Thakor, Nehalkumar
Permanent URI for this collection
Browse
Browsing Thakor, Nehalkumar by Subject "Eukaryotic initiation factor 5B (eIF5B)"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDepletion of eukaryotic initiation factor 5B (eIF5B) reprograms the cellular transcriptome and leads to activation of endoplasmic reticulum (ER) stress and c-Jun N-terminal Kinase (JNK).(Springer, 2021) Bressler, Kamiko R.; Ross, Joseph A.; Ilnytskyy, Slava; Vanden Dungen, Keiran; Taylor, Katrina; Patel, Kush; Zovoilis, Athanasios; Kovalchuk, Igor; Thakor, NehalDuring the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.
- ItemEukaryotic initiation factor 5B (eIF5B) regulates temozolomide-mediated apoptosis in brain tumor stem cells (BTSCs)(Canadian Science Publishing, 2019) Ross, Joseph A.; Ahn, Bo Young; King, Jennifer; Bressler, Kamiko R.; Senger, Donna L.; Thakor, NehalGlioblastoma multiforme (GBM) is among the deadliest cancers, owing in part to complex inter- and intra-tumor heterogeneity and the presence of a population of stem-like cells called brain tumor stem cells (BTSCs/BTICs). These cancer stem cells survive treatment and confer resistance to the current therapies—namely, radiation and the chemotherapeutic, temozolomide (TMZ). TMZ induces cell death by alkylating DNA, and BTSCs resist this mechanism via a robust DNA damage response. Hence, recent studies aimed to sensitize BTSCs to TMZ using combination therapy, such as inhibition of DNA repair machinery. We have previously demonstrated in established GBM cell lines that eukaryotic initiation factor 5B (eIF5B) promotes the translation of pro-survival and anti-apoptotic proteins. Consequently, silencing eIF5B sensitizes these cells to TRAIL-induced apoptosis. However, established cell lines do not always recapitulate the features of human glioma. Therefore, we investigated this mechanism in patient-derived BTSCs. We show that silencing eIF5B leads to increased TMZ sensitivity in two BTSC lines, BT25 and BT48. Depletion of eIF5B decreases levels of anti-apoptotic proteins in BT48 and sensitizes these cells to TMZ-induced activation of caspase-3, cleavage of PARP, and apoptosis. We suggest that eIF5B represents a rational target to sensitize GBM tumors to the current standard-of-care.