Engineering cell-free systems for synthetic biologists

Loading...
Thumbnail Image
Date
2022
Authors
Sheahan, Taylor Anne
University of Lethbridge. Faculty of Arts and Science
Journal Title
Journal ISSN
Volume Title
Publisher
Lethbridge, Alta. : University of Lethbridge, Dept. of Chemistry and Biochemistry
Abstract
Synthetic biology (synbio) has emerged as a transformative scientific field with immense potential to address a wide-range of global problems. A specific sub-field of synbio utilizes cellular biomolecular machinery outside of a living cell. In theory, these “cell-free” systems offer a simpler approach and unique features compared to cell-based systems for biotechnology development. However, in practice limited accessibility and poor protein synthesis capacity hinder the overall scope and application of cell-free synbio. To address these challenges, it was our goal to create new engineering tools that will help expand the overall utility of cell-free expression systems. Data presented here provides: 1) detailed methods for the in-house preparation of a cost-effective in vitro reconstituted cell-free system, 2) an in-depth proteomic analysis of the system building blocks as a tool to characterize the composition and inform optimization, and 3) an improvement to protein synthesis capacity by modifying the ribosome composition. Furthermore, a critical assessment of the regulatory landscape is provided, promoting the safe and responsible use of cell-free synbio.
Description
Keywords
synthetic biology , cell-free systems , Synthetic biology , Proteins--Synthesis , Proteomics , Biotechnology , Bioengineering , Dissertations, Academic
Citation