Query-Focused Abstractive Summarization using Neural Networks

Loading...
Thumbnail Image
Date
2019
Authors
Aryal, Chudamani
University of Lethbridge. Faculty of Arts and Science
Journal Title
Journal ISSN
Volume Title
Publisher
Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science
Abstract
Query-focused abstractive document summarization (QFADS) is a process of shortening a document into a summary while keeping the context of query in mind. We implemented a model consisting of a novel selective mechanism for QFADS. A selective mechanism was used for improving the representation of a long input (passage) sequence. We conducted experiments on the Debatepedia dataset, a recently developed dataset for query-focused abstractive summarization task, which showed that our model outperforms the state-of-the-art model in all ROUGE scores. Also, we proposed three models all of which consist of a coarse-to-fine approach and a novel selective mechanism for query-focused abstractive multi document summarization (QFAMDS). The coarse-to-fine approach was used to reduce the length of the passage input from multiple documents. We conducted experiments on the MS MARCO dataset, a recently developed large scale dataset by Microsoft for reading comprehension, and have reported our scores using various evaluation metrics.
Description
Keywords
Neural networks , Query-focused abstractive document summarization , Query-focused abstractive multi document summarization
Citation