Flanagan, Larry
Permanent URI for this collection
Browse
Browsing Flanagan, Larry by Title
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemCharacterizing the performance of ecosystem models across time scales: a spectral analysis of the North American Carbon Program site-level synthesis(American Geophysical Union, 2011) Dietze, Michael C.; Vargas, Rodrigo; Richardson, Andrew D.; Stoy, Paul C.; Barr, Alan G.; Anderson, Ryan S.; Arain, M. Altaf; Baker, Ian T.; Black, T. Andrew; Chen, Jing M.; Philippe, Ciais; Flanagan, Larry B.; Gough, Christopher M.; Grant, Robert F.; Hollinger, David Y.; Izaurralde, R. Cesar; Kucharik, Christopher J.; Lafleur, Peter M.; Liu, Shugang; Lokupitiya, Erandathie; Luo, Yiqi; Munger, J. William; Peng, Changhui; Poulter, Benjamin; Price, David T.; Ricciuto, Daniel M.; Riley, William J.; Sahoo, Alok Kumar; Schaefer, Kevin; Suyker, Andrew E.; Tian, Hanqin; Tonitto, Christina; Verbeeck, Hans; Verma, Shashi B.; Wang, Weifeng; Weng, EnshengEcosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the identification of the dominant time scales contributing to model performance in the frequency domain. In this study we used wavelet analyses to synthesize the performance of 21 ecosystem models at 9 eddy covariance towers as part of the North American Carbon Program’s site-level intercomparison. This study expands upon previous single-site and single-model analyses to determine what patterns of model error are consistent across a diverse range of models and sites. To assess the significance of model error at different time scales, a novel Monte Carlo approach was developed to incorporate flux observation error. Failing to account for observation error leads to a misidentification of the time scales that dominate model error. These analyses show that model error (1) is largest at the annual and 20–120 day scales, (2) has a clear peak at the diurnal scale, and (3) shows large variability among models in the 2–20 day scales. Errors at the annual scale were consistent across time, diurnal errors were predominantly during the growing season, and intermediate-scale errors were largely event driven. Breaking spectra into discrete temporal bands revealed a significant model-by-band effect but also a non significant model-by-site effect, which together suggest that individual models show consistency in their error patterns. Differences among models were related to model time step, soil hydrology, and the representation of photosynthesis and phenology but not the soil carbon or nitrogen cycles. These factors had the greatest impact on diurnal errors, were less important at annual scales, and had the least impact at intermediate time scales.
- ItemContrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada(American Geophysical Union, 2011) Adkinson, Angela C.; Syed, Kamran H.; Flanagan, Larry B.The large belowground carbon stocks in northern peatland ecosystems are potentially susceptible to release because of the expected differential responses of photosynthesis and respiration to climate change. This study compared net ecosystem CO2 exchange (NEE) measured using the eddy covariance technique at two peatland sites in northern Alberta, Canada, over three growing seasons (May–October). We observed distinct differences between the poor fen (Sphagnum moss dominated) and extreme‐rich fen (Carex sedge dominated) sites for their responses of NEE to interannual variation in temperature and water table depth. The rates of growing season cumulative NEE at the poor fen were very similar among the three study years with an average (± standard deviation) of −110.1 ± 0.5 g C m−2 period−1. By contrast, the growing season cumulative NEE at the extreme‐rich fen varied substantially among years (−34.5, −153.5, and −41.8 g C m−2 period−1 in 2004, 2005, and 2006, respectively), and net uptake of CO2 was lower (on average) than at the poor fen. Consistent with the eddy covariance measurements, analysis of 210Pb‐dated peat cores also showed higher recent net rates of carbon accumulation in the poor fen than in the rich fen. Warm spring temperatures and sufficient water availability during the growing season resulted in the highest‐magnitude ecosystem photosynthesis and NEE at the extreme‐rich fen in 2005. Cool spring temperatures limited photosynthesis at the extreme‐rich fen in 2004, while reduced water availability (lower water table) in 2006 constrained photosynthetic capacity relative to 2005, despite the warmer spring and summer temperatures in 2006. The combination of contrasting plant functional types and different peat water table features at our two study sites meant that the poor fen showed a reduced response of ecosystem CO2 exchange to environmental variation compared to the extreme‐rich fen.
- ItemCoupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange(European Geosciences Union, 2017) Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Larry B.Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of ∼ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled seasonal and interannual variations in net ecosystem productivity (NEP). These modeled trends were corroborated well by eddy covariance measured hourly net CO2 fluxes (modeled vs. measured: R2 ∼ 0.8, slopes ∼ 1 ± 0.1, intercepts ∼ 0.05 µmol m−2 s−1), hourly measured automated chamber net CO2 fluxes (modeled vs. measured: R2 ∼ 0.7, slopes ∼ 1 ± 0.1, intercepts ∼ 0.4 µmol m−2 s−1), and other biometric and laboratory measurements. Modeled drainage as an analog for WTD drawdown induced by climate-change-driven drying showed that this boreal peatland would switch from a large carbon sink (NEP ∼ 160 g C m−2 yr−1) to carbon neutrality (NEP ∼ 10 g C m−2 yr−1) should the water table deepen by a further ∼ 0.5 m. This decline in projected NEP indicated that a further WTD drawdown at this fen would eventually lead to a decline in GPP due to water limitation. Therefore, representing the effects of interactions among hydrology, biogeochemistry and plant physiological ecology on ecosystem carbon, water, and nutrient cycling in global carbon models would improve our predictive capacity for changes in boreal peatland carbon sequestration under changing climates.
- ItemImpact of hydrological variations on modeling of peatland CO2 fluxes: results from the North American Carbon Program site synthesis(American Geophysical Union, 2012) Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.; Ricciuto, Daniel M.; Barr, Alan G.; Richardson, Andrew D.; Flanagan, Larry B.; Lafleur, Peter M.; Tian, Hanqin; Chen, Guangsheng; Grant, Robert F.; Poulter, Benjamin; Verbeeck, Hans; Ciais, Philippe; Ringeval, Bruno; Baker, Ian T.; Schaefer, Kevin; Luo, Yiqi; Wong, EnshengNorthern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2 fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor, sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated – observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.
- ItemA model-data intercomparison of CO2 exchange across North America: results from the North American Carbon Program site synthesis(American Geophysical Union, 2010) Schwalm, Christopher R.; Williams, Christopher A.; Schaefer, Kevin; Anderson, Ryan S.; Arain, M. Altaf; Baker, Ian T.; Barr, Alan G.; Black, T. Andrew; Chen, Guangsheng; Chen, Jing M.; Ciais, Philippe; Davis, Kenneth J.; Desai, Ankur R.; Dietze, Michael C.; Dragoni, Danilo; Fischer, Marc L.; Flanagan, Larry B.; Grant, Robert F.; Gu, Lianhong; Hollinger, David Y.; Izaurralde, R. Cesar; Kucharik, Christopher J.; Lafleur, Peter M.; Law, Beverly E.; Li, Longhui; Li, Zhengpeng; Liu, Shuguang; Lokupitiya, Erandathie; Luo, Yiqi; Ma, Siyan; Margolis, Hank; Matamala, Roser; McCaughey, Harry; Monson, Russell K.; Oechel, Walter C.; Peng, Changhui; Poulter, Benjamin; Price, David T.; Ricciuto, Daniel M.; Riley, William J.; Sahoo, Alok Kumar; Sprintsin, Michael; Sun, Jianfeng; Tian, Hanqin; Tonitto, Christina; Verbeeck, Hans; Verma, Shashi B.Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO2 exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO2 exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans ∼220 site‐years, 10 biomes, and includes two large‐scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models’ ability to simulate the seasonal cycle of CO2 exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was ∼10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model‐data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.
- ItemModeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland(American Geophysical Union, 2016) Mezbahuddin, M.; Grant, Robert F.; Flanagan, Larry B.Improved predictive capacity of hydrology and surface energy exchange is critical for conserving boreal peatland carbon sequestration under drier and warmer climates. We represented basic processes for water and O2 transport and their effects on ecosystem water, energy, carbon, and nutrient cycling in a process-based model ecosys to simulate effects of seasonal and interannual variations in hydrology on peat water content, water table depth (WTD), and surface energy exchange of a Western Canadian fen peatland. Substituting a van Genuchten model (VGM) for a modified Campbell model (MCM) in ecosys enabled a significantly better simulation of peat moisture retention as indicated by higher modeled versus measured R2 and Willmot’s index (d) with VGM (R2~0.7, d~0.8) than with MCM (R2~0.25, d~0.35) for daily peat water contents from a wetter year 2004 to a drier year 2009. With the improved peat moisture simulation, ecosys modeled hourly WTD and energy fluxes reasonably well (modeled versus measured R2: WTD ~0.6, net radiation ~0.99, sensible heat >0.8, and latent heat >0.85). Gradually declining ratios of precipitation to evapotranspiration and of lateral recharge to discharge enabled simulation of a gradual drawdown of growing season WTD and a consequent peat drying from 2004 to 2009. When WTD fell below a threshold of ~0.35m below the hollow surface, intense drying of mosses in ecosys caused a simulated reduction in evapotranspiration and an increase in Bowen ratio during late growing season that were consistent with measurements. Hence, using appropriate water desorption curve coupled with vertical-lateral hydraulic schemes is vital to accurately simulate peatland hydrology and energy balance.
