Pyle, Greg
Permanent URI for this collection
Browse
Browsing Pyle, Greg by Author "Mirza, Reehan S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCopper-impaired chemosensory function and behavior in aquatic animals(Taylor & Francis, 2007) Pyle, Gregory; Mirza, Reehan S.Chemosensation is one of the oldest and most important sensory modalities utilized by aquatic animals to provide information about the location of predators, location of prey, sexual status of potential mates, genetic relatedness of kin, and migratory routes, among many other essential processes. The impressive sophistication of chemical communication systems among aquatic animals probably evolved because of the selective pressures exerted by water as a “universal solvent.” Impairment of chemosensation by toxicants at the molecular or cellular level can potentially lead to major perturbations at higher levels of biological organization. We have examined the consequences of metal-impaired chemosensory function in a range of aquatic animals that represents several levels of a typical aquatic ecosystem. In each case, low, environmentally relevant metal concentrations were sufficient to cause chemosensory dysfunction. Because the underlying molecular signal transduction machinery of chemosensory systems demonstrates a high degree of phylogenetic conservation, we speculate that metal-impaired chemosensation among phylogenetically disparate animal groups probably results from a common mechanism of impairment. We propose developing a chronic chemosensory-based biotic ligand model (BLM) that maintains the advantages of the current BLM approach, while simultaneously overcoming known difficulties of the current gill-based approach and increasing the ecological relevance of current BLM predictions.
- ItemResponses of wild fishes to alarm chemicals in pristine and metal-contaminated lakes(National Research Council of Canada, 2004) McPherson, Taryn D.; Mirza, Reehan S.; Pyle, GregoryResponses of wild fish populations to alarm chemicals were examined in clean and metal-contaminated lakes in northern Ontario. Approximately 20 groups of three minnow traps were placed randomly in the littoral zone of each study lake. Within each minnow trap group, one trap was treated with a chemical alarm stimulus (Iowa darter (Etheostoma exile (Girard, 1859)) skin extract, prey-guild species, alarm cue present), one with swordtail (Xiphophorus helleri Heckel, 1848) skin extract (phylogenetically distant and allopatric from darters, alarm cue present but not recognized by darters), and one with distilled water (neutral control). Data included the identification and enumeration of fish captured in each trap after a 10-h set. Darters avoided areas labelled with the alarm stimulus relative to controls only in the clean lake; in contaminated lakes, darters did not avoid areas labelled with the alarm stimulus relative to controls. No effects of contamination on chemosensory function were observed for heterospecific non-darter prey-guild or predator-guild species. These findings suggest that chemical alarm systems do exist in nature, and that these systems appear to be affected by the presence of metals. Such pollution-related effects could lead to increased susceptibility of some fish species to predation and to population declines.