Wetmore, Stacey
Permanent URI for this collection
Browse
Browsing Wetmore, Stacey by Author "Turnbull, Douglas"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemChalcogen versus dative bonding in [SF3] + Lewis acid−base adducts: [SF3(NCCH3)2] +, [SF3(NC5H5)2] +, and [SF3(phen)]+ (phen = 1,10-phenanthroline)(American Chemical Society, 2021) Turnbull, Douglas; Chaudhary, Praveen; Hazendonk, Paul; Wetmore, Stacey D.; Gerken, MichaelThe Lewis-acid behavior of [SF3][MF6] (M = Sb, As) salts toward mono- and bidentate nitrogen bases was explored. Reactions of [SF3][MF6] with excesses of CH3CN and C5H5N yielded [SF3(L)2]+ (L = CH3CN, C5H5N) salts, whereas the reaction of [SF3][SbF6] with equimolar 1,10-phenanthroline (phen) in CH3CN afforded [SF3(phen)][SbF6]·2CH3CN. Salts of these cations were characterized by low-temperature X-ray crystallography and Raman spectroscopy in the solid state as well as by 19F NMR spectroscopy in solution. In the solid state, the geometries of [SF3(NC5H5)2]+ and [SF3(phen)]+ are square pyramids with negligible cation–anion contacts, whereas the coordination of CH3CN and [SbF6]− to [SF3]+ in [SF3(NCCH3)2][SbF6] results in a distorted octahedral coordination sphere with a minimal perturbation of the trigonal-pyramidal SF3 moiety. 19F NMR spectroscopy revealed that [SF3(L)2]+ is fluxional in excess L at −30 °C, whereas [SF3(phen)]+ is rigid in CH2Cl2 at −40 °C. Density functional theory (DFT-B3LYP) calculations suggest that the S–N bonds in [SF3(NC5H5)2]+ and [SF3(phen)]+ possess substantial covalent character and result in a regular AX5E VSEPR geometry, whereas those in [SF3(NCCH3)2]+ are best described as S···N chalcogen-bonding interactions via σ-holes on [SF3]+, which is consistent with the crystallographic data.
- ItemLewis acid behavior of MoF5 and MoOF4: syntheses and characterization of MoF5(NCCH3), MoF5(NC5H5)n, and MoOF4(NC5H5)n (n- 1, 2)(ACS Publications, 2021) Bykowski, Janelle; Turnbull, Douglas; Hahn, Nolan R. J.; Boeré, René T.; Wetmore, Stacey D.; Gerken, MichaelThe Lewis acid–base adducts MoF5(NC5H5)n and MoOF4(NC5H5)n (n = 1, 2) were synthesized from the reactions of MoF5 and MoOF4 with C5H5N and structurally characterized by X-ray crystallography. Whereas the crystal structures of MoF5(NC5H5)2 and MoOF4(NC5H5)2 are isomorphous containing pentagonal-bipyramidal molecules, the fluorido-bridged, heptacoordinate [MoF5(NC5H5)]2 dimer differs starkly from monomeric, hexacoordinate MoOF4(NC5H5). For the weaker Lewis base CH3CN, only the 1:1 adduct, MoF5(NCCH3), could be isolated. All adducts were characterized by Raman spectroscopy in conjunction with vibrational frequency calculations. Multinuclear NMR spectroscopy revealed an unprecedented isomerism of MoOF4(NC5H5)2 in solution, with the pyridyl ligands occupying adjacent or nonadjacent positions in the equatorial plane of the pentagonal bipyramid. Paramagnetic MoF5(NC5H5)2 was characterized by electron paramagnetic resonance (EPR) spectroscopy as a dispersion in solid adamantane as well as in a diamagnetic host lattice of MoOF4(NC5H5)2; EPR parameters were computed using ZORA with the BPW91 functional using relativistic all-electron wave functions for Mo and simulated using EasySpin. Density functional theory calculations (B3LYP) and natural bond orbital analyses were conducted to elucidate the distinctive bonding and structural properties of all adducts reported herein and explore fundamental differences observed in the Lewis acid behavior of MoF5 and MoOF4.
