Iwaniuk, Andrew
Permanent URI for this collection
Browse
Recent Submissions
- ItemQuality not quantity: deficient juvenile play experiences lead to altered medial prefrontal cortex neurons and sociocognitive skill deficits(Wiley, 2024) Ham, Jackson R.; Szabo, Madeline; Annor-Bediako, Jessica; Stark, Rachel A.; Iwaniuk, Andrew N.; Pellis, Sergio M.Reduced play experience over the juvenile period leads to adults with impoverished social skills and to anatomical and physiological aberrations of the neurons found in the medial prefrontal cortex (mPFC). Even rearing rats from high-playing strains with low-playing strains show these developmental consequences. In the present study, we evaluated whether low-playing rats benefit from being reared with higher playing peers. To test this, we reared male Fischer 344 rats (F344), typically thought to be a low-playing strain, with a Long–Evans (LE) peer, a relatively high-playing strain. As juveniles, F344 rats reared with LE rats experienced less play and lower quality play compared to those reared with another F344. As adults, the F344 rats reared with LE partners exhibited poorer social skills and the pyramidal neurons of their mPFC had larger dendritic arbors than F344 rats reared with same-strain peers. These findings show that being reared with a more playful partner does not improve developmental outcomes of F344 rats, rather the discordance in the play styles of F344 and LE rats leads to poorer outcomes.
- ItemOnline repositories of photographs and videos provide insights into the evolution of skilled hindlimb movements in birds(Springer Nature, 2023) Gutiérrez-Ibáñez, Cristián; Amaral-Peçanha, Clara; Iwaniuk, Andrew N.; Wylie, Douglas R.; Baron, JeromeThe ability to manipulate objects with limbs has evolved repeatedly among land tetrapods. Several selective forces have been proposed to explain the emergence of forelimb manipulation, however, work has been largely restricted to mammals, which prevents the testing of evolutionary hypotheses in a comprehensive evolutionary framework. In birds, forelimbs have gained the exclusive function of flight, with grasping transferred predominantly to the beak. In some birds, the feet are also used in manipulative tasks and appear to share some features with manual grasping and prehension in mammals, but this has not been systematically investigated. Here we use large online repositories of photographs and videos to quantify foot manipulative skills across a large sample of bird species (>1000 species). Our results show that a complex interaction between niche, diet and phylogeny drive the evolution of manipulative skills with the feet in birds. Furthermore, we provide strong support for the proposition that an arboreal niche is a key element in the evolution of manipulation in land vertebrates. Our systematic comparison of foot use in birds provides a solid base for understanding morphological and neural adaptations for foot use in birds, and for studying the convergent evolution of manipulative skills in birds and mammals.
- ItemLandscape effects on the contemporary genetic structure of Ruffed Grouse (Bonasa umbellus) populations(Wiley, 2019) Jensen, Ashley M.; O'Neil, Nicholas P.; Iwaniuk, Andrew N.; Burg, Theresa M.The amount of dispersal that occurs among populations can be limited by landscape heterogeneity, which is often due to both natural processes and anthropogenic activity leading to habitat loss or fragmentation. Understanding how populations are structured and mapping existing dispersal corridors among populations is imperative to both determining contemporary forces mediating population connectivity, and informing proper management of species with fragmented populations. Furthermore, the contemporary processes mediating gene flow across heterogeneous landscapes on a large scale are understudied, particularly with respect to widespread species. This study focuses on a widespread game bird, the Ruffed Grouse (Bonasa umbellus), for which we analyzed samples from the western extent of the range. Using three types of genetic markers, we uncovered multiple factors acting in concert that are responsible for mediating contemporary population connectivity in this species. Multiple genetically distinct groups were detected; microsatellite markers revealed six groups, and a mitochondrial marker revealed four. Many populations of Ruffed Grouse are genetically isolated, likely by macrogeographic barriers. Furthermore, the addition of landscape genetic methods not only corroborated genetic structure results, but also uncovered compelling evidence that dispersal resistance created by areas of unsuitable habitat is the most important factor mediating population connectivity among the sampled populations. This research has important implications for both our study species and other inhabitants of the early successional forest habitat preferred by Ruffed Grouse. Moreover, it adds to a growing body of evidence that isolation by resistance is more prevalent in shaping population structure of widespread species than previously thought.
- ItemIntegrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds(Frontiers Media, 2015) Wylie, Douglas R.; Gutierrez-Ibanez, Cristian I.; Iwaniuk, Andrew N.The comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparativestudies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behavior are intimately tied to phylgenetic history, requiring studies to integrate neuroanatomy with behavior and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for theses tudies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behavior, and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory, and somatosensory systems. We also consider the concept of a “trade-off,” where by one sensory system (or subpathway within a sensory system), may be expanded in size, at the expense of others, which are reduced in size.
- ItemDiversity in olfactory bulb size in birds reflects allometry, ecology and phylogeny(Frontiers Media, 2015) Corfield, Jeremy R.; Price, Kasandra; Iwaniuk, Andrew N.; Gutierrez-Ibanez, Cristian I.; Birkhead, Tim R.; Wylie, Douglas R.The relative size of olfactory bulbs (OBs) is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species’ ecology. In birds, variations in the relative size of OBs are correlated with some behaviors; however, the factors that have led to the high level of diversity seen in OB sizes across birds are still not well understood. In this study, we use the relative size of OBs as a neuroanatomical proxy for olfactory capabilities in135 species of birds, representing 21 orders. We examine the scaling of OBs with brain size across avian orders,determine likely ancestral states and test for correlations between OB sizes and habitat, ecology, and behavior. The size of avianOBs varied with the size of the brain and this allometric relationship was for the most part isometric, although species did deviate from this trend. Large OBs were characteristic of more basal species and in more recently derived species the OBs were small. Living and foraging in a semi-aquatic environment was the strongest variable driving the evolution of large OBs in birds; olfactionmay provide cues for navigation and foraging in this otherwise feature less environment. Some of the diversity in OB sizes was also undoubtedly due to differences in migratory behavior, foraging strategies and socia lstructure. In summary, relative OB size in birds reflect allometry, phylogeny and behavior in ways that parallel that of other vertebrate classes. This provides comparative evidence that supports recent experimental studies into avian olfaction and suggests that olfaction is an important sensory modality for all avian species.
- «
- 1 (current)
- 2
- 3
- »