Metz, Gerlinde

Permanent URI for this collection


Recent Submissions

Now showing 1 - 5 of 14
  • Item
    The syntactic organization of pasta-eating and the structure of reach movements in the head-fixed mouse
    (Nature Research, 2017) Whishaw, Ian Q.; Faraji, Jamshid; Kuntz, Jessica R.; Agha, Behroo M.; Metz, Gerlinde A. S.; Mohajerani, Majid H.
    Mice are adept in the use of their hands for activities such as feeding, which has led to their use in investigations of the neural basis of skilled-movements. We describe the syntactic organization of pasta-eating and the structure of hand movements used for pasta manipulation by the head-fixed mouse. An ethogram of mice consuming pieces of spaghetti reveals that they eat in bite/chew bouts. A bout begins with pasta lifted to the mouth and then manipulated with hand movements into a preferred orientation for biting. Manipulation involves many hand release-reach movements, each with a similar structure. A hand is advanced from a digit closed and flexed (collect) position to a digit extended and open position (overgrasp) and then to a digit closed and flexed (grasp) position. Reach distance, hand shaping, and grasp patterns featuring precision grasps or whole hand grasps are related. To bite, mice display hand preference and asymmetric grasps; one hand (guide grasp) directs food into the mouth and the other stabilizes the pasta for biting. When chewing after biting, the hands hold the pasta in a symmetric resting position. Pasta-eating is organized and features structured hand movements and so lends itself to the neural investigation of skilled-movements.
  • Item
    Evidence for ancestral programming of resilience in a two-hit stress model
    (Frontiers Media, 2017) Faraji, Jamshid; Soltanpour, Nabiollah; Ambeskovic, Mirela; Zucchi, Fabiola C. R.; Beaumier, Pierre; Kovalchuk, Igor; Metz, Gerlinde A. S.
    In a continuously stressful environment, the effects of recurrent prenatal stress (PS) may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS) were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA) axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2. Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK) pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second “hit” by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress.
  • Item
    Transgenerational programming of maternal behaviour by prenatal stress
    (BioMed Central, 2013) Ward, Isaac D.; Zucchi, Fabiola C.R.; Robbins, Jerrah C.; Falkenberg, Erin A.; Olson, David M.; Benzies, Karen; Metz, Gerlinde A. S.
    Peripartum events hold the potential to have dramatic effects in the programming of physiology and behaviour of offspring and possibly subsequent generations. Here we have characterized transgenerational changes in rat maternal behaviour as a function of gestational and prenatal stress. Pregnant dams of the parental generation were exposed to stress from days 12-18 (F0-S). Their daughters and grand-daughters were either stressed (F1-SS, F2-SSS) or non-stressed (F1-SN, F2-SNN). Maternal antepartum behaviours were analyzed at a time when pregnant dams usually show a high frequency of tail chasing behaviours. F1-SS, F2-SNN and F2-SSS groups showed a significant reduction in tail chasing behaviours when compared with controls. The effects of multigenerational stress (SSS) slightly exceeded those of transgenerational stress (SNN) and resulted in absence of tail chasing behaviour. These findings suggest that antepartum maternal behaviour in rats is programmed by transgenerational inheritance of stress responses. Thus, altered antepartum maternal behaviour may serve as an indicator of an activated stress response during gestation.
  • Item
    Maternal circulating leukocytes display early chemotactic responsiveness during late gestation
    (Biomed Central Ltd, 2013) Gomez-Lopez, Nardhy; Tanaka, Satomi; Zaeem, Zoya; Metz, Gerlinde A. S.; Olson, David M.
    Background: Parturition has been widely described as an immunological response; however, it is unknown how this is triggered. We hypothesized that an early event in parturition is an increased responsiveness of peripheral leukocytes to chemotactic stimuli expressed by reproductive tissues, and this precedes expression of tissue chemotactic activity, uterine activation and the systemic progesterone/estradiol shift. Methods: Tissues and blood were collected from pregnant Long-Evans rats on gestational days (GD) 17, 20 and 22 (term gestation). We employed a validated Boyden chamber assay, flow cytometry, quantitative real timepolymerase chain reaction, and enzyme-linked immunosorbent assays. Results: We found that GD20 maternal peripheral leukocytes migrated more than those from GD17 when these were tested with GD22 uterus and cervix extracts. Leukocytes on GD20 also displayed a significant increase in chemokine (C-C motif) ligand 2 (Ccl2) gene expression and this correlated with an increase in peripheral granulocyte proportions and a decrease in B cell and monocyte proportions. Tissue chemotactic activity and specific chemokines (CCL2, chemokine (C-X-C motif) ligand 1/CXCL1, and CXCL10) were mostly unchanged from GD17 to GD20 and increased only on GD22. CXCL10 peaked on GD20 in cervical tissues. As expected, prostaglandin F2a receptor and oxytocin receptor gene expression increased dramatically between GD20 and 22. Progesterone concentrations fell and estradiol-17b concentrations increased in peripheral serum, cervical and uterine tissue extracts between GD20 and 22. Conclusion: Maternal circulating leukocytes display early chemotactic responsiveness, which leads to their infiltration into the uterus where they may participate in the process of parturition.
  • Item
    Identification of bilateral changes in T1D1 expression in the 6-OHDA rat model of Parkinson's disease
    (Public Library of Science, 2011) Proft, Juliane; Faraji, Jamshid; Robbins, Jerrah C.; Zucchi, Fabiola C. R.; Zhao, Xiaoxi; Metz, Gerlinde A. S.; Braun, Janice E. A.
    Parkinson’s disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of a-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes. We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6- OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels. Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPa, Hsp40, Hsp70, Hsc70 and PrPC levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.