- ItemReactions of molybdenum and tungsten oxide tetrafluoride with sulfur(IV) Lewis bases: structure and bonding in [WOF4]4, MOF4(OSO), and [SF3][M2O2F9] (M = Mo, W)(American Chemical Society, 2020) Turnbull, Douglas; Chaudhary, Praveen; Leenstra, Dakota; Hazendonk, Paul; Wetmore, Stacey D.The structure of [WOF4]4 has been reinvestigated by low-temperature X-ray crystallography and DFT (MN15/def2- SVPD) studies. Whereas the W4F4 ring of the tetramer is planar and disordered in the solid state, the optimized gas-phase geometry prefers a disphenoidally puckered W4F4 ring and demonstrates asymmetric fluorine bridging. Dissolution of MOF4 (M = Mo, W) in SO2 and SF4 results in the formation of MOF4(OSO) and [SF3][M2O2F9], respectively. Both SO2 adducts and [SF3]- [Mo2O2F9] have been characterized by X-ray crystallography. The crystal structure of [SF3][Mo2O2F9] reveals dimerization of the ion pair that results in a rare heptacoordinate sulfur center. Optimization of the {[SF3][M2O2F9]}2 dimers in the gas phase, however, results in the elongation of one contact such that the sulfur centers are effectively hexacoordinate. Meanwhile, the crystal structure of [SF3][W2O2F9]·HF instead demonstrates hexacoordinate sulfur centers and a highly unusual coordination to [SF3]+ from [W2O2F9]−through an oxido ligand. While [SF3][W2O2F9] does not decompose at ambient temperature, MOF4(OSO) and [SF3][Mo2O2F9] are unstable toward evolution of SO2 or SF4. Computational studies reveal that the monomerization of [WOF4]4 in the gas phase at 25 °C is thermodynamically unfavorable using SO2, but favorable using SF4, consistent with the relative thermal stabilities of WOF4(OSO) and [SF3][W2O2F9].
- ItemStabilisation of [WF5]+ and WF5 by pyridine: facile access to [WF5(NC5H5)3]+ and WF5(NC5H5)2(Wiley, 2020) Turnbull, Douglas; Hazendonk, Paul; Wetmore, Stacey D.The enhanced reactivity of [WF5]+ over WF6 has been exploited to access a neutral derivative of elusive WF5. The reaction of WF6(NC5H5)2 with [(CH3)3Si(NC5H5)][O3SCF3] in CH2Cl2 results in quantitative formation of trigonal-dodecahedral [WF5(NC5H5)3]+, which has been characterised as its [O3SCF3]− salt by Raman spectroscopy in the solid state and variable-temperature NMR spectroscopy in solution. The salt is susceptible to slow decomposition in solution at ambient temperature via dissociation of a pyridyl ligand, and the resultant [WF5(NC5H5)2]+ is reduced to WF5(NC5H5)2 in the presence of excess C5H5N, as determined by 19F NMR spectroscopy. Pentagonal-bipyramidal WF5(NC5H5)2 was isolated and characterised by X-ray crystallography and Raman spectroscopy in the solid state, representing the first unambiguously characterised WF5 adduct, as well as the first heptacoordinate adduct of a transition-metal pentafluoride. DFT-B3LYP methods have been used to investigate the reduction of [WF5(NC5H5)2]+ to WF5(NC5H5)2, supporting a two-electron reduction of WVI to WIV by nucleophilic attack and diprotonation of a pyridyl ligand in the presence of free C5H5N, followed by comproportionation to WV.
- ItemStabilization of [WF5]+ by bidentate N-donor ligands(Wiley, 2019) Turnbull, Douglas; Wetmore, Stacey D.; Gerken, MichaelTransition-metal hexafluorides do not exhibit fluoride-ion donor properties in the absence of donor ligands. We report the first synthesis of donor-stabilized [MF5]+ derived from a transition-metal hexafluoride via fluoride-ion abstraction using WF6(L) (L=2,2′-bipy, 1,10-phen) and SbF5(OSO) in SO2. The [WF5(L)][Sb2F11] salts and [WF5(1,10-phen)][SbF6]⋅SO2 have been characterized by X-ray crystallography, Raman spectroscopy, and multinuclear NMR spectroscopy. The reaction of WF6(2,2′-bipy) with an equimolar amount of SbF5(OSO) reveals an equilibrium between [WF5(2,2′-bipy)]+ and the [WF4(2,2′-bipy)2]2+ dication, as determined by 19F NMR spectroscopy. The geometries of the cations in the solid state are reproduced by gas-phase geometry optimizations (DFT-B3LYP), and NBO analyses reveal that the positive charges of the cations are stabilized primarily by compensatory σ-electron donation from the N-donor ligands.
