Average liar count for degree-2 Frobenius pseudoprimes
dc.contributor.author | Fiori, Andrew | |
dc.contributor.author | Shallue, Andrew | |
dc.date.accessioned | 2021-07-06T16:11:22Z | |
dc.date.available | 2021-07-06T16:11:22Z | |
dc.date.issued | 2020 | |
dc.description | Accepted author manuscript | en_US |
dc.description.abstract | In this paper we obtain lower and upper bounds on the average number of liars for the Quadratic Frobenius Pseudoprime Test of Grantham [Math. Comp. 70 (2001), pp. 873–891], generalizing arguments of Erdős and Pomerance [Math. Comp. 46 (1986), pp. 259–279] and Monier [Theoret. Comput. Sci. 12 (1980), 97–108]. These bounds are provided for both Jacobi symbol cases, providing evidence for the existence of several challenge pseudoprimes. | en_US |
dc.description.peer-review | Yes | en_US |
dc.identifier.citation | Fiori, A., & Shallue, A. (2020). Average liar count for degree-2 Frobenius pseudoprimes. Mathematics of Computation, 89(321), 493-514. https://doi.org/10.1090/mcom/3452 | en_US |
dc.identifier.uri | https://hdl.handle.net/10133/5942 | |
dc.language.iso | en_US | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.publisher.department | Department of Mathematics and Computer Science | en_US |
dc.publisher.faculty | Arts and Science | en_US |
dc.publisher.institution | University of Lethbridge | en_US |
dc.publisher.institution | Illinois Wesleyan University | en_US |
dc.publisher.url | https://doi.org/10.1090/mcom/3452 | en_US |
dc.subject | Primality testing | en_US |
dc.subject | Pseudoprime | en_US |
dc.subject | Frobenius pseudoprime | en_US |
dc.subject | Lucas pseudoprime | en_US |
dc.title | Average liar count for degree-2 Frobenius pseudoprimes | en_US |
dc.type | Article | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: