Chasmer, Laura
Permanent URI for this collection
Browse
Browsing Chasmer, Laura by Author "Bayley, Suzanne E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMulti-decadal floodplain classification and trend analysis in the Upper Columbia River valley, British Columbia(Copernicus Publications, 2024) Rodrigues, Italo Sampaio; Hopkinson, Christopher; Chasmer, Laura; MacDonald, Ryan J.; Bayley, Suzanne E.; Brisco, BrianFloodplain wetland ecosystems experience significant seasonal water fluctuation over the year, resulting in a dynamic hydroperiod, with a range of vegetation community responses. This paper assesses trends and changes in land cover and hydroclimatological variables, including air temperature, river discharge, and water level in the Upper Columbia River Wetlands (UCRW), British Columbia, Canada. A land cover classification time series from 1984 to 2022 was generated from the Landsat image archive using a random forest algorithm. Peak river flow timing, duration, and anomalies were examined to evaluate temporal coincidence with observed land cover trends. The land cover classifier used to segment changes in wetland area and open water performed well (kappa of 0.82). Over the last 4 decades, observed river discharge and air temperature have increased, precipitation has decreased, the timing of peak flow is earlier, and the flow duration has been reduced. The frequency of both high-discharge events and dry years have increased, indicating a shift towards more extreme floodplain flow behavior. These hydrometeorological changes are associated with a shift in the timing of snowmelt, from April to mid-May, and with seasonal changes in the vegetative communities over the 39-year period. Thus, woody shrubs (+6 % to +12 %) have expanded as they gradually replaced marsh and wet-meadow land covers with a reduction in open-water area. This suggests that increasing temperatures have already impacted the regional hydrology, wetland hydroperiod, and floodplain land cover in the Upper Columbia River valley. Overall, there is substantial variation in seasonal and annual land cover, reflecting the dynamic nature of floodplain wetlands, but the results show that the wetlands are drying out with increasing areas of woody/shrub habitat and loss of aquatic habitat. The results suggest that floodplain wetlands, particularly marsh and open-water habitats, are vulnerable to climatic and hydrological changes that could further reduce their areal extent in the future.
- ItemWarmer air temperatures predicted to result in wetland drying in the Upper Columbia River Valley, British Columbia, Canada(Elsevier, 2025) Rodrigues, Italo S.; Hopkinson, Christopher; Chasmer, Laura; MacDonald, Ryan J.; Bayley, Suzanne E.Climatic warming is likely to affect the Canadian Rockies, leading to changes in the land cover (LC) and hydrological cycles. This study estimates climate-induced changes in LC (open water, marsh, wet meadow, and woody/shrub) in the Upper Columbia River Wetlands (UCRW), British Columbia, Canada, from 1984 to 2040. An artificial Neural Network (ANN) approach was used with Landsat series archive data from 1984 to 2022 to project seasonal LC change from 2020s to 2040s. Concurrently, hydroclimatic-based models (using air temperature and precipitation to predict river discharge at the UCRW, 1984–2022) were developed (average Nash Sutcliffe: training 0.75 and validation of 0.70) to predict (1984–2040) river discharge forced by Representative Concentration Pathway (RCP) 4.5 and 8.5. The 1984–2022 regression between river discharge and UCRW open water area was forced by RCP scenario river discharge results, calculating open water area for both scenarios. ANN-predicted LC with a Kappa of 0.85 (average of all seasons) for 2020s reference and projected LC, and 0.82 for reference and projected LC change maps (2000s–2020s). From 2020s to 2040s, the ANN projected a reduction (−5 %) of open water areas during late summer (August to mid-September) in the UCRW, consistent with RCP 4.5 forecasts. The peak of the open water area in the UCRW is projected to shift from summer (late-May to July) to spring (April to mid-May) in both RCP scenarios. The projected changing hydrological conditions reduced the marsh area (−1 % to −12 %) and increased the wet meadow (+1 % to +4 %) mostly in the summer and late summer. Meanwhile, woody and shrubby vegetation on the floodplain increased (3 % to 5 %), indicating that the floodplain is projected to dry out.