- ItemSyntheses and characterization of W(NC6F5)F5– and W2(NC6F5)2F9– salts and computational studies of the W(NR)F5– (R = H, F, CH3, CF3, C6H5, C6F5) and W2(NC6F5)2F9– anions(American Chemical Society, 2017) Turnbull, Douglas; Wetmore, Stacey D.; Gerken, MichaelConvenient preparative routes to fluorido[(pentafluorophenyl)imido]tungstate(VI) salts have been developed. The reaction of WF6·NC5H5 or [N(CH3)4][WF7] with C6F5NH2 results in quantitative formation of the C5H5NH+ or N(CH3)4+ salt of the W(NC6F5)F5– anion, respectively. The dissolution of [C5H5NH][W(NC6F5)F5] in anhydrous HF results in the formation of [C5H5NH][W2(NC6F5)2F9]. These salts have been comprehensively characterized in the solid state by X-ray crystallography and Raman spectroscopy and in solution by 19F and 1H NMR spectroscopy. The crystal structures of the W(NC6F5)F5– salts reveal conformational differences in the anions, and the 19F NMR spectra of these salts in CH3CN reveal coupling of the axial fluorido ligand to the 14N nucleus of the imido ligand. In addition, density functional theory (DFT-B3LYP) calculations have been performed on a series of W(NR)F5– anions (R = H, F, CH3, CF3, C6H5, C6F5) and the W2(NC6F5)2F9– anion, including gas-phase geometry optimizations, vibrational frequencies, molecular orbitals, and natural bond orbital (NBO) analyses.
- ItemSyntheses, characterisation, and computational studies of tungsten hexafluoride adducts with pyridine and its derivatives(Elsevier, 2018) Turnbull, Douglas; Kostiuk, Nathan; Wetmore, Stacey D.; Gerken, MichaelThe reactions of WF6 with pyridine, 4-methylpyridine, 4-(dimethylamino)pyridine, and 4,4′-bipyridine (4,4′-bipy) in CH2Cl2 afford the Lewis-acid-base adducts WF6(4-NC5H4R) (R = H, CH3, N(CH3)2) and F6W(4,4′-bipy)WF6 as solids in quantitative yields. These adducts have been characterised in the solid state by Raman spectroscopy at ambient temperature and, in the cases of the mononuclear adducts, by X-ray crystallography at −173 °C. Furthermore, density-functional-theory (DFT-B3LYP) studies have been conducted to aid in predicting the structure of F6W(4,4′-bipy)WF6, assigning the vibrational frequencies of the adducts, and comparing their electronic properties.
- ItemSynthesis, characterization, and Lewis acid behavior of [W(NC6F5)F4]x and computational study of W(NR)F4 (R = H, F, CH3, CF3, C6H5, C6F5), W(NC6F5)F4(NCCH3), and W(NC6F5)F4(NC5H5)n (n = 1, 2)(American Chemical Society, 2019) Turnbull, Douglas; Wetmore, Stacey D.; Gerken, MichaelAmorphous [W(NC6F5)F4]x has been synthesized by the reaction of [C5H5NH][W(NC6F5)F5] with AsF5 in CH2Cl2. The reaction of [W(NC6F5)F4]x with CH3CN yields monomeric W(NC6F5)F4(NCCH3), whereas reaction with a sub-2-fold excess of C5H5N in CH3CN results in quantitative conversion to W(NC6F5)F4(NC5H5). Meanwhile, the reaction of W(NC6F5)F4(NCCH3) with a large excess of C5H5N results in the precipitation of W(NC6F5)F4(NC5H5)2. These compounds have been characterized in the solid state by Raman spectroscopy and in solution by multinuclear NMR spectroscopy. The crystal structures of W(NC6F5)F4(NCCH3) and W(NC6F5)F4(NC5H5), as well as improved structures of WOF4(NC5H5)n (n = 1, 2), have been obtained at low temperatures. Furthermore, density functional theory (DFT-B3LYP) calculations have been conducted on the W(NR)F4 (R = H, F, CH3, CF3, C6H5, C6F5) series as well as W(NC6F5)F4(NCCH3) and W(NC6F5)F4(NC5H5)n (n = 1, 2), providing optimized gas-phase geometries, vibrational frequencies, molecular orbitals, fluoride-ion affinities, and natural bond orbital (NBO) analyses.