Pyle, Greg
Permanent URI for this collection
Browse
Recent Submissions
Now showing 1 - 5 of 9
- ItemDietary Ca inhibits waterborne Cd uptake in Cd-exposed rainbow trout, Oncorhynchus mykiss(Elsevier, 2001) Zohouri, Mohammad Ali; Pyle, Gregory; Wood, Chris M.The effects of chronic exposure to waterborne Cd and elevated dietary Ca, alone and in combination, were examined in juvenile rainbow trout, Oncorhynchus mykiss. Fish were chronically exposed to 0.05 Žcontrol. or 2.56 g l Cd as CdŽNO3.2 4H2O and were fed 2% body mass day of control Ž29.6 mg Ca g. or Ca-supplemented trout food Ž52.8 mg Ca g as CaCl2 2H2O.. Cd accumulated mainly in gill, liver, and kidney. Waterborne Cd inhibited unidirectional Ca uptake from water into the gill and induced hypocalcemia in the plasma on day 