Naylor, David
Permanent URI for this collection
Browse
Browsing Naylor, David by Author "Arab, H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPhysical structure of the photodissociation regions in NGC 7023: observations of gas and dust emission with Herschel*(EDP Sciences, 2014) Kohler, M.; Habart, E.; Arab, H.; Bernard-Salas, J.; Ayasso, H.; Abergel, A.; Zavagno, A.; Polehampton, E.; van der Wiel, M.H.D.; Naylor, David A.; Makiwa, Gibion; Dassas, K.; Joblin, C.; Pilleri, P.; Berne, O.; Fuente, A.; Gerin, M.; Goicoechea, J.R.; Teyssier, D.Context. The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas in the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars a ect the gas and dust in their environment. Aims. Several Herschel Space Telescope programs provide a wealth of spatial and spectral information of dust and gas in the heart of PDRs. We focus our study on Spectral and Photometric Image Receiver (SPIRE) Fourier-Transform Spectrometer (FTS) fully sampled maps that allow us for the first time to study the bulk of cool/warm dust and warm molecular gas (CO) together. In particular, we investigate if these populations spatially coincide, if and how the medium is structured, and if strong density and temperature gradients occur, within the limits of the spatial resolution obtained with Herschel. Methods. The SPIRE FTS fully sampled maps at di erent wavelengths are analysed towards the northwest (NW) and the east (E) PDRs in NGC 7023. We study the spatial and spectral energy distribution of a wealth of intermediate rotational 12CO 4 Ju 13 and 13CO 5 Ju 10 lines. A radiative transfer code is used to assess the gas kinetic temperature, density, and column density at di erent positions in the cloud. The dust continuum emission including Spitzer, the Photoconductor Array Camera and Spectrometer (PACS), and SPIRE photometric and the Institute for Radio Astronomy in the Millimeter Range (IRAM) telescope data is also analysed. Using a single modified black body and a radiative transfer model, we derive the dust temperature, density, and column density. Results. The cloud is highly inhomogeneous, containing several irradiated dense structures. Excited 12CO and 13CO lines and warm dust grains localised at the edge of the dense structures reveal high column densities of warm/cool dense matter. Both tracers give a good agreement in the local density, column density, and physical extent, leading to the conclusion that they trace the same regions. The derived density profiles show a steep gradient at the cloud edge reaching a maximum gas density of 10^5 -10^6 cm^-3 in the PDR NGC 7023 NW and 10^4 -10^5 cm^-3 in the PDR NGC 7023 E and a subsequent decrease inside the cloud. Close to the PDR edges, the dust temperature (30 K and 20 K for the NW and E PDRs, respectively) is lower than the gas temperature derived from CO lines (65-130 K and 45-55 K, respectively). Further inside the cloud, the dust and gas temperatures are similar. The derived thermal pressure is about 10 times higher in NGC 7023NWthan in NGC 7023 E. Comparing the physical conditions to the positions of known young stellar object candidates in NGC 7023 NW, we find that protostars seem to be spatially correlated with the dense structures. Conclusions. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs.
- ItemSpatial variation of the cooling lines in the Orion Bar from Hersehel/PACS(EDP Sciences, 2012) Bernard-Salas, J.; Habart, E.; Arab, H.; Abergel, A.; Dartois, E.; Martin, P.; Bontemps, S.; Joblin, C.; White, G. J.; Bernard, J.-P.; Naylor, David A.Context. The energetics in photo-dissociation regions (PDRs) are mainly regulated by the balance between the heating from the photo-electric effect acting on dust grains, and the cooling via the copious emission of photons in far-infrared lines. The Orion Bar is a luminous and nearby PDR, which presents to the observer an ideal edge-on orientation in which to study this energy balance. Spatially resolved studies of such a nearby system are essential as they enable us to characterise the physical processes that control the energetics of the regions and can serve as templates for distant systems where these processes cannot be disentangled. Aims. We characterise the emission of the far-infrared fine-structure lines of [Cii](158 μm),[Oi](63and145 μm),and[Nii](122 μm) that trace the gas local conditions, via spatially resolved observations of the Orion Bar. The observed distribution and variation of the lines are discussed in relation to the underlying geometry and linked to the energetics associated with the Trapezium stars. Methods. Herschel/PACS observations are used to map the spatial distribution of these fine-structure lines across the Bar, with a spatial resolution between 4 and 11 and covering a total square area of about 120 ×105 . The spatial profile of the emission lines are modelled using the radiative transfer code Cloudy. Results. TheHerschel observations reveal in unprecedented detail the morphology of the Bar.The spatial distribution of the [Cii] line coincides with that of the [Oi] lines. The [Nii] line peaks closer to the ionising star than the other three lines, but with a small region of overlap. We can distinguish several knots of enhanced emission within the Bar indicating the presence of an in homogenous and structured medium. The emission profiles cannot be reproduced by a single PDR, clearly indicating that, besides the Bar, there is a significant contribution from additional PDR(s)over the area studied. The combination of both the [Nii] and [Oi] 145 μm lines can be used to estimate the [Cii] emission and distinguish between it sionised or neutral origin. We have calculated how much[Cii] emission comes from the neutral and ionised region, and find that at least ∼82% originates from the photo-dissocciation region. Together, the [Cii] 158 μm and [Oi] 63 and 145 μm lines account for∼90% of the power emitted by the main cooling lines in the Bar (including CO, H2, etc.), with [Oi] 63μm alone accounting for 72% of the total.