Chasmer, Laura
Permanent URI for this collection
Browse
Browsing Chasmer, Laura by Author "Devito, Kevin J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemForest stand complexity controls ecosystem-scale evapotranspiration dynamics: Implications for landscape flux simulations(Wiley, 2022) Leonard, Rhoswen; Moore, Paul; Krause, Stefan; Chasmer, Laura; Devito, Kevin J.; Petrone, Richard M.; Mendoza, Carl; Waddington, James M.; Kettridge, NicholasOpen-canopy forested systems are found across a range of terrestrial biomes. Forest structure and organization in open-canopy systems exhibit substantial controls on system process dynamics such as evapotranspiration (ET). The energy reaching sub-canopy forest layers is greater in open-canopy systems compared to closed canopy systems, with high spatiotemporal variability in the distribution of energy that both drives ET and controls sub canopy species composition and organization. Yet the impact of their structural complexity and organization on whole system ET dynamics is poorly understood. Using the BETA+ model and measured eddy covariance-based ET fluxes from a boreal treed peatland, we critically evaluate how stand compositional and organizational complexity influences ET dynamics. Model simulations iteratively increase complexity from a simple ‘big-leaf’ model to a model representing spatial complexity of all system layers, demonstrating the effect of each complex system component on stand ET dynamics. We show that including forest stand complexity and associated canopy and radiation variability increases ET model estimates by ~26%. In addition to changes in the ET estimates, the inclusion of this spatial complexity is shown to induce temporal variations in the simulated ET that improves model performance by reducing unexplained variance between modelled and measured ET by 10% and reducing hysteresis in model results. These results have clear implications for flux modelling of forest systems and for larger scale climate models where open canopy systems such as this dominate the landscape. Demonstrating that whilst big leaf simulation can approximate ET fluxes, the inclusion of forest-stand complexity and its influence on spatiotemporal radiation fluxes and ecohydrological processes are necessary to effectively represent ET dynamics within open canopies.
- ItemShortening fire return interval predisposes west-central Canadian boreal peatlands to more rapid vegetation growth and transition to forest cover(Wiley, 2024) Jones, Emily Ann; Chasmer, Laura; Devito, Kevin J.; Hopkinson, ChristopherClimate change in northern latitudes is increasing the vulnerability of peatlands and the riparian transition zones between peatlands and upland forests (referred to as ecotones) to greater frequency of wildland fires. We examined early post-fire vegetation regeneration following the 2011 Utikuma complex fire (central Alberta, Canada). This study examined 779 peatlands and adjacent ecotones, covering an area of ~182 km2. Based on the known regional fire history, peatlands that burned in 2011 were stratified into either long return interval (LRI) fire regimes of >80 years (i.e., no recorded prior fire history) or short fire return interval (SRI) of 55 years (i.e., within the boundary of a documented severe fire in 1956). Data from six multitemporal airborne lidar surveys were used to quantify trajectories of vegetation change for 8 years prior to and 8 years following the 2011 fire. To date, no studies have quantified the impacts of post-fire regeneration following short versus long return interval fires across this broad range of peatlands with variable environmental and post-fire successional trajectories. We found that SRI peatlands demonstrated more rapid vascular and shrub growth rates, especially in peatland centers, than LRI peatlands. Bogs and fens burned in 1956, and with little vascular vegetation (classified as “open peatlands”) prior to the 2011 fire, experienced the greatest changes. These peatlands tended to transition to vascular/shrub forms following the SRI fire, while open LRI peatlands were not significantly different from pre-fire conditions. The results of this study suggest the emergence of a positive feedback, where areas experiencing SRI fires in southern boreal peatlands are expected to transition to forested vegetation forms. Along fen edges and within bog centers, SRI fires are expected to reduce local peatland groundwater moisture-holding capacity and promote favorable conditions for increased fire frequency and severity in the future.