# Morris, Joy

## Permanent URI for this collection

## Browse

### Browsing Morris, Joy by Subject "Combinatorial analysis"

Now showing 1 - 6 of 6

###### Results Per Page

###### Sort Options

- ItemAutomorphism groups of wreath product digraphs(Electronic Journal of Combinatorics, 2009) Dobson, Edward; Morris, JoyWe generalize a classical result of Sabidussi that was improved by Hemminger, to the case of directed color graphs. The original results give a necessary and suﬃcient condition on two graphs, C and D, for the automorphsim group of the wreath product of the graphs, Aut(C o D) to be the wreath product of the automorphism groups Aut(C) o Aut(D). Their characterization generalizes directly to the case of color graphs, but we show that there are additional exceptional cases in which either C or D is an inﬁnite directed graph. Also, we determine what Aut(C o D) is if Aut(C o D) 6= Aut(C) o Aut(D), and in particular, show that in this case there exist vertex-transitive graphs C0 and D0 such that C0 oD0 = C oD and Aut(C oD) = Aut(C0) o Aut(D0).
- ItemThe CI problem for infinite groups(Electronic Journal of Combinatorics, 2016) Morris, JoyA ﬁnite group G is a DCI-group if, whenever S and S0 are subsets of G with the Cayley graphs Cay(G,S) and Cay(G,S0) isomorphic, there exists an automorphism ϕ of G with ϕ(S) = S0. It is a CI-group if this condition holds under the restricted assumption that S = S−1. We extend these deﬁnitions to inﬁnite groups, and make two closely-related deﬁnitions: an inﬁnite group is a strongly (D)CIf-group if the same condition holds under the restricted assumption that S is ﬁnite; and an inﬁnite group is a (D)CIf-group if the same condition holds whenever S is both ﬁnite and generates G. We prove that an inﬁnite (D)CI-group must be a torsion group that is not locallyﬁnite. We ﬁnd inﬁnite families of groups that are (D)CIf-groups but not strongly (D)CIf-groups, and that are strongly (D)CIf-groups but not (D)CI-groups. We discuss which of these properties are inherited by subgroups. Finally, we completely characterise the locally-ﬁnite DCI-graphs on Zn. We suggest several open problems related to these ideas, including the question of whether or not any inﬁnite (D)CIgroup exists.
- ItemCyclic m-cycle systems of complete graphs minus a 1-factor(The University of Queensland, Centre for Discrete Mathematics and Computing, 2017) Jordan, Heather; Morris, JoyIn this paper, we provide necessary and suﬃcient conditions for the existence of a cyclic m-cycle system of Kn −I when m and n are even and m | n.
- ItemSemiregular automorphisms of cubic vertex-transitive graphs and the abelian normal quotient method(Electronic Journal of Combinatorics, 2015) Morris, Joy; Spiga, Pablo; Verret, GabrielWe characterise connected cubic graphs admitting a vertex-transitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph.
- ItemToida's conjecture is true(Electronic Journal of Combinatorics, 2002) Dobson, Edward; Morris, JoyLet S be a subset of the units in Zn. Let Γ be a circulant graph of order n (a Cayley graph of Zn) such that if ij ∈ E(Γ), then i − j (mod n) ∈ S. Toida conjectured that if Γ0 is another circulant graph of order n, then Γ and Γ 0 are isomorphic if and only if they are isomorphic by a group automorphism of Zn. In this paper, we prove that Toida’s conjecture is true. We further prove that Toida’s conjecture implies Zibin’s conjecture, a generalization of Toida’s conjecture.
- ItemVertex-transitive digraphs with extra automorphisms that preserve the natural arc-colouring(The University of Queensland, Centre for Discrete Mathematics and Computing, 2017) Dobson, Ted; Hujdurovic, Ademir; Kutnar, Klavdija; Morris, JoyIn a Cayley digraph on a group G, if a distinct colour is assigned to each arc-orbit under the left-regular action of G, it is not hard to show that the elements of the left-regular action of G are the only digraph automorphisms that preserve this colouring. In this paper, we show that the equivalent statement is not true in the most straightforward generalisation to G-vertex-transitive digraphs, even if we restrict the situation to avoid some obvious potential problems. Speciﬁcally, we display an inﬁnite family of 2-closed groups G, and a G-arc-transitive digraph on each (without any digons) for which there exists an automorphism of the digraph that is not an element of G (it is an automorphism of G). Since the digraph is G-arc-transitive, the arcs would all be assigned the same colour under the colouring by arc-orbits, so this digraph automorphism is colour-preserving.