Bogard, Matthew
Permanent URI for this collection
Browse
Recent Submissions
- ItemSalinity causes widespread restriction of methane emissions from small inland waters(Springer Nature, 2024) Soued, Cynthia; Bogard, Matthew J.; Finlay, Kerri; Bortolotti, Lauren E.; Leavitt, Peter R.; Badiou, Pascal; Knox, Sara H.; Jensen, Sydney; Mueller, Peka; Lee, Sung Ching; Ng, Darian; Wissel, Björn; Chan, Chun Ngai; Page, Bryan; Kowal, PaigeInland waters are one of the largest natural sources of methane (CH4), a potent greenhouse gas, but emissions models and estimates were developed for solute-poor ecosystems and may not apply to salt-rich inland waters. Here we combine field surveys and eddy covariance measurements to show that salinity constrains microbial CH4 cycling through complex mechanisms, restricting aquatic emissions from one of the largest global hardwater regions (the Canadian Prairies). Existing models overestimated CH4 emissions from ponds and wetlands by up to several orders of magnitude, with discrepancies linked to salinity. While not significant for rivers and larger lakes, salinity interacted with organic matter availability to shape CH4 patterns in small lentic habitats. We estimate that excluding salinity leads to overestimation of emissions from small Canadian Prairie waterbodies by at least 81% ( ~ 1 Tg yr−1 CO2 equivalent), a quantity comparable to other major national emissions sources. Our findings are consistent with patterns in other hardwater landscapes, likely leading to an overestimation of global lentic CH4 emissions. Widespread salinization of inland waters may impact CH4 cycling and should be considered in future projections of aquatic emissions.
- ItemComposition and bioreactivity of dissolved organic matter leachates from end members in a mountain to prairie transitional river valley(AGU, 2024) Zhou, Xingzi; Logozzo, Laura A.; Johnston, Sarah Ellen; Zink, Lauren; Amerila, Armi-Lee; Bogard, Matthew J.River organic matter transformations impact the cycling of energy, carbon, and nutrients. The delivery of distinct dissolved organic matter (DOM) sources can alter aquatic DOM cycling and associated biogeochemical processes. Yet DOM source and reactivity are not well-defined for many river systems, including in western Canada. Here, we explore DOM cycling in the mainstem of the Oldman River (stream order 6–7), a heavily regulated river network in southern Alberta (Canada). We compared seasonal river DOM content, composition, and bioavailability with nine endmember leachates from the river valley using optical properties and incubations to estimate biodegradable dissolved organic carbon (BDOC). River DOM composition was most similar to terrestrial soil leachates, followed by autochthonous DOM leachates. River DOM bioavailability was low (BDOC = 0%–16.6%, mean of 7.1%). Endmember leachate bioavailability increased from soils (BDOC = 23.9%–53.7%), to autochthonous sources (fish excretion, macrophytes, biofilm; BDOC = 49.9%–80.0%), to terrestrial vegetation (leaves, shrubs, grass; BDOC > 80%), scaling positively with protein-like DOM content and amount of leachable dissolved organic carbon (DOC), and negatively with aromaticity. Seasonally, DOC concentrations changed little despite >15-fold increases in discharge during spring. River DOM composition shifted modestly toward soil-like endmembers in spring and more bioavailable autochthonous end members in autumn and winter. Low DOM bioavailability in the river mainstem and low DOC yields shown in previous work point to limited internal processing of DOM and limited bioavailable DOM delivery to downstream habitats, possibly due to upstream flow regulation. Our observations provide important insights into the functioning of western Canadian aquatic networks.