Toida's conjecture is true

dc.contributor.authorDobson, Edward
dc.contributor.authorMorris, Joy
dc.date.accessioned2018-07-06T20:08:39Z
dc.date.available2018-07-06T20:08:39Z
dc.date.issued2002
dc.descriptionSherpa Romeo green journal: open accessen_US
dc.description.abstractLet S be a subset of the units in Zn. Let Γ be a circulant graph of order n (a Cayley graph of Zn) such that if ij ∈ E(Γ), then i − j (mod n) ∈ S. Toida conjectured that if Γ0 is another circulant graph of order n, then Γ and Γ 0 are isomorphic if and only if they are isomorphic by a group automorphism of Zn. In this paper, we prove that Toida’s conjecture is true. We further prove that Toida’s conjecture implies Zibin’s conjecture, a generalization of Toida’s conjecture.en_US
dc.description.peer-reviewYesen_US
dc.identifier.citationDobson, E., & Morris, J. (2002). Toida's conjecture is true. Electronic Journal of Combinatorics, 9(1), R35en_US
dc.identifier.urihttps://hdl.handle.net/10133/5156
dc.language.isoen_USen_US
dc.publisherElectronic Journal of Combinatoricsen_US
dc.publisher.departmentDepartment of Mathematics and Computer Scienceen_US
dc.publisher.facultyArts and Scienceen_US
dc.publisher.institutionMississippi State Universityen_US
dc.publisher.institutionUniversity of Lethbridgeen_US
dc.subjectGraphen_US
dc.subjectIsomorphicen_US
dc.subjectAutomorphismen_US
dc.subjectToida's conjectureen_US
dc.subjectZibin's conjectureen_US
dc.subjectCaleyen_US
dc.subjectDigraphsen_US
dc.subject.lcshIsomorphisms (Mathematics)
dc.subject.lcshGraph theory
dc.subject.lcshGroup theory
dc.subject.lcshAutomorphisms
dc.subject.lcshCombinatorial analysis
dc.subject.lcshCaley graphs
dc.titleToida's conjecture is trueen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morris Toida's conjecture is true.pdf
Size:
153.54 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections