:

Input: the power set of C and the list of structs and partial structs in r.

Procedure:
Let the list E be a set of partial structs from r.

1: for all ci do
2: A new list E is initialized to the empty set.
3:

4: for each index k in ci do
5: All the partial structs attached to the point pk are added to E.
6: Any partial struct which appears twice in E is eliminated.
7:

8: if E does not contain two partial structs from the same struct AND each face in E contains
exactly two partial structs then

9: E is recorded as an element si of the set S of the valid lists of partial structs.
10: end if
11: end for
12: end for

Output: a set S of lists of partial structs in r, with each element si of S representing a valid way that
P6 can cut the structs of r.

4.2.3 Correctness of procedures in Step Two

First, the reason for eliminating any partial struct which appears twice in the list E is explained. The

only way that the same partial struct can be selected twice for E is if both ends of the partial struct

are included in the list of points ci. But if both endpoints are in ci, then clearly the new plane P6

does not pass between these two points and this partial struct cannot be cut. Therefore, whenever

the same partial struct appears twice, both entries are dropped.

Next, to explain the first test, if two partial structs from the same struct are in E, this violates

the condition that each struct is cut precisely once by every other plane. Hence, the list E cannot

represent a valid way for P6 to interact with r and it is not stored in S.

37

Plane P1

3

5
2

9

6

1

3

5
2

9

6

1

Figure 4.4: A set of joined line segments stretched out to form a straight line

For the second test, a straightforward procedure is executed to ensure that each face cut by the

new i-line has exactly two cut partial structs. Interestingly enough, for the graphs in AG3D6, it turns

out no element in the set S of lists of partial structs needs to be dropped to meet the requirement.

Applying Lemma 5 as explained above also prunes out any list which would violate Lemma 6.

Lemma 6 has two implications. It ensures that the line segment i j, joining the two new points

i and j on a face in w, is not cut by any other i-line in r. Secondly because each cut partial struct

is incident on two faces in the planes where it appears, it means the end point of one line segment

joins up with the beginning point of the next line segment.

From this it is clear that it is possible to join the pair of new points which must appear on each

face in w to form a line segment. Likewise, it is always possible to aggregate the line segments

created to form a pseudo-line.

A pseudo-line is defined as a simple curve in the plane. In an arrangement of pseudo-lines, each

pair of pseudo-lines has exactly one point in common and they cross at this common point. The term

stretchable is used to describe any arrangement of pseudo-lines which can be stretched until they

are straight without changing the adjacency list or the face structure in the plane. Goodman and

Pollack [12] proved that every arrangement of eight or fewer pseudo-lines in the plane is stretchable.

Since this study of AG3D6 involves arrangements of only five lines in each plane, it is clear that the

new pseudo-line constructed from line segments joining cut partial structs can always be stretched

to form a straight line. Figure 4.4 shows an example of the line segments stretched out to form a

straight line.

38

This completes the analysis of correctness for procedures in Step Two and proves that Step Two

generates a list of all the valid cuts a new plane P6 might make through r.

4.2.4 Results for Step One and Step Two

When Steps One and Two are implemented to study the graphs of AG3D6, a set of 59 lists of cut

partial structs are generated. However, due to the symmetry of r with respect to i-line2 and p10,

several of these lists are equivalent to each other. In Figure 4.2, the equivalent pairs of points are

(p1, p3), (p2, p4), (p8, p9) and (p5, p7). Thus for example, if list A consists only of p2 and p5 and

list B consists of p4 and p7, A is equivalent to list B. Note, however, that if B is made up of p1 and

p7, it cannot be equivalent to A, because p1 is a degree-3-quad point and point p2 is a degree-3-tri

point. In addition, the discussion in Section 4.3.7 below will show that two more entries are required

to represent the cases where the new plane P6 completely misses AG3D5.

The lists of partial structs establish that a new plane P6 can cut 3, 5, 6, 7, 8 or 9 partial structs in

r. It is impossible for 4 or 10 structs to be cut since there are no lists recorded with these numbers

of elements. A list of three partial structs occurs whenever P6 isolates a degree-3 point from the rest

of r. A list of five partial structs occurs when two points, a degree-3 point and a degree-4 point, are

isolated.

Once the symmetry of r has been taken into account, the number of entries in S drops to 31.

With the two cases to deal with P6 completely missing r, the final number of lists in S is 33. The

following sections will show that each list in S can give rise to more than one distinct graph.

4.2.5 Overview of Step Three - Determining all the equivalence classes of possible

planes for r

The goal in Step Three is to determine all the equivalence classes of possible planes that can be

constructed from each list si in S.

Input: the set S of lists of cut partial structs, and the data structures X , Y and Z (again described

briefly in Section 4.3.1 and in detail in Section 4.3.8).

39

Procedure: Since the procedures in Step Three and the rationale behind them are quite involved, the

detailed discussion is postponed until Section 4.3.

Output: 245 graphs of AG3D6.

4.2.6 Step Four - Identifying isomorphic graphs of AG3D6 and the cardinality of

AG3D6

Input: the 245 graphs from Step Three.

Procedure: Each graph from Step Three is converted to the specialized adjacency-list format used

by Nauty [18], an automorphism software program with procedures to identify equivalence classes

of graphs. The output lists the graphs within each equivalence class.

Output: the set of 43 distinct graphs in AG3D6.

4.2.7 Step Five - Checking that each of the 43 graphs is an arrangement graph

Although the set of 245 graphs has been reduced to 43, it is necessary to verify, for each remaining

graph, that the 10 new points added to r can all be embedded in a sixth flat plane. If the plane is not

flat, then the sixth plane is not supported and graph generated from r and the 10 new points cannot

be an arrangement graph.

Input: the set of 43 distinct graphs in AG3D6.

Procedure: A software tool, ArrangePak-3D [5], which generates and manipulates arrangements of

planes in three dimensions was used for this. In each case, the sixth plane was successfully found.

Thus, it is possible to conclude that the cardinality of AG3D6 is 43.

Output: wire models for each distinct graph in AG3D6.

The method used to construct wire models of each of the graphs is as follows:

• Co-ordinates for three of the ten new points are calculated in 3-space that are consistent with

the adjacency list for that graph.

40

• The equation of the possible sixth plane is calculated using these three positions.

• Intersections for each of the seven remaining i-lines with the sixth plane are calculated using

ArrangePak-3D and compared with the adjacency list information for that abstract graph.

Drawings of each of these 43 graphs with the vertices on the circumference of a circle are

reproduced in Appendix B. The graphs and a wire model with co-ordinates for each point are also

listed on a web-site (www.cs.uleth.ca/∼nickle/arrangements) which can be downloaded in

the .gml format suitable for further computational processing.

4.3 The Heart of the Methodology - Details for Step Three

By the end of Step Two, all the different lists of how the partial structs in r could be cut by a potential

sixth plane P6 have been identified and stored in a set of lists S. As mentioned above, the goal for

Step Three is to place all the new points resulting from cut partial structs, and then identify all the

different possibilities for locating any remaining points (which must be placed in the extremities of

the i-lines of r). The potential new plane P6 must:

• be in general position with respect to the other planes in r.

• cut only the partial structs in r specified by si.

Since the set S of lists of cut partial structs is the output of Step Two, the second condition is

easy to implement. For each list si of partial structs in S in turn, a new point must be assigned to

each partial struct in si. Then, depending on the orientation of the sixth plane P6, there is very often

more than one possible way for the remaining new points to be placed beyond one or other of the

extreme ends of the uncut structs in r. This can be seen in Figures 4.5 and 4.6 where the same three

partial structs are cut but it is clear that there is more than one choice for locating the remaining

points in the extremities of the i-lines without partial structs cut. Hence, each si may give rise to

more than one equivalence class of planes and, in turn, to multiple graphs in AG3D6.

In this study, the approach adopted for the task of identifying each distinct equivalence class of

planes is to break this large task into a set of smaller, and somewhat easier, sub tasks. The natural

41

Sixth Plane

Figure 4.5: Sixth plane P6 in one position

Sixth Plane

Figure 4.6: Sixth plane P6 in second posi-
tion

decomposition to examine, and the method adopted in this study, is the equivalence classes of lines

in each plane. This amounts to examining the different ways that an extra i-line can appear in each

plane in r. Then, because each i-line is shared between two planes, it is necessary to ensure that the

locations of the new points in each plane of r are compatible across all the planes of r. Therefore

the focus of analysis shifts from the set of planes taken together to examining each plane separately

and then ensuring that the changes made to all the planes are compatible.

Section 4.3.2 shows that it is relatively simple to determine how points created from cut partial

structs can be joined to form a new i-line in each of the planes of r. It is more challenging to

determine how many different ways the rest of the required points can be placed in the extremities

of pre-existing i-lines that do not have cut partial structs. Placing the remaining points is dealt with

in Sections 4.3.3 through 4.3.7, and determining the number of different ways the points can be

placed is discussed in Sections 4.3.6 and 4.3.7. One of the key requirements is to check that the

set of new i-lines, placed one per plane, is consistent. This is explained in Section 4.3.5. However,

before turning to these matters, the immediately following section, Preliminaries for Section Three,

provides additional necessary information.

42

4.3.1 Preliminaries for Step Three

In this section, two definitions are presented to distinguish between points created by cut partial

structs and those that are not. Then the way the new i-line is represented is explained, the concept of

a variation is discussed, and the data structures used in Step Three are briefly outlined. Full details

of the data structures are presented in Section 4.3.8 when the reasons for various features in the

structures will be clear.

Different procedures are used to process points which are placed on existing partial structs of r

and those that are placed in the extremities of the i-lines of r. Therefore it is useful to differentiate

between the two types of points.

Definition: A pre-fixed point is one that is located between on a specific cut partial struct i j in r,

and therefore in the two planes which share i j.

Definition: A pre-located point is placed in one of the extremities of an i-line l and is then restricted

to this one extremity. The pre-located point results when an i-line l in one plane of r is assigned a

new point and subsequently, when l is considered in the other plane which shares l, the new point

for l must remain in the same location. Note that a new point placed in an i-line in a plane of r

where the other plane sharing that i-line has not already been analysed is not a pre-located point.

Now turning to how a new i-line is represented, once the points in a plane of r have been joined

to form an i-line, the new i-line is represented as a sequence Seq of four ordered intersection points

— the first point interpreted as the extreme point at one end of the struct on l, followed by the

second and third points and the last point as the extreme point at the other end of the struct on l.

An intersection point is not identified with co-ordinates; instead, in addition to its position in Seq, it

is identified by the other pre-existing i-line with which it intersects in the wire model w and where

it is located along the pre-existing i-line. Note that the struct on l can also be represented by Seq.

This is because each point in Seq is also a point on the corresponding struct on l. Finally, it does not

matter which extreme point is chosen first because a reversed sequence of four points is considered

to be the same i-line and struct as the not-reversed sequence. In the discussions below, it will be

clear from context whether Seq is being used to represent the i-line l or the struct on l. Therefore

43

Seq is defined as follows:

Definition: The ordered sequence Seq of four new points represents both the i-line l and the struct

on l. Each point represents the intersection of the new i-line l with one of the pre-existing i-lines of

the wire model w in r.

In addition, it is necessary to consider the basic conditions that any set of four points must

satisfy in order to represent the image of a new plane in a plane of r. First, there must be a new

point for each i-line in the plane of r. This is required since all the planes, including the new plane,

must be in general position in order satisfy the requirements to form an arrangement. Second, a

point placed in a particular segment (either a partial struct or an extremity) of an i-line in one plane

must be in the same position in the other plane which shares that i-line. This follows from the fact

that each i-line is created by the intersection of exactly two planes. Hence, the same i-line appears

in exactly two planes. Third, it must be possible to join the points to form a straight line. This is

necessary from the fact that the image of the new plane in each existing plane is a straight line. The

new i-line is added so that it satisfies the conditions for forming an arrangement of five pseudo-lines

in that it forms a connected curve and intersects every other pseudoline exactly once. As mentioned

previously, it is then guaranteed to be stretchable for sets of less than eight pseudo-lines [12]. This

motivates the following definition:

Definition: A variation for a potential plane Pi in r is a sequence Seq of four points which are

placed so that:

• there is a point in Seq associated with each of the original i-lines in Pi.

• a point placed in a particular segment of an i-line (either a partial struct or an extremity) must

occupy the same position in the other plane which shares that i-line.

• the new i-line constructed from Seq and added to the existing i-lines in a plane of r satisfies

the conditions for forming an arrangement of pseudo-lines.

The set V of possible variations for one plane in r is clearly the set of Seq which represent a new

i-line and which are constructed to meet the conditions listed in the definition of variation.

44

Finally, as mentioned above in the Overview of Step Three (Section 4.2.5), the other inputs to

Step Three are data structures X ,Y and Z. A brief description of each one is presented below to

serve as background material for the following sections explaining how to construct the new i-lines

from new points. Once this has been outlined, full details of the data structures are contained in

Section 4.3.8.

• Data structure X stores r as a list of structs with each struct, in turn, a list of partial structs.

As new partial structs are added to the structs in r, the changes are recorded in X .

• Data structure Y is a set of five lists one for each plane of r. Each list catalogues all the partial

structs for a plane of r. For each partial struct i j, the two faces incident to i j are stored as well

as four pointers, the previous and next partial structs in each of the faces which are incident

to i j. Data structure Y is used to join new intersection points formed by cut partial structs in

the correct order.

• Data structure Z stores information regarding the extreme points on the boundary of the wire

model w in each of the planes of r. The four portions of each of the i-lines in each plane can

be individually specified in data structure Z so that data structure Z can record where each of

the new intersection points is positioned in each plane of r.

4.3.2 Constructing i-lines from intersections due to cut partial structs

This section deals with determining the order of pre-fixed points, or points resulting from cut partial

structs, along a new i-line l. For the moment, assume that all the new points on l are the result of

cut partial structs. Later, in Section 4.3.4 the new points are not restricted to pre-fixed points.

From Lemma 6, each face f of the wire model w in a plane of r must have exactly two cut

partial structs. The two new points, each one placed anywhere along its designated partial struct,

are joined. The new line segment which slices across the face in w is a partial struct on the new

i-line l for that plane of r.

The full struct on i-line l is constructed using data structure Y . Using the information in Y and

starting from one cut partial struct i j contained in a face f on the boundary of w, the next partial

45

struct on the f is assigned to i j. In this fashion, it is possible to ‘walk’ around the edge of f to find

the other cut partial struct. Once the two cut partial structs on f are identified, a new partial struct

can be created by joining the two arbitrary intersection points. After this, the procedure flips to the

other face incident to i j and continues the same process until the complete new struct is built. Note

that the procedure always starts with a cut partial struct on the boundary of w (where the ‘0’ face

denotes a partial struct on the boundary of w) so that the struct for the new i-line is built from one

side of the wire model w to the other. Also, notice it does not matter which direction is chosen when

the process is traversing faces 1, 2 or 3 as shown in Figure 4.7. The procedure will eventually get to

the second partial struct either way.

However two complications on the boundary of w can still arise. In Figure 4.7, if the procedure

to build l has arrived at p2 and the direction chosen for traversing the ‘0’ face leads towards pa

instead of pc, then the next cut partial struct found will be one that is already part of Seq. Secondly,

if the partial struct associated with p2 is chosen as the first partial struct on the boundary of w, then

p1 is reached and “walking” along the perimeter of w in either direction does not lead to the correct

outcome. Both these impasses are resolved with the help of the following lemmas.

Lemma 7. If one end of a partial struct s for the new i-line l is identified on the outer boundary of

w, the search for the other end of s cannot proceed past a degree-2 point.

Proof. Without loss of generality, suppose that the process to build the new i-line reaches the partial

struct associated with p2 on the boundary of w in Figure 4.7. Assume that p2 is identified as one of

the ends of s. The challenge is to find where the other end can be located. Assume that the direction

chosen to traverse the ‘0’ face in search of the other end of s is towards a, the degree-2 point. The

point a, is encountered before the next cut partial struct is found. If the search continues past a,

this implies that s must intersect both the i-lines involved in a. This is prohibited because then at

least one of two i-lines in w is intersected a second time. The same argument can be used for any

degree-2 point in w. Therefore a search on the outer boundary for the location of the next cut partial

struct in l cannot range farther past a degree-2 point.

46

pa

Legend
- “dead end”
 partial structs
- partial structs
 attached to
 degree-4 point, pc
- indicates cut
 partial struct

pb

pd pc
face 1

face 2

face 3 p2

p1

face 0

face 0

Figure 4.7: Reversing Seq if a dead end is encountered

Lemma 8. If one end p of a partial struct s for the new i-line l is identified on the outer boundary of

w, and searches along the boundary of w in both directions from p encounter degree-2 points before

another cut partial struct is found, p is the extreme end of the struct on the new i-line l.

Proof. If the searches in both possible directions from p encounter a degree-2 point before another

cut partial struct, then by Lemma 7, it is impossible for the other end of s to be found by proceeding

in either of these two possible directions from p. Therefore no other point on the new i-line l beyond

p is possible and, from the definition of extreme point, p must be an extreme point.

Since the next point cannot be found in either direction, the last partial struct accessed must be

one of the two dark partial structs shown in Figure 4.7. In this case, a “dead end” has been reached.

However, the impasse can be resolved by reversing the elements already in Seq and restarting the

face traversals from the new end of Seq. Then the four elements of Seq are found in the correct

order.

The pseudocode for the process to join four intersections resulting from cut partial structs in a

plane of r is shown below. Recall that a set S of valid lists of cut partial structs is generated at the end

of Step Two. The procedure below is used if, there are four cut partial structs contained in si which

are also contained in the plane of r being analysed. In the procedure, the current struct is always i j.

When i j is replaced with the next partial struct in the current face (currFace), the direction is from

point i to point j.

47

1: i j← a cut partial struct which has one of its faces on the outer boundary of w. {This is easily
determined because data structure Y records indices for the two faces of each partial struct in
w. If one of these faces is the outer boundary, ‘0’ is assigned. Hence, a cut partial struct with
‘0’ as one of its faces is selected.}

2: reStartBeg← i j. {to be used if Seq has to be reversed and the search restarted with the very
first entry of i j.}

3: Reverse← false
4: currFace← non-zero face of i j
5: i← 0
6: while i 6= 4 do
7:

8: if i j = a cut partial struct then
9: Record i-line index of i-line l associated with i j and the extreme point on l contained in i j

10: i← i+1
11: currFace← other face of i j
12: reStartCurr← i j(reversed) {Used if the search for the next cut partial struct needs to be

restarted in the opposite direction.}
13: i j← next struct in currFace {The procedure starts “walking” around the face.}
14: else if i j 6= a cut partial struct AND j = degree 2 AND currFace = 0 then
15:

16: if Reverse = false then
17: Reverse← true {Indicates this is the first search restart.}
18: i j← reStartCurr
19: else
20: Reverse the entries in Seq.
21: currFace← zero face of i j
22: i j← reStartBeg {Makes the initial entry the new current partial struct.}
23: Reverse← false {Resets the flag.}
24: end if
25: else
26: i j← next struct in currFace.
27: end if
28: end while

4.3.3 Circular ordering and constructing i-lines from intersections with no pre-fixed

points

Recall that w is the wire model of the single graph in AG2D5 in a plane of r. Let l be a new i-line

introduced into a plane of r so the intersections that l now makes with the i-lines of w fall outside

the partial structs of w and so that every i-line in w intersects with l once. Thus, along l, there will

be an intersection for each of the four i-lines in w but none are the result of a cut partial struct. The

48

i-line 2

Legend
- w
- i-lines of w
- τ
- new i-line l
- new point
- unmarked
- marked

3

1

9

2
5

6

i-line 3
i-line 4

i-line 1

2, 3, m

3, 5, m 4, 2, m

1, 2, m

a, b

a, b,m
1, 3

4, 6 3,1
2,1

Figure 4.8: The wire model w of plane P1 and the struct of a new i-line l inside τ with the intersec-
tions {(2,3), (3,5), (4, 2), (1, 2)}

first problem is to identify the order of these intersections along the struct of l. The second problem

is the fact that there may be more than one way to place the new points along l. Understanding the

concept of circular ordering will help build the tools to accomplish both these tasks.

To support the discussion below, let w be contained within a circle τ embedded in the same plane

of r, and large enough to contain w and the struct of a new line l inserted in general position. (See

Figure 4.8). The set of the i-lines of w is denoted by W . Each i-line in W intersects τ twice, beyond

the extreme point at either of its ends. The intersection of each i-line la in W with τ is identified by

an integer pair, consisting of the i-line index for la and the point index of the extreme point on la

which is adjacent to the intersection on τ.

For each i-line la in W which intersects with l outside of its struct, there will be a new point

located in exactly one of the two portions of la beyond the ends of the struct — in one of the

extremities of la. Once an i-line in W is assigned a new point, the appropriate intersection on τ is

marked to record that this i-line has been processed. Thus each new point on la can also be identified

by the corresponding integer pair on τ. This is the information required to build the four elements

in Seq. (See Figure 4.8.)

49

(b) (c)

(d)
(e)

(f)

(g) (h)

Clockwise rotation

(a)

Legend

old points in w
new points in k

Figure 4.9: The set L of i-lines produced by rotating clockwise around w

In this section, only the two cases where there are no pre-fixed points will be discussed. In

Section 4.3.4, the case where there are pre-fixed and pre-located points will be considered.

• Case 1: There are no pre-located or pre-fixed new points.

Lemma 9. For each variation, after an arbitrary i-line la and an extreme point on la are

chosen to represent the first intersection of an i-line with τ (and also represent the first entry

for Seq), the order of the rest of the entries in Seq duplicates the consecutive clockwise (or

counter-clockwise) order of the rest of the i-lines’ intersections along the circumference of τ.

Proof. (By construction) The struct of the new i-line l must be placed between r and τ. There-

fore, the intersections of the i-lines of W with l occur in the same order as the intersections

of the same i-lines on τ. It is not possible for the new i-line l to skip one (or more) of the

intersections with the i-lines of w, l must also incorporate the intersections in the same order

as they are encountered along the circumference of τ. (See Figure 4.8 again.)

50

(b) -
compares with (h)

(d)- compares
with (f) (f) -

compares with
(d)

(g) - compares with (c) (h) - compares with (b)

Counter-clockwise rotation

Legend

old points in w
new points in k

(c) - compaes with (g)

(e) -
compares
with (e)

(a) -
compares
with (a)

Figure 4.10: The set L of i-lines produced by rotating counter-clockwise around w

Applying Lemma 9. When there are no pre-located new points, then either end of each i-

line in W can serve as the initial intersection point. Notice that it does not matter whether

we choose a clockwise or counter-clockwise direction - Figures 4.9 and 4.10 show that the

set L of possible new i-lines is the same. However, one direction must be chosen to avoid

duplication and clockwise is chosen for this study.

• Case 2: There are pre-located points represented by a subset D of the i-lines in W which have

new points pre-located in extremities of the i-lines.

Incorporating pre-located points. If any of the i-lines of W already have new points located

in their extremities, then these points must be incorporated into the new i-line l. To construct l,

the intersections on τ for the i-lines in D are marked. Then, a test is run to determine whether

these intersections form an uninterrupted block of intersections along the circumference of τ.

If not, then the minimum number of intersections are marked to fill the gap. (See Figure 4.11.)

After that Seq is initialized and the points identified so far along the circumference of τ are

recorded in Seq. It will consist of the integer pairs for each pre-located point and any points

51

which are forced into a specific location to fill in a gap along τ. If Seq has four points, then

the i-line is complete. If not, it must be augmented and the points already identified in Seq

become the core of Seq. The rest of Seq can be built by adding the intersections with τ for

any remaining unmarked i-lines to the appropriate end(s) of Seq. The additions are made in

the same order as the intersections are encountered along the circumference of τ.

Once again, more than one variation for Seq may be possible. Each different Seq can be built

by either

– using a clockwise rotation from one end point of Seq along τ.

– using a counter-clockwise rotation along τ.

– straddling Seq.

Figures 4.11 and 4.12 demonstrate several examples. Note that because these are pre-located

points, they are always placed in the extremities of the i-lines of W. It is immediately evident

that the pre-located points significantly reduce the number of possible variations for Seq.

These points must always be part of any i-line l for that plane of r. Procedures for determining

the number of variations are discussed in greater detail in Section 4.3.6.

4.3.4 Constructing i-lines from intersections produced by both pre-fixed and pre-

located points

The procedures for joining the pre-fixed points have already been discussed in Section 4.3.2. In

this case, the same procedures are used but the number of cut partial structs is smaller than four so

Seq has fewer than four elements. Note that, up to this point, the order of these points in Seq is not

dictated by the order they are encountered on the circumference of τ; instead, it is the order dictated

by the procedures for joining points created by cut partial structs.

If Seq has fewer than four elements resulting from cut partial structs, then it must have either

two or three elements since it is impossible for just one partial struct in any plane of r to be cut.

Turning first to the case where two partial structs are cut, this occurs whenever the new i-line

cuts the two partial structs associated with any degree-2 point in a plane of r. An example is shown

52

τ
2,3,m

4,2,m3,5,m

1,3,m

Legend

- previously located point

- point located to close a gap

- point allowed to vary - it can
 flip to the either end of struct
 to be (1, 3) or (1, 2)

Notes
- In both (a) and (b) the core
 of Seq is
 {(2,3), (3,5), (4.2)}

- In (a) Seq is {(1,3), (2,3),
 (3,5), (4.2)}

 -In (b) Seq is {(2,3), (3,5),
 (4.2), (1,2)}

This is where there was a gap on τ

This is where there was a gap on τ

(a)

τ

4,2,m3,5, m

1,2,m

(b)

2,3,m

Figure 4.11: An example of the 2 possibilities from two pre-located points with a gap

Legend

- previously located
 point

- new points
 allowed to vary -
 they can flip
 to the either end
 of their structs

One previously
located point

Figure 4.12: An example of the 4 possibilities from one pre-located point

in Figure 4.13. Label these two new points a and b and imagine that the two points slide in the

direction of the degree-2 point until a and b are re-located in the extremity of their respective i-line

beyond the degree-2 point. In this position, they can be considered to be pre-located points. Then

the order of the points in Seq and the number of different possibilities can be found by applying

53

a

b
b

a

a

b

- existing points on w
- new points

Legend

Figure 4.13: Order of points in Seq depends on whether points pre-fixed or pre-located

x

y

c

lx

ly

lz

x
y

c
lz

ly
lx

x

y
c

lx

ly

lz

x

y
clz

ly

lx

Legend
- old points in w
- new points
- boundary of A

Figure 4.14: Examples where x and y are not degree 4

circular ordering as discussed in Section 4.3.3. To determine the order of the four points without

a and b re-located, all that is required is to move the new i-line back so that it cuts the two partial

structs again. The sole effect is to reverse the order of a and b in Seq. (See Figure 4.13.)

Now turning to the case where there are three partial structs cut, there are two sub cases to

consider. The first is where the end c of Seq represents an intersection with a partial struct s where

neither end of s is a degree 4 point. The other is where one of the ends of s is degree 4.

The next lemmas help to answer the question regarding where the next point in l is placed. Seq

is composed of intersections from three cut partial structs where one end c of Seq intersects a partial

struct s on i-line lz. In the first situation, the endpoints of s, x and y, associated with the i-lines lx

54

x

y
c

ly

Legend
- old points in w
- new points
- boundary of A

lx

Figure 4.15: Example where the cut partial struct on lx is contained in w but not in A

and ly respectively, are not degree 4. Examples are shown in Figures 4.14.

Lemma 10. When the end c of Seq cuts a partial struct s as described above, exactly one of i-lines

lx or ly is cut.

Proof. Because the i-lines are in general position, the three i-lines lx, ly and lz form a triangle A and

the sides of A are contained in w. Therefore a new i-line l which intersects with c must intersect

either the struct on lx or on ly. The i-line l cannot cut partial structs for both lx and ly where these

partial structs are in A as this would imply a triangle with all three sides cut by a straight line. It

is also impossible for l to cut partial structs in lx and ly when either the partial struct on lx or ly is

contained in w but not in A as this would imply that w has a face with only one cut partial struct.

See Figure 4.15.

Alternatively, consider the situation where, without loss of generality, endpoint x is a degree 4

point. Examples are shown in Figure 4.16. Then a new point cannot be placed on the i-line lx beyond

x because this would imply cutting another partial struct in w. Instead, moving in the direction from

c to x along the boundary of w, the next partial struct is considered. If its other endpoint (the one

that is not x) is degree 2 or 3, then this endpoint x′ is substituted for x. Essentially the partial struct

s is augmented with a second one so that neither endpoint of s is degree 4.

Lemma 11. Where the end c of Seq cuts a partial struct s which has a degree-4 endpoint, then s

must be augmented as described immediately above. Then exactly one of the i-lines, lx or ly is cut.

55

x

y

c

lx’

ly

x’

y

c

lx’

ly

x’

Legend
- old points in w
- new points
- boundary of A

x

Figure 4.16: Examples where either x or y is degree 4

Proof. The proof is similar to the one in the lemma above. The i-lines lx, ly and the line segment

joining points x′ and y form a triangle A. The line segment x′y is substituted for s and the new i-line l

is assumed to cut it once. Once again, an i-line l inserted so that it intersects with x′y, must intersect

either the struct on lx or ly. As above, l cannot intersect with both or it would imply that all three

sides of A are cut which is impossible for a straight line.

Applying Lemmas 10 and 11. The position of the last point for i-line l can be easily found by

testing the i-lines of the endpoints of s. Whichever i-line is not already marked on τ represents the

next i-line. Now all the required information for adding a new element to the appropriate end of Seq

is available.

4.3.5 Consistency

Now that the ways to determine the order of points along a new i-line has been discussed, a natural

question is whether a valid order always exists. The answer is no. For example, in Figure 4.17, it

is impossible for the four pre-located points shown to be joined to form a new i-line l which both

respects the constraints imposed by circular ordering and only cuts each i-line once. This leads to

the following definition.

Definition: The location of the four new points for the potential plane Pi is consistent if a new

i-line l can be inserted into Pi while incorporating any pre-fixed and pre-located new points and

56

Legend
- old points in w
- new points

c
d

b

a

Figure 4.17: The four new points a, b, c and d cannot be joined by a new i-line

respecting the constraints imposed by circular ordering. If it is not possible, the location of the

points is inconsistent.

If there is an inconsistency in any one of the planes of r then the i-line for that plane cannot be

inserted in general position with respect to the rest of the i-lines in that plane. Then the potential

new plane P6 cannot be built and the wire model of that graph in AG3D6 cannot be successfully con-

structed for that set of new points so it must be abandoned. The points must be placed consistently

in all the planes for a new arrangement to be formed.

4.3.6 Determining the number of variations possible

Recall from Section 4.3.1 that we define the number of variations in terms of the ways a new i-line

can be added to a plane. Table 4.1 below summarizes the number of variations which results from

different numbers of pre-fixed and pre-located points. The formula for calculating the number of

variations when there are no points pre-located or pre-fixed is:

2 · (n−1), where n = 5 (the number of planes in r).

The formula for all the other possibilities is:

(n−1)− x− y

where n = 5, x is the number of pre-located or pre-fixed points, and y is the number of points required

to close gaps on τ.

57

Table 4.1: No. of variations for different cases of pre-located and pre-fixed points

Case Pts. required to Variations Examples
close gap on τ Produced

A. No points pre-located n/a 8 Figure 4.9
or pre-fixed

B. 1 point pre-located n/a 4 Figure 4.12
C. 2 points pre-fixed 0 3 Figure 4.18
D1. 2 points pre-located 0 3 Figure 4.19
D2. “ 1 2 Figure 4.11
D3. “ 2 1
E. 3 points pre-fixed n/a 2 Figure 4.21
F1. 3 points pre-located 0 2
F2. “ 1 1
G1. 1 point pre-located and 2 fixed 0 2
G2. “ 1 1
H1. 4 points pre-located and/or fixed n/a 1

Notes for Table 4.1

A. If there are no pre-located and no pre-fixed points in a plane, there are eight different variations

for placing the points (see Figure 4.9 again).

B. For one pre-located point, there are four different ways the i-line can be added. An example is

shown in Figure 4.12. Note that there is no corresponding case for one pre-fixed point in a plane of

r because this would imply a face in w with only one cut partial struct.

The pre-located point pt can be located at either end of each of the four i-lines in w so pt can

occupy any one of eight positions in a plane of r. It must be part of the new i-line l but is not

restricted to be in a specific location on l. Hence, it can represent the first, second, third or fourth

intersection of the i-lines of w along l.

C. The minimum number of pre-fixed points possible in w is two and occurs when both the i-lines

for one of the degree-2 points in w are cut. Since w is symmetric, there are two distinct ways this

can occur. Figure 4.18 illustrates the three different positions a pair of pre-fixed points can occupy

in the new i-line l depending on which type of degree-2 point is involved.

D1. The i-lines associated with the two new points intersect τ so that there is no gap in the marked

intersections along τ. Hence, the two points must appear side-by-side in the new i-line l. In l, they

are not restricted to one location. If the four new positions of the points are denoted as a,b,c and d

58

Legend

points in w

points in Seq

Figure 4.18: Two pre-fixed points produces three variations

(from the extreme point at one end to the other extreme point at the other), the two points can occupy

the ab, bc, or cd positions along the i-line. Figure 4.19 illustrates an example. Thus, it is evident

that there are three variations possible. Note that this situation differs from the one regarding two

pre-fixed points in w which is always associated with the i-lines of a degree-2 point in w. Here the

new points can also be associated with degree-3 points in w.

D2. An example of this situation is depicted in Figure 4.11. The analysis is similar to above except

now a gap must be closed to make an uninterrupted block of intersections along τ. The number of

variations is therefore restricted to two.

D3. In this case, two extra points are required to create an uninterrupted block along τ. Thus

the order of all four intersections are specified along l so only a single variation is possible (See

Figure 4.20.)

59

Legend
- old points in w
- pre-located points
- new points

τ

Figure 4.19: Two side-by-side pre-located points in w leads to three variations

Legend

-points in w
-previously located
 points in Seq
- points in Seq
 placed to fill gap

Figure 4.20: If two points are required to fill the gap, only one variation is produced

E. There are three distinct ways that three pre-fixed points can occur in w (See Figure 4.21). In each

case, the remaining intersection along l can occur in either one of the extremities of the one uncut

i-line in w. Recall that the extremities are defined as the two regions at the ends of an i-line, beyond

the extreme points on the i-line. Therefore, for a case with three distinct pre-fixed points, there are

clearly two variations. Notice that in these cases, the order of the points created from cut partial

structs is not dictated by the order of intersections along τ. Figure 4.22 demonstrates that the gap in

τ may not be filled.

F1 and F2. The analysis follows the same approach as in D2 and D3. If the three points are posi-

tioned so that either end of the final i-line in w can be used in l there are two variations. Otherwise

60

Legend
- old points in w
- new points

(a)

(b)

(c)

Figure 4.21: Three versions of three pre-fixed points give rise to two variations each

Legend

- existing points
 on w
- new points on
 Seq
- marked

τ

3,1,m
4,6,m

2, 3,m

1,3

1, 2,m

m

Figure 4.22: If there are three pre-fixed points, the gap on τ is not always filled in

61

there is only one variation possible.

G1 and G2. Since there is always a minimum of two pre-fixed points in any plane of r, any

combination of three pre-located and pre-fixed points means there is one pre-located point and two

pre-fixed points. Once again, both the i-lines attached to one of the degree-2 points in w must be

involved.

The analysis for this situation is also similar to the one for D2 and D3. Again, if the points

are positioned so that either end of the one uncut i-line in w can be used, there are two variations.

Otherwise there is only one.

H1. If the four points representing the intersections of the i-lines of w along l are all specified, then

the order is also specified and only the single variation is possible.

4.3.7 Number of variations when P6 misses r

So far, the analysis has been conducted from the perspective that the potential new plane P6 interacts

with r so that some of the partial structs in r are cut. This produces a list of cut partial structs and

the set of all these lists is S. However one of the lists that S must include is one which represents P6

completely missing the wire model r.

This question is approached by considering a case which has already been analysed and is as

close as possible to the case where P6 misses r. The minimum number of partial structs which can

be cut in r is three and there are four such cases, one for each of the degree-3 points. Let T be the

subset of S where each ti ∈ T has exactly three cut partial structs. Each of the equivalence classes of

potential planes for each ti is produced as P6 “tilts” so that its orientation with respect to r changes

and, in turn, the points of intersection of P6 with the other seven remaining i-lines of r also change.

Now imagine sliding an arbitrary P6 which cuts three structs in r in the direction towards the isolated

point until P6 clears r completely and does not cut any of the partial structs in r. The plane P6 now

intersects the same three i-lines but the new intersection points are placed in the extremities of the

i-lines beyond the formerly isolated point. This leads to the following lemma.

Lemma 12. The number of equivalence classes of planes possible for locating the new points of P6

when P6 completely misses r is equal to the sum of the equivalence classes possible for the set of

62

four lists, T , where each ti has exactly three cut partial structs.

Proof. Imagine a potential sixth new plane, P6, in general position which originally cuts three structs

in r. Then imagine moving P6 in the direction of the one isolated point a, as described above, so

that it breaks contact with r. P6 intersects the three i-lines associated with a beyond a. Now the

different ways that P6 can intersect with the seven remaining i-lines are precisely the same ways

that P6 can interact with the seven remaining i-lines when the partial structs are cut. This is because

the same remaining seven i-lines are all found in the same two planes of r in both cases and these

two planes do not contain any of the three i-lines involved in a. Thus, the new i-line l representing

P6 falls outside the wire models embedded in both planes and the number of possible ways that the

remaining points can be placed is the same in both cases.

The equivalence classes from the case where P6 misses r will be different, of course, but only

because the intersections for the i-lines which previously had cut partial structs are now located

beyond former isolated point, a. Furthermore, from the point of view of equivalence classes of

planes, it makes no difference whether P6 misses a by a wide margin or not. Instead, the focus is on

the number of different ways that the remaining seven points can be placed in different portions of

the remaining i-lines and this is the same in both cases. This completes the analysis for one of the

four degree-3 points in r.

In order to obtain the number of equivalence classes for P6 missing r, it is therefore necessary

to analyse all four degree-3 points of r. However, because r is symmetric with respect to the plane

through i-line2 and pt10, the equivalence classes for P6 from points p1 and p4 will produce sets of

graphs which are exactly analogous to each other. Similarly, the sets of graphs for the variations

from points p2 and p3 will also be analogous. Therefore, for the four degree-3 points, only two new

cases need to be considered, one for either p1 or p4, and the other for p2 or p3. In the algorithm,

this is handled by adding two new lists to S, the set of lists of cut partial structs. In one set, the “cut”

partial structs are identified as the three partial structs beyond p4, and in the other set, the “cut”

partial structs are the ones beyond p3.

63

4.3.8 The data structures used in Steps Two and Three

Up to this point, the planes of r have been described using diagrams. Now, the data structures which

store the graph and wire model information as combinatorial objects are outlined. With these data

structures, it is possible to perform the analysis using computational techniques.

Data structure X

Data structure X is used to store the wire model r and any modifications which are made to r as it is

transformed into a graph u in AG3D6.

Data structure X is composed of two two-dimensional arrays. The first two-dimensional array

stores the structs of r, where each row represents a struct. The elements in each row are integer pairs

and represent end-point indices of the partial structs. The two-dimensional array for r is shown in

Table 4.2.

The second two-dimensional array in X stores the four i-lines found in each of the five planes

of r. Each row represents a plane and consists of a list of the i-lines embedded in that plane. This

second array in X , shown in Table 4.3, is an input to the procedures of Step Three and is not updated.

Table 4.2: First 2D data structure of X for r

Struct Partial Struct Partial Struct
1 2 5 5 3
2 1 6 6 3
3 1 9 9 5
4 2 9 9 6
5 3 8 8 7
6 5 10 10 7
7 2 10 10 8
8 9 10 10 4
9 6 8 8 4

10 1 7 7 4

Data structure Y

For each plane of r, data structure Y lists the partial structs contained in the associated 2D wire

model w. The relationship of each partial struct to the faces in w is stored and later used to find the

order of the points in a new i-line cutting through the existing structs of w. Data structure Y can

64

Table 4.3: Second 2D data structure of X for r

Plane Consists of I-lines. . .
1 1 2 3 4
2 1 5 6 7
3 4 7 8 9
4 2 5 9 10
5 3 6 8 10

Figure 4.23: The points and i-lines of the wire model r

be completely derived from the initial information in data structure X and is based on Baumgart’s

winged-edge representation [20]. This data structure was chosen because it concentrates on the

attributes of the edges (or rather, for this study, the attributes of the partial struct). Each partial

65

13

3

5
2

9

6

1
11

Face 2

Face 3

Face 1

Face 0

Face 0

Plane P1

Figure 4.24: Plane P1 with two new points p11 and p13

struct is assigned two faces, and pointers to the previous and next partial structs on each of the two

faces. Hence, there are six items associated with each partial struct.

In Sub Step One of the algorithm, when a partial struct i j is cut, the existing integer pair is

modified by substituting a new index g for one of the endpoints j. Consequently, a new partial

struct g j is added to Y . The pointers to the next and preceding partial structs for each face are

updated. Because data structure Y is only used to connect the points from cut partial structs, it is not

necessary for the study of AG3D6 to update it for points located beyond the extreme points of the

structs of r. Table 4.4 illustrates the data structure Y for plane P1 of r with two new partial structs,

(11,6) and (13,1), added. The corresponding wire model of P1 is shown in Figure 4.24.

Table 4.4: Second 2-D data structure of Y for r

Partial First Next- Previous- Second Next- Previous-
Struct Face 1st Face 1st Face Face 2nd Face 2nd Face
2 5 0 2 9 5 3 1 2 9 5 9
2 9 0 9 13 2 5 1 2 5 5 9
5 9 1 2 9 2 5 2 5 3 9 6
5 3 0 2 5 3 6 2 3 6 5 9
9 13 0 13 1 2 9 3 13 1 9 6
9 6 2 5 9 3 6 3 9 13 11 6
3 6 0 5 3 11 6 2 9 6 5 3
1 11 0 11 6 13 1 3 11 6 13 1
11 6 0 3 6 1 11 3 9 6 1 11
13 1 0 1 11 9 13 3 1 11 9 13

66

Data structure Z

Data structure Z stores two sets of data. The first set considers the extreme points on the boundary

of the wire model w in each plane of r. Each non-degree-4 point on the boundary of w in a plane

of r represents an extreme point for at least one struct. A sequence is constructed which consists of

the two extreme points of each i-line in the order that they are encountered around the boundary of

w. An arbitrary choice is made to have the ends of the sequence represent the degree-2-tri points.

Along with the point index, each element in the sequence also stores the corresponding i-line

index and an integer which can take three values: 0, 1 or 2.

• Value “1” indicates the new i-line l intersects with the associated i-line in w beyond the ex-

treme point.

• Value “2” indicates l cuts the partial struct adjacent to the point.

• Value “0” denotes that neither occurs - the other end of the struct is the one that interacts with

l.

Thus, Z allows the placement of new points in a plane of w to be precisely represented and

stored. An example of data structure Z associated with plane P1 and an arbitrary new i-line l is

shown in Figure 4.25. The last sequence of “0’s”, “1’s”, and “2’s” is referred to as the location

sequence.

Using the principles of circular ordering and the methods for calculating the number of varia-

tions, Z can be used to:

• guide where the new points can be located for the i-lines in w which do not have cut partial

structs.

• determine how many different ways the new points for the i-lines in w which do not have cut

partial structs can be positioned in w.

The second set of data stored with Z is a set of integer arrays used to establish the validity of

Z’s location sequences. Recall that some of the sequences produced by placing points are valid

67

3

6

1

9

5

2
a

b

c

d

Z data structure for plane P1

Extreme pts: 1 1 6 3 3 5 2 2
I-lines in w: 2 3 4 1 2 3 4 1
Location of new pts: 1 0 0 0 0 2 2 1

i-line 1

i-line 2

i-line 3

i-line 4

Legend

- existing pts. in w
- pts in new i-line

Figure 4.25: An example of data structure Z for P1 and arbitrary new i-line l

and some are not. Figure 4.26 shows different examples of P1 with points placed and a number of

corresponding Z data structures. Figure 4.26(a) shows one diagram with the points placed in such

a fashion that this example would be automatically dropped in Step Two because there is only one

cut partial struct on one of the faces. Figure 4.26(b) shows points located in such a way that the

principles of circular ordering are not respected. In addition, note that anytime there are two pre-

fixed points, two “2’s” must appear at either one end of Z or in the exact middle. Then the location

of the last two points can be determined from the principles of circular ordering.

Determining the list of valid sequences is not difficult because there is only one distinct wire

model w in a plane of r and it is symmetric. Thus the second set of information contained in Z

corresponds to all the valid location sequences possible for w in a plane of r. The total list is shown

in Table 4.5.

4.3.9 Algorithm for the sub steps in Step Three

Recall that Step 3 runs from within a loop processing each list of cut partial structs si of S. Hence,

the inputs for Step 3 are the current si and the three data structures X , Y and Z. There are three

sub steps in Step Three, 3.1, 3.2 and 3.3. Sub steps 3.1 and 3.2 are called once for each si while

the functions NumVariations and RunVariations in Sub step 3.3 may be called more than once for

each si depending on how many planes in r are required to guide where the remaining points for the

potential new plane P6 should be located.

68

3

6

1

9

5

2
a

b

c

d

3

6

1

9

5

2

d

c

b

a

3

6

1

9

5
2

d

cb

a

3

6

1

9

5

2

d

c

b

a

 (c)
associated Z data structure for plane P1

Extreme pts: 1 1 6 3 3 5 2 2
I-lines in w: 2 3 4 1 2 3 4 1
Location of new pts: 1 1 1 1 0 0 0 0

 (d)
associated Z data structure for plane P1

Extreme pts: 1 1 6 3 3 5 2 2
I-lines in w: 2 3 4 1 2 3 4 1
Location of new pts: 1 0 0 0 0 1 2 2

 (e)
associated Z data structure for plane P1

Extreme pts: 1 1 6 3 3 5 2 2
I-lines in w: 2 3 4 1 2 3 4 1
Location of new pts: 0 2 2 0 2 0 0 1

 (f)
associated Z data structure for plane P1

Extreme pts: 1 1 6 3 3 5 2 2
I-lines in w: 2 3 4 1 2 3 4 1
Location of new pts: 2 2 0 0 0 0 2 2

1

3

6
9

5

2

b

a

3

6

1

9

5

2

d

c
b

a

 (a)
Would be eliminated in
Step 2 so would never occur

(b)
An inconsistent location of new points

associated Z data structure for plane P1

Extreme pts: 1 1 6 3 3 5 2 2
I-lines in w: 2 3 4 1 2 3 4 1
Location of new pts: 0 0 1 0 0 1 2 2

6

3

1

Figure 4.26: For a new i-line l interacting with w in a plane of r, examples of valid and invalid
sequences for Z

Sub Step 3.1: - Processing the list of cut partial structs in current si

Inputs: Data structures X , Y and Z.

69

Table 4.5: Valid sequences in the second array for data structure Z
Case Valid sequences

No partial structs cut 11110000
01111000
00111100
00011110
00001111
10000111
11000011
11100001

Two partial structs cut 22000011
22100001
22110000
01122000
00122100
00221100
00001122
10000122
11000022

Three partial structs cut 02212000
02202001
00021220
10020220
00002212
00102202
21220000
20220100
12220000
02221000
00012220
00002221

Four partial structs cut 20200202
22000022

1: Make copies X ′, Y ′ and Z′ of the data structures X , Y and Z. {This ensures each si can start with
a unmodified copy of r.}

2: Data structures X ′, Y ′ and Z′ are updated with the information for each cut partial struct as listed
in si.

Outputs: Updated data structures X ′, Y ′ and Z′.

Sub Step 3.2: - Selecting a set of planes to guide where the intersections beyond the extreme

ends of the i-lines in w are placed

Inputs: Updated data structure X ′.

70

1: Initialize two integer sets ToUse and NotUsed.
2: Select the minimum number of planes in r so that each i-line without a cut partial struct is

represented at least once.
3: Record these planes in ToUse.
4: Record any plane not used in NotUsed.

Outputs: Two sets of planes — ToUse and its complement NotUsed.

Sub Step 3.3: Constructing all the possible graphs for si, a list of cut partial structs

This sub step uses two functions NumVariations, which takes parameters ToUse[Counter],V,X ′ and

Z′, and RunVariations, which takes parameters ToUse,NotUsed,Counter,V,X ′,Y ′ and Z′.

NumVariations(ToUse[Counter], V)
1: Select the i-lines in the plane ToUse[Counter] which do not have new points.
2: Identify the different ways the new points can be located and store them in V .

RunVariations(ToUse, NotUsed, Counter, V, X, Y, Z)
1: for all vi in V do
2: Make a copy Z′′ of data structure Z′. {The reason for this is explained in the Notes below}
3: Update data structure Z′′ with the new points in vi

4: if Counter < |ToUse| then
5: {not Base Case}
6: Initialize a new V ′.
7: Counter←Counter +1
8: NumVariations(V ′,ToUse[Counter])
9: RunVariations(ToUse,NotUsed,Counter,V ′,X ′,Y ′,Z′′)

10: else
11: {Base Case}
12: if the location of the points for all the planes in r is consistent then
13: Construct the potential new plane using the positions of all the new points
14: if the location of all the points in the potential plane is consistent then
15: Make a copy X ′′ of data structure X ′.
16: Update X ′′ with the new partial structs.
17: Using X ′′, output the new graph in AG3D6 in a format Nauty can read. {Note that if,

for any plane, the location of the points is not consistent, the function does not output
the graph for that vi.}

18: end if
19: end if
20: end if
21: end for
Notes: The reason for making the copy Z′′ from Z′ follows from the fact the algorithm executes
a loop for all the possible variations for that plane. Therefore, each time a layer in the recursive

71

function returns, it does not necessarily return control to the previous recursive call. Instead, if there
are variations which have not been implemented, the program “rolls back” the most recent changes
in Z′ and proceeds with the next variation.

Then Sub Step 3.3 combines these two functions in the following procedure.

Inputs: ToUse, NotUsed, X, Y, Z

1: Counter← 0
2: Initialize V .
3: NumVariations(ToUse[Counter],V)
4: RunVariations(ToUse,NotUsed,Counter,V,X ,Y,Z)

4.4 Results for AG3D6

4.4.1 Cardinality

Once the 245 wire models are input into Nauty, the Nauty program returns the result that there are

43 distinct graphs. Then, after a wire model of one graph for each of the 43 equivalence classes

has been constructed, it can be concluded that the cardinality up to isomorphism of AG3D6 is 43.

Instances of two wire models, one an instance of Graph No 12 and the other an instance of Graph

No. 38 in Appendix B, are shown in Figures 4.27 and 4.28.

4.4.2 Hamiltonicity

All the 43 graphs in AG3D6 are Hamiltonian. To establish this, each graph was tested using a

software package called Groups & Graphs [17]. In Appendix B, the Hamiltonian cycles are shown

as the outer boundary of the vertices.

4.4.3 Planarity

All the 43 graphs in AG3D6 are non-planar. Each graph was tested using a software package called

OrthoPak [3] which relies on the LEDA [19] library of combinatorial and geometric computing

algorithms. The test in this package checks to see if the graph contains either a K5 subgraph or a

K3,3 subgraph. If it does, then by the well-known Kuratwoski-Pontryagin theorem, the graph cannot

be planar.

72

Figure 4.27: An instance of AG3D6 Graph No 12

Figure 4.28: An instance of AG3D6 Graph No 38

73

4.4.4 Summary

The results from the foregoing sections can be summarized by the following theorem.

Theorem 4. AG3D6 contains 43 distinct graphs. Each one is Hamiltonian and non-planar.

74

Chapter 5

Discussion and Open Problems

Basic properties of three different classes of arrangement graphs have been investigated in this

thesis. The main results are:

• Cardinality: The cardinality up to isomorphism of AG3D4, AG3D5 and AG3D6 is 1, 1, and

43 respectively. It is clear that establishing the cardinality of AG3D6 is considerably more

complicated than for the other two classes. For future research, a natural direction is to

investigate the cardinality of AG3D7 and arrangement graph classes with higher numbers of

planes. The methodology used to determine AG3D6 and the computational procedures for

analysing AG3D6 could be adapted with minimal modifications for analysing AG3D7. This

main modification would be to the data structures Y and Z. Data structure Y would need to

be adjusted to accommodate the five portions (three partial structs and two extremities) in

each i-line of the underlying wire model of AG3D6. The valid sequence information in data

structure Z would need to be updated with valid sequences for the wire models of the graphs

in AG2D6.

One significant difference is that the analysis of AG3D7 will be considerably more complex.

There are a number of different graphs in AG3D6 and each one can be the underlying foun-

dation for a wire model of a graph in AG3D7. In addition, for AG3D7, there would be 15 new

points to place instead of the 10 new points required for AG3D6.

There is no reason that the methodology for analysing AG3D6 could not be applied beyond

AG3D7. Unfortunately, however, it is not clear how the methodology could be employed for

75

AG3D9. This is because the stretchability of a set of pseudo-lines in a plane is not guaranteed

when the number of pseudolines is greater than eight [12]. Clearly sets of consecutive line

segments could be derived which meet the required criteria for dividing the points in a plane Pi

into two subsets. However, there would be no guarantee that the resulting set of line segments

could be stretched out to represent the new (straight) i-line resulting from a newly inserted

plane in Pi. Further research might uncover a solution to this problem.

• Hamiltonicity: Each of the classes of AG3D4, AG3D5 and AG3D6 is Hamiltonian. It does not

seem unreasonable to conjecture that all AG3Dn are Hamiltonian, even though it is known that

not all AG2Dn are Hamiltonian. Contrary to 2D arrangement graphs, where there are degree-2

points, the minimum degree for a point in a AG3Dn graph is three. Therefore, there are many

more possibilities in 3D arrangement graphs for avoiding the sorts of problems Bose et al.[2]

encountered when trying to build Hamiltonian cycles in 2D arrangement graphs.

• Planarity: The classes of AG3D4, AG3D5 are planar but no graph in AG3D6 is planar. There

is a graph theory result limiting any planar graph to a maximum of 3x− 6 edges where x is

the number of vertices. The number of edges in 3D arrangement graphs, given by the formula

(n× (n− 1)× (n− 3)/2) where n is the number of planes, increases more quickly than the

number of vertices whose formula is (n× (n−1)× (n−2)/6). Therefore it seems reasonable

to investigate whether there is a cut-off number c where 3D arrangement graphs with more

than c number of planes are non-planar.

However, note that in any 3D arrangement graph the maximum degree of any vertex is at most

6. Thus, because each edge is counted twice when the sum of the degrees of all the vertices

is determined, the number of edges must be < 3x. Furthermore, each 3D arrangement graph

must be realizable as a 3D wire model. In a wire model of a 3D arrangement graph, each of

the two extreme points of each struct has maximum degree five because, otherwise, it could

not be an extreme point. As a result, it is unlikely that 3D arrangement graphs have more

than 3x− 6 edges. Consequently, in this thesis, whether 3D arrangement graphs are planar

or non-planar as the number of planes increases could not be determined using the 3x− 6

76

formula. It remains an open question whether AG3Dn with n > 6, are planar or non-planar.

In addition, there are a number of directions where further research into arrangement graphs

might be pursued which are unrelated to the properties discussed above or the number of planes in

the arrangement. One is whether a method could be developed for deciding whether the potential

new plane is in fact a plane without having to construct a wire model of each of the non-isomorphic

classes of graphs for AG3Dn where n > 6. Another is the 3D Arrangement Graph Recognition

problem. It is known that the 2D Arrangement Graph Recognition problem is NP-hard but there is

no known analogous result for 3D arrangement graphs.

77

Bibliography

[1] A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler. Oriented Matroids.
Cambridge University Press, 1993.

[2] P. Bose, H. Everett, and S. K. Wismath. Properties of arrangement graphs. International
Journal of Computational Geometry and Applications, 13(6):447–462, December 2003.

[3] M. Closson, H. Everett, S. Gartshore, and S. K. Wismath. Arrangepak, orthopak and vispak
2.0. Technical Report TR-CS-01-98, Computer Science Department, University of Lethbridge,
Canada, T1K 3M4, www.cs.uleth.ca/∼wismath/packages/, 2002.

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry
Algorithms and Applications, Second Edition. Springer Verlag, 2000.

[5] Ray Dufresne and S. K. Wismath. Arrangepak-3d user’s manual. Technical Report
CS-02-04, Computer Science Department, University of Lethbridge, Canada, T1K 3M4,
www.cs.uleth.ca/∼vpak/gd/indexA3D.html, July 2004.

[6] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1987.

[7] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyper-
planes with applications. SIAM J. Comput., 15:341–63, 1986.

[8] D. Eu, E. Guevremont, and G. Toussaint. On envelopes of arrangements of lines. Journal of
Algorithms, 21:111–148, 1996.

[9] Stefan Felsner, Ferran Hurtado, Marc Noy, and Ileana Streinu. Hamiltonicity and colorings of
arrangement graphs. ACM-SIAM Symposium on Discrete Algorithms, 24:155–164, 2000.

[10] L. Finschi and K. Fukuda. Generation of oriented matroids - a graph theoretical approach.
Discrete and Computational Geometry, 27:117–136, 2002.

[11] Edgar G. Goodaire and Michael M. Parmenter. Discrete Mathematics with Graph Theory.
Prentice Hall, New Jersey, 1998.

[12] Jacob E. Goodman and R. Pollack. Proof of Grünbaum’s conjecture on the stretchability of
certain arrangements of pseudolines. J. Comb. Theory, Ser. A, 29(3):385–390, 1980.

[13] B. Grünbaum. Convex Polytopes. John Wiley and Sons, London, 1967.

78

[14] B. Grünbaum. Arrangements of hyperplanes. In Proceedings of 2nd Louisiana Conference on
Combinatorics, Graph Theory and Comput., pages 41–106, 1971.

[15] D. Halperin. Arrangements. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 24, pages 529–562. CRC Press LLC, Boca
Raton, FL, 2004.

[16] M. Keil. A simple algorithm for determining the envelope of a set of lines. Information
Processing Letters, 39:121–124, 1991.

[17] William Kocay. Groups & graphs — a macintosh application for graph theory. Journal of
Combinatorial Mathematics and Combinatorial Computing, 3:195–206, 1998.

[18] Brendan D. McKay. Nauty user’s guide (version 1.5). Technical Report TR-CS-90-02, Com-
puter Science Department, Australian National University, cs.anu.edu.au/∼bdm/nauty/,
2004.

[19] Kurt Mehlhorn and Stefan Naher. The LEDA Platform of Combinatorial and Geometric Com-
puting. University of Cambridge Press, 1999.

[20] Joseph O’Rourke. Computational Geometry in C, 2nd Edition. Cambridge University Press,
New York, 1998.

[21] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of Mathe-
matics, LIV:150–168, 1932.

79

Appendix A

List of Specialized Graphical Software Packages
Used

This thesis used a number of software resources, apart from the usual typesetting and diagram
drawing packages, to generate 2D and 3D diagrams, to produce and manipulate arrangements of
planes, and to test for attributes such as isomorphism, planarity and Hamiltonicity.

• ArrangePak-3D [5] - ArrangePak-3D is a software program to create and manipulate arrange-
ments of planes in general position and in three dimensions via a graphical user interface. The
algorithms for manipulating graphs rely on a proprietary library called LEDA of algorithms
and data-types (www.algorithmic-solutions.info/leda guide/index.html). ArrangePak-
3D was developed by Ray Dufresne working under the supervision of Stephen Wismath at the
University of Lethbridge. More information on ArrangePak-3D can be found at www.cs.uleth.
ca/∼vpak/gd/indexA3D.html.

In this thesis, ArrangePak-3D was used to create and manipulate the arrangements to pro-
duce the GLuskap images of the two wire models of graphs in AG3D6 in Section 4.4.1.
ArrangePak-3D also was used to generate wire models (in point co-ordinate form) for one
graph from each of the 43 equivalence classes of AG3D6.

• GLuskap - GLuskap is a software program for creating, modifying and displaying graph
drawings in three dimensions. The colours of the edges and vertices of graphs, the back-
ground and the viewing angle can all be user specified. Graphs can be output in .gml and
.mg2 (a special GLuskap file format) and graph images can be exported to various for-
mats including .jpg and POV-Ray scene files. The most recent version of GLuskap (2.4)
was written by Breanne Dyck, Sebastian Hanlon and Jill Joevenazzo under supervision by
Stephen Wismath at the University of Lethbridge in 2004. More information is available at
www.cs.uleth.ca/∼vpak/gluskap/.

GLuskap was used to create images of wire models of arrangement graphs which were ex-
ported as POV-Ray scene files and reproduced as pictures throughout the thesis.

• Groups & Graphs [17] - Groups & Graphs is a software application for graphs, digraphs and
their automorphism groups. The main developers were Christian Pantel and William Kocay
from the Computer Science Department of the University of Manitoba. More information can
be found at bkocay.cs.umanitoba.ca/G&G/Home.html.

Groups & Graphs was used to test each of the 43 non-isomorphic graphs of AG3D6 for Hamil-
tonicity.

80

• OrthoPak [3] - OrthoPak is a collection of routines for displaying graphs orthogonally in
three dimensions. This package also draws heavily from the LEDA library of algorithms
and data-types (www.algorithmic-solutions.info/leda guide/index.html). It was
developed by M. Closson and S. Gartshore under the supervision of Stephen Wismath at the
University of Lethbridge. There is a link to the download for ArrangePak, OrthoPak and
VisPak 2.0 at www.cs.uleth.ca/∼wismath/.

OrthoPak incorporates the LEDA routine to test for planarity. This planarity test was used
in Section 4.4.3 to establish that each of the 43 equivalence classes of graphs of AG3D6 is
non-planar.

• Nauty [18] - Nauty is a set of procedures for determining the automorphism group of a vertex-
coloured graph. It is able to produce a canonically-labelled isomorph of the graph, which is
used in isomorphism testing. More information, the software and the manual are available
at cs.anu.edu.au/people/bdm/nauty/. The Nauty developer is Brendan McKay from the
Department of Computer Science, Australian National University in Canberra.

Nauty was used to analyse the set of 245 possible graphs for AG3D6 and discard any graph
which was isomorphic to another one in the set.

• C++ code - The author developed code to implement the data structures X , Y and Z as well as
routines for maintaining and modifying data in the structures, selecting a set of planes to help
guide where new points can be located, cataloguing all the different possible locations for
points contained in the potential new plane, testing a set of located points for consistency and
constructing a potential new plane using the ten new points. The programming language was
C++ and the tool suite and integrated development environment used was Xcode 1.5 running
on Mac OS X 10.3.

81

Appendix B

Hamiltonian Cycles in AG3D6 - Part 1

Below a representation of each graph in AG3D6 is produced with the Hamiltonian cycle shown in
bold around the outer edge of each graph. The points numbered 1 to 10 represent the original points
of intersection from the original five planes; the points numbered 11 to 20 represent the new points
of intersection in the new plane P6.

Figure B.1: AG3D6: Graph No. 1 Figure B.2: AG3D6: Graph No. 2

82

Figure B.3: AG3D6: Graph No. 3 Figure B.4: AG3D6: Graph No. 4

Figure B.5: AG3D6: Graph No. 5 Figure B.6: AG3D6: Graph No. 6

Figure B.7: AG3D6: Graph No. 7 Figure B.8: AG3D6: Graph No. 8

83

Figure B.9: AG3D6: Graph No. 9 Figure B.10: AG3D6: Graph No. 10

Figure B.11: AG3D6: Graph No. 11 Figure B.12: AG3D6: Graph No. 12

Figure B.13: AG3D6: Graph No. 13 Figure B.14: AG3D6: Graph No. 14

84

Figure B.15: AG3D6: Graph No. 15 Figure B.16: AG3D6: Graph No. 16

Figure B.17: AG3D6: Graph No. 17 Figure B.18: AG3D6: Graph No. 18

Figure B.19: AG3D6: Graph No. 19 Figure B.20: AG3D6: Graph No. 20

85

Figure B.21: AG3D6: Graph No. 21 Figure B.22: AG3D6: Graph No. 22

Figure B.23: AG3D6: Graph No. 23 Figure B.24: AG3D6: Graph No. 24

Figure B.25: AG3D6: Graph No. 25 Figure B.26: AG3D6: Graph No. 26

86

Figure B.27: AG3D6: Graph No. 27 Figure B.28: AG3D6: Graph No. 28

Figure B.29: AG3D6: Graph No. 29 Figure B.30: AG3D6: Graph No. 30

Figure B.31: AG3D6: Graph No. 31 Figure B.32: AG3D6: Graph No. 32

87

Figure B.33: AG3D6: Graph No. 33 Figure B.34: AG3D6: Graph No. 34

Figure B.35: AG3D6: Graph No. 35 Figure B.36: AG3D6: Graph No. 36

Figure B.37: AG3D6: Graph No. 37 Figure B.38: AG3D6: Graph No. 38

88

Figure B.39: AG3D6: Graph No. 39 Figure B.40: AG3D6: Graph No. 40

Figure B.41: AG3D6: Graph No. 41 Figure B.42: AG3D6: Graph No. 42

Figure B.43: AG3D6: Graph No. 43

89

