Patel, Trushar

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 25
  • Item
    Structural studies of RNA-protein complexes: a hybrid approach involving hydrodynamics, scattering, and computational methods
    (Elsevier, 2017) Patel, Trushar R.; Chojnowski, Grzegorz; Astha; Koul, Amit; McKenna, Sean A.; Bujnicki, Janusz M.
    The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes.
  • Item
    Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes
    (Nature Portfolio, 2016) Reuten, Raphael; Patel, Trushar R.; McDougall, Matthew; Rama, Nicolas; Nikodemus, Denise; Gibert, Benjamin; Delcros, Jean-Guy; Prein, Carina; Meier, Markus; Metzger, Stéphanie; Zhou, Zhigang; Kaltenberg, Jennifer; McKee, Karen K.; Bald, Tobias; Tuting, Thomas; Zigrino, Paola; Djonov, Valentin; Bloch, Wilhelm; Clausen-Schaumann, Hauke; Poschl, Ernst; Yurchenco, Peter D.; Ehrbar, Martin; Mehlen, Patrick; Stetefeld, Jorg; Koch, Manuel
    Netrins, a family of laminin-related molecules, have been proposed to act as guidance cues either during nervous system development or the establishment of the vascular system. This was clearly demonstrated for netrin-1 via its interaction with the receptors DCC and UNC5s. However, mainly based on shared homologies with netrin-1, netrin-4 was also proposed to play a role in neuronal outgrowth and developmental/pathological angiogenesis via interactions with netrin-1 receptors. Here, we present the high-resolution structure of netrin-4, which shows unique features in comparison with netrin-1, and show that it does not bind directly to any of the known netrin-1 receptors. We show that netrin-4 disrupts laminin networks and basement membranes (BMs) through high-affinity binding to the laminin γ1 chain. We hypothesize that this laminin-related function is essential for the previously described effects on axon growth promotion and angiogenesis. Our study unveils netrin-4 as a non-enzymatic extracellular matrix protein actively disrupting pre-existing BMs.
  • Item
    Structure and hydrodynamics of a DNA G-quadruplex with a cytosine bulge
    (Oxford University Press, 2018) Meier, Markus; Moya-Torres, Aniel; Krahn, Natalie J.; McDougall, Matthew D.; Orriss, George L.; McRae, Ewan K. S.; Booy, Evan P.; McEleney, Kevin; Patel, Trushar R.; McKenna, Sean A.; Stetefeld, Jorg
    The identification of four-stranded G-quadruplexes (G4s) has highlighted the fact that DNA has additional spatial organisations at its disposal other than double-stranded helices. Recently, it became clear that the formation of G4s is not limited to the traditional G3+NL1G3+NL2G3+NL3G3+ sequence motif. Instead, the G3 triplets can be interrupted by deoxythymidylate (DNA) or uridylate (RNA) where the base forms a bulge that loops out from the G-quadruplex core. Here, we report the first high-resolution X-ray structure of a unique unimolecular DNA G4 with a cytosine bulge. The G4 forms a dimer that is stacked via its 5′-tetrads. Analytical ultracentrifugation, static light scattering and small angle X-ray scattering confirmed that the G4 adapts a predominantly dimeric structure in solution. We provide a comprehensive comparison of previously published G4 structures containing bulges and report a special γ torsion angle range preferentially populated by the G4 core guanylates adjacent to bulges. Since the penalty for introducing bulges appears to be negligible, it should be possible to functionalize G4s by introducing artificial or modified nucleotides at such positions. The presence of the bulge alters the surface of the DNA, providing an opportunity to develop drugs that can specifically target individual G4s.
  • Item
    Structural studies of macromolecules in solution using small angle X-ray scattering
    (2018) Mrozowich, Tyler; McLennan, Steffane; Overduin, Michael; Pater, Trushar R.
    Protein-protein interactions involving proteins with multiple globular domains present technical challenges for determining how such complexes form and how the domains are oriented/positioned. Here, a protocol with the potential for elucidating which specific domains mediate interactions in multicomponent system through ab initio modeling is described. A method for calculating solution structures of macromolecules and their assemblies is provided that involves integrating data from small angle X-ray scattering (SAXS), chromatography, and atomic resolution structures together in a hybrid approach. A specific example is that of the complex of full-length nidogen-1, which assembles extracellular matrix proteins and forms an extended, curved nanostructure. One of its globular domains attached to laminin y-1, which structures the basement membrane. This provides a basis for determining accurate structures of flexible multidomain protein complexes and is enabled by synchrotron sources coupled with automation robotics and size exclusion chromatography systems. This combination allows rapid analysis in which multiple oligomeric states are separated prior to SAXS data collection. The analysis yields information on the radius of gyration, particle dimension, molecular shape and interdomain pairing. The protocol for generating 3D models of complexes by fitting high-resolution structures of the component proteins is also given.
  • Item
    Zinc-finger protein CNBP alters the 3-D structure of IncRNA Braveheart in solution
    (Nature Portfolio, 2020) Kim, Doo N.; Thiel, Bernhard C.; Mrozowich, Tyler; Hennelly, Scott P.; Hofacker, Ivo L.; Patel, Trushar R.; Sanbonmatsu, Karissa Y.
    Long non-coding RNAs (lncRNAs) constitute a significant fraction of the transcriptome, playing important roles in development and disease. However, our understanding of structure-function relationships for this emerging class of RNAs has been limited to secondary structures. Here, we report the 3-D atomistic structural study of epigenetic lncRNA, Braveheart (Bvht), and its complex with CNBP (Cellular Nucleic acid Binding Protein). Using small angle X-ray scattering (SAXS), we elucidate the ensemble of Bvht RNA conformations in solution, revealing that Bvht lncRNA has a well-defined, albeit flexible 3-D structure that is remodeled upon CNBP binding. Our study suggests that CNBP binding requires multiple domains of Bvht and the RHT/AGIL RNA motif. We show that RHT/AGIL, previously shown to interact with CNBP, contains a highly flexible loop surrounded by more ordered helices. As one of the largest RNA-only 3-D studies, the work lays the foundation for future structural studies of lncRNA-protein complexes.