- ItemModeling stomatal and nonstomatal effects of water deficits on CO2 fixation in a semiarid grassland(American Geophysical Union, 2007) Grant, Robert F.; Flanagan, Larry B.The confidence with which we can model water deficit effects on grassland productivity is limited by uncertainty about the mechanisms, stomatal and nonstomatal, by which soil water deficits reduce CO2 uptake. We propose that these reductions can accurately be modeled from a combination of stomatal effects on gaseous CO2 diffusion and nonstomatal effects on biochemical CO2 fixation. These effects can be combined through a solution for the intercellular CO2 concentration (Ci) at which rates of diffusion and fixation are equal for each leaf surface in the canopy. In this model, both stomatal and nonstomatal effects are driven by a common indicator of plant water status calculated in a hydraulically-driven scheme of soil-plant-atmosphere water transfer. As part of the ecosystem model ecosys, this combined model simulated concurrent declines in latent heat effluxes and CO2 influxes measured by eddy covariance during soil drying in a drought-affected semiarid grassland. At the same time, the model simulated the declines in Ci at which CO2 fixation occurred during soil drying as calculated from seasonal measurements of phytomass d13C. Alternative model formulations based on stomatal or nonstomatal effects alone simulated these declines in CO2 influxes and in Ci less accurately than did the formulation in which these effects were combined. We conclude that modeling water deficit effects on CO2 fixation requires the concurrent simulation of stomatal and nonstomatal effects. As part of a larger ecosystem model, this combined model can be used to assess climate effects on grassland productivity.
- ItemOn the use of MODIS EVI to assess gross primary productivity of North American ecosystems(American Geophysical Union, 2006) Sims, Daniel A.; Rahman, Abdullah F.; Cordova, Vicente D.; El-Masri, Bassil Z.; Baldocchi, Dennis D.; Flanagan, Larry B.; Goldstein, Allen H.; Hollinger, David Y.; Misson, Laurent; Monson, Russell K.; Oechel, Walter C.; Schmid, Hans P.; Wofsy, Steven C.; Xu, LiukangCarbon flux models based on light use efficiency (LUE), such as the MOD17 algorithm, have proved difficult to parameterize because of uncertainties in the LUE term, which is usually estimated from meteorological variables available only at large spatial scales. In search of simpler models based entirely on remote-sensing data, we examined direct relationships between the enhanced vegetation index (EVI) and gross primary productivity (GPP) measured at nine eddy covariance flux tower sites across North America. When data from the winter period of inactive photosynthesis were excluded, the overall relationship between EVI and tower GPP was better than that between MOD17 GPP and tower GPP. However, the EVI/GPP relationships vary between sites. Correlations between EVI and GPP were generally greater for deciduous than for evergreen sites. However, this correlation declined substantially only for sites with the smallest seasonal variation in EVI, suggesting that this relationship can be used for all but the most evergreen sites. Within sites dominated by either evergreen or deciduous species, seasonal variation in EVI was best explained by the severity of summer drought. Our results demonstrate that EVI alone can provide estimates of GPP that are as good as, if not better than, current versions of the MOD17 algorithm for many sites during the active period of photosynthesis. Preliminary data suggest that inclusion of other remote-sensing products in addition to EVI, such as the MODIS land surface temperature (LST), may result in more robust models of carbon balance based entirely on remote-sensing data
- ItemPhenology and its role in carbon dioxide exchange processes in northern peatlands(American Geophysical Union, 2014) Kross, Angela S.E.; Roulet, Nigel T.; Moore, Tim R.; Lafleur, Peter M.; Humphreys, Elyn R.; Seaquist, Jonathan W.; Flanagan, Larry B.; Aurela, MikeEcosystem phenology plays an important role in carbon exchange processes and can be derived from continuous records of carbon dioxide (CO2) exchange data. In this study we examined the potential use of phenological indices for characterizing cumulative annual CO2 exchange in four contrasting northern peatland ecosystems. We used the approach of Jonsson and Eklundh (2004) to derive a set of phenological indices based on the daily time series of gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) measured in the four peatland sites. The main objectives of this study were (a) to examine the variation in phenological indices across sites and (b) to determine the relationships among phenological indices, environmental conditions, and cumulative annual CO2 exchange. The phenological index used to define the “start of the growing season” showed good potential for differentiation among sites based on their average annual site GPP. Sites with earlier growing seasons had the highest average annual site GPP. The “peak CO2 exchange rate” phenological index performed best in reflecting variations among sites and for estimating annual values of GPP, Re, and NEP (Pearson correlation coefficients ranged between 0.77 and 0.99, p<0.05forall.). The phenological indices and annual GPP, Re, and NEP were sensitive to winter (January–March) and summer (July–September) temperature and precipitation, but correlations, though significant, were weak.
- ItemThe sensitivity of carbon exchanges in Great Plains grasslands to precipitation variability(American Geophysical Union, 2016) Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.; Flanagan, Larry B.; Hanan, N. P.; Litvak, M. E.; Suker, A. E.In the Great Plains, grassland carbon dynamics differ across broad gradients of precipitation and temperature, yet finer-scale variation in these variables may also affect grassland processes. Despite the importance of grasslands, there is little information on how fine-scale relationships compare between them regionally. We compared grassland C exchanges, energy partitioning and precipitation variability in eight sites in the eastern and western Great Plains using eddy covariance and meteorological data. During our study, both eastern and western grasslands varied between an average net carbon sink and a net source.Eastern grasslands had a moderate vapor pressure deficit (VPD=0.95kPa) and high growing season gross primary productivity (GPP=1010±218 g C m−2 yr−1). Western grasslands had a growing season with higher VPD (1.43 kPa) and lower GPP (360±127 g C m−2 yr−1). Western grasslands were sensitive to precipitation at daily timescales, whereas eastern grasslands were sensitive at monthly and seasonal timescales. Our results support the expectation that C exchanges in these grasslands differ as a result of varying precipitation regimes. Because eastern grasslands are less influenced by short-term variability in rainfall than western grasslands, the effects of precipitation change are likely to be more predictable in eastern grasslands because the timescales of variability that must be resolved are relatively longer. We postulate increasing regional heterogeneity in grassland C exchanges in the Great Plains in coming decades.
- ItemSummer carbon dioxide and water vapor fluxes across a range of northern peatlands(American Geophysical Union, 2006) Humphreys, Elyn R.; Lafleur, Peter M.; Flanagan, Larry B.; Hedstrom, Newell; Syed, Kamran H.; Glenn, Aaron J.; Granger, RaoulNorthern peatlands are a diverse group of ecosystems varying along a continuum of hydrological, chemical, and vegetation gradients. These ecosystems contain about one third of the global soil carbon pool, but it is uncertain how carbon and water cycling processes and response to climate change differ among peatland types. This study examines midsummer CO2 and H2O fluxes measured using the eddy covariance technique above seven northern peatlands including a low-shrub bog, two open poor fens, two wooded moderately rich fens, and two open extreme-rich fens. Gross ecosystem production and ecosystem respiration correlated positively with vegetation indices and with each other. Consequently, 24-hour net ecosystem CO2 exchange was similar among most of the sites (an average net carbon sink of 1.5 ± 0.2 g C m 2 d 1) despite large differences in water table depth, water chemistry, and plant communities. Evapotranspiration was primarily radiatively driven at all sites but a decline in surface conductance with increasing water vapor deficit indicated physiological restrictions to transpiration, particularly at the peatlands with woody vegetation and less at the peatlands with 100% Sphagnum cover. Despite these differences, midday evapotranspiration ranged only from 0.21 to 0.34 mm h 1 owing to compensation among the factors controlling evapotranspiration. Water use efficiency varied among sites primarily as a result of differences in productivity and plant functional type. Although peatland classification includes a great variety of ecosystem characteristics,peatland type may not be an effective way to predict the magnitude and characteristics of midsummer CO2 and water vapor exchanges.