Average liar count for degree-2 Frobenius pseudoprimes

dc.contributor.authorFiori, Andrew
dc.contributor.authorShallue, Andrew
dc.date.accessioned2021-07-06T16:11:22Z
dc.date.available2021-07-06T16:11:22Z
dc.date.issued2020
dc.descriptionAccepted author manuscripten_US
dc.description.abstractIn this paper we obtain lower and upper bounds on the average number of liars for the Quadratic Frobenius Pseudoprime Test of Grantham [Math. Comp. 70 (2001), pp. 873–891], generalizing arguments of Erdős and Pomerance [Math. Comp. 46 (1986), pp. 259–279] and Monier [Theoret. Comput. Sci. 12 (1980), 97–108]. These bounds are provided for both Jacobi symbol cases, providing evidence for the existence of several challenge pseudoprimes.en_US
dc.description.peer-reviewYesen_US
dc.identifier.citationFiori, A., & Shallue, A. (2020). Average liar count for degree-2 Frobenius pseudoprimes. Mathematics of Computation, 89(321), 493-514. https://doi.org/10.1090/mcom/3452en_US
dc.identifier.urihttps://hdl.handle.net/10133/5942
dc.language.isoen_USen_US
dc.publisherAmerican Mathematical Societyen_US
dc.publisher.departmentDepartment of Mathematics and Computer Scienceen_US
dc.publisher.facultyArts and Scienceen_US
dc.publisher.institutionUniversity of Lethbridgeen_US
dc.publisher.institutionIllinois Wesleyan Universityen_US
dc.publisher.urlhttps://doi.org/10.1090/mcom/3452en_US
dc.subjectPrimality testingen_US
dc.subjectPseudoprimeen_US
dc.subjectFrobenius pseudoprimeen_US
dc.subjectLucas pseudoprimeen_US
dc.titleAverage liar count for degree-2 Frobenius pseudoprimesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Fiori-average-liar.pdf
Size:
38.12 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Fiori-average-liarVR.pdf
Size:
6.38 MB
Format:
Adobe Portable Document Format
Description:
REQUEST a copy of the final published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections