Chasmer, Laura
Permanent URI for this collection
Browse
Browsing Chasmer, Laura by Subject "Boreal peatlands"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemIdentifying conifer tree vs. deciduous shrub and tree regeneration trajectories in a space-for-time boreal peatland fire chronosequence using multispectral lidar(MDPI, 2022) Enayetullah, Humaira; Chasmer, Laura; Hopkinson, Christopher; Thompson, Dan; Cobbaert, DanielleWildland fires and anthropogenic disturbances can cause changes in vegetation species composition and structure in boreal peatlands. These could potentially alter regeneration trajectories following severe fire or through cumulative impacts of climate-mediated drying, fire, and/or anthropogenic disturbance. We used lidar-derived point cloud metrics, and site-specific locational attributes to assess trajectories of post-disturbance vegetation regeneration in boreal peatlands south of Fort McMurray, Alberta, Canada using a space-for-time-chronosequence. The objectives were to (a) develop methods to identify conifer trees vs. deciduous shrubs and trees using multi-spectral lidar data, (b) quantify the proportional coverage of shrubs and trees to determine environmental conditions driving shrub regeneration, and (c) determine the spatial variations in shrub and tree heights as an indicator of cumulative growth since the fire. The results show that the use of lidar-derived structural metrics predicted areas of deciduous shrub establishment (92% accuracy) and classification of deciduous and conifer trees (71% accuracy). Burned bogs and fens were more prone to shrub regeneration up to and including 38 years after the fire. The transition from deciduous to conifer trees occurred approximately 30 years post-fire. These results improve the understanding of environmental conditions that are sensitive to disturbance and impacts of disturbance on northern peatlands within a changing climate.
- ItemPeatland-fire interactions: a review of wildland fire feedbacks and interactions in Canadian boreal peatlands(Elsevier, 2021) Nelson, Kailyn; Thompson, Dan; Hopkinson, Christopher; Petrone, R.; Chasmer, LauraBoreal peatlands store a disproportionately large quantity of soil carbon (C) and play a critical role within the global C-climate system; however, with climatic warming, these C stores are at risk. Increased wildfire frequency and severity are expected to increase C loss from boreal peatlands, contributing to a shift from C sink to source. Here, we provide a comprehensive review of pre- and post-fire hydrological and ecological interactions that affect the likelihood of peatland burning, address the connections between peatland fires and the C-climate cycle, and provide a conceptual model of peatland processes as they relate to wildland fire, hydro-climate, and ecosystem change. Despite negative ecohydrological feedback mechanisms that may compensate for increased C loss initially, the cumulative effects of climatic warming, anthropogenic peatland fragmentation, and subsequent peatland drying will increase C loss to the atmosphere, driving a positive C feedback cycle. However, the extent to which negative and positive feedbacks will compensate for one another and the timelines for each remains unclear. We suggest that a multi-disciplinary approach of combining process knowledge with remotely sensed data and ecohydrological and wildland fire models is essential for better understanding the role of boreal peatlands and wildland fire in the global climate system.
- ItemQuantifying lidar elevation accuracy: parameterization and wavelength selection for optimal ground classifications based on time since fire/disturbance(MDPI, 2022) Nelson, Kailyn; Chasmer, Laura; Hopkinson, ChristopherPre- and post-fire airborne lidar data provide an opportunity to determine peat combustion/loss across broad spatial extents. However, lidar measurements of ground surface elevation are prone to uncertainties. Errors may be introduced in several ways, particularly associated with the timing of data collection and the classification of ground points. Ground elevation data must be accurate and precise when estimating relatively small elevation changes due to combustion and subsequent carbon losses. This study identifies the impact of post-fire vegetation regeneration on ground classification parameterizations for optimal accuracy using TerraScan and LAStools with airborne lidar data collected in three wavelengths: 532 nm, 1064 nm, and 1550 nm in low relief boreal peatland environments. While the focus of the study is on elevation accuracy and losses from fire, the research is also highly pertinent to hydrological modelling, forestry, geomorphological change, etc. The study area includes burned and unburned boreal peatlands south of Fort McMurray, Alberta. Lidar and field validation data were collected in July 2018, following the 2016 Horse River Wildfire. An iterative ground classification analysis was conducted whereby validation points were compared with lidar ground-classified data in five environments: road, unburned, burned with shorter vegetative regeneration (SR), burned with taller vegetative regeneration (TR), and cumulative burned (both SR and TR areas) in each of the three laser emission wavelengths individually, as well as combinations of 1550 nm and 1064 nm and 1550 nm, 1064 nm, and 532 nm. We find an optimal average elevational offset of ~0.00 m in SR areas with a range (RMSE) of ~0.09 m using 532 nm data. Average accuracy remains the same in cumulative burned and TR areas, but RMSE increased to ~0.13 m and ~0.16 m, respectively, using 1550 nm and 1064 nm combined data. Finally, data averages ~0.01 m above the field-measured ground surface in unburned boreal peatland and transition areas (RMSE of ~0.19 m) using all wavelengths combined. We conclude that the ‘best’ offset for depth of burn within boreal peatlands is expected to be ~0.01 m, with single point measurement uncertainties upwards of ~0.25 m (RMSE) in areas of tall, dense vegetation regeneration. The importance of classification parameterization identified in this study also highlights the need for more intelligent adaptative classification routines, which can be used in other environments.
- ItemShortening fire return interval predisposes west-central Canadian boreal peatlands to more rapid vegetation growth and transition to forest cover(Wiley, 2024) Jones, Emily Ann; Chasmer, Laura; Devito, Kevin J.; Hopkinson, ChristopherClimate change in northern latitudes is increasing the vulnerability of peatlands and the riparian transition zones between peatlands and upland forests (referred to as ecotones) to greater frequency of wildland fires. We examined early post-fire vegetation regeneration following the 2011 Utikuma complex fire (central Alberta, Canada). This study examined 779 peatlands and adjacent ecotones, covering an area of ~182 km2. Based on the known regional fire history, peatlands that burned in 2011 were stratified into either long return interval (LRI) fire regimes of >80 years (i.e., no recorded prior fire history) or short fire return interval (SRI) of 55 years (i.e., within the boundary of a documented severe fire in 1956). Data from six multitemporal airborne lidar surveys were used to quantify trajectories of vegetation change for 8 years prior to and 8 years following the 2011 fire. To date, no studies have quantified the impacts of post-fire regeneration following short versus long return interval fires across this broad range of peatlands with variable environmental and post-fire successional trajectories. We found that SRI peatlands demonstrated more rapid vascular and shrub growth rates, especially in peatland centers, than LRI peatlands. Bogs and fens burned in 1956, and with little vascular vegetation (classified as “open peatlands”) prior to the 2011 fire, experienced the greatest changes. These peatlands tended to transition to vascular/shrub forms following the SRI fire, while open LRI peatlands were not significantly different from pre-fire conditions. The results of this study suggest the emergence of a positive feedback, where areas experiencing SRI fires in southern boreal peatlands are expected to transition to forested vegetation forms. Along fen edges and within bog centers, SRI fires are expected to reduce local peatland groundwater moisture-holding capacity and promote favorable conditions for increased fire frequency and severity in the future.
- ItemWildfire as a major driver of recent permafrost thaw in boreal peatlands(Nature Portfolio, 2018) Gibson, Carolyn M.; Chasmer, Laura; Thompson, Dan; Quinton, William L.; Flannigan, Mike D.; Olefeldt, DavidPermafrost vulnerability to climate change may be underestimated unless effects of wildfire are considered. Here we assess impacts of wildfire on soil thermal regime and rate of thermokarst bog expansion resulting from complete permafrost thaw in western Canadian permafrost peatlands. Effects of wildfire on permafrost peatlands last for 30 years and include a warmer and deeper active layer, and spatial expansion of continuously thawed soil layers (taliks). These impacts on the soil thermal regime are associated with a tripled rate of thermokarst bog expansion along permafrost edges. Our results suggest that wildfire is directly responsible for 2200 ± 1500 km2 (95% CI) of thermokarst bog development in the study region over the last 30 years, representing ~25% of all thermokarst bog expansion during this period. With increasing fire frequency under a warming climate, this study emphasizes the need to consider wildfires when projecting future circumpolar permafrost thaw.