Flanagan, Larry
Permanent URI for this collection
Browse
Browsing Flanagan, Larry by Subject "CO2 exchange"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemContrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada(American Geophysical Union, 2011) Adkinson, Angela C.; Syed, Kamran H.; Flanagan, Larry B.The large belowground carbon stocks in northern peatland ecosystems are potentially susceptible to release because of the expected differential responses of photosynthesis and respiration to climate change. This study compared net ecosystem CO2 exchange (NEE) measured using the eddy covariance technique at two peatland sites in northern Alberta, Canada, over three growing seasons (May–October). We observed distinct differences between the poor fen (Sphagnum moss dominated) and extreme‐rich fen (Carex sedge dominated) sites for their responses of NEE to interannual variation in temperature and water table depth. The rates of growing season cumulative NEE at the poor fen were very similar among the three study years with an average (± standard deviation) of −110.1 ± 0.5 g C m−2 period−1. By contrast, the growing season cumulative NEE at the extreme‐rich fen varied substantially among years (−34.5, −153.5, and −41.8 g C m−2 period−1 in 2004, 2005, and 2006, respectively), and net uptake of CO2 was lower (on average) than at the poor fen. Consistent with the eddy covariance measurements, analysis of 210Pb‐dated peat cores also showed higher recent net rates of carbon accumulation in the poor fen than in the rich fen. Warm spring temperatures and sufficient water availability during the growing season resulted in the highest‐magnitude ecosystem photosynthesis and NEE at the extreme‐rich fen in 2005. Cool spring temperatures limited photosynthesis at the extreme‐rich fen in 2004, while reduced water availability (lower water table) in 2006 constrained photosynthetic capacity relative to 2005, despite the warmer spring and summer temperatures in 2006. The combination of contrasting plant functional types and different peat water table features at our two study sites meant that the poor fen showed a reduced response of ecosystem CO2 exchange to environmental variation compared to the extreme‐rich fen.
- ItemCoupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange(European Geosciences Union, 2017) Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Larry B.Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of ∼ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled seasonal and interannual variations in net ecosystem productivity (NEP). These modeled trends were corroborated well by eddy covariance measured hourly net CO2 fluxes (modeled vs. measured: R2 ∼ 0.8, slopes ∼ 1 ± 0.1, intercepts ∼ 0.05 µmol m−2 s−1), hourly measured automated chamber net CO2 fluxes (modeled vs. measured: R2 ∼ 0.7, slopes ∼ 1 ± 0.1, intercepts ∼ 0.4 µmol m−2 s−1), and other biometric and laboratory measurements. Modeled drainage as an analog for WTD drawdown induced by climate-change-driven drying showed that this boreal peatland would switch from a large carbon sink (NEP ∼ 160 g C m−2 yr−1) to carbon neutrality (NEP ∼ 10 g C m−2 yr−1) should the water table deepen by a further ∼ 0.5 m. This decline in projected NEP indicated that a further WTD drawdown at this fen would eventually lead to a decline in GPP due to water limitation. Therefore, representing the effects of interactions among hydrology, biogeochemistry and plant physiological ecology on ecosystem carbon, water, and nutrient cycling in global carbon models would improve our predictive capacity for changes in boreal peatland carbon sequestration under changing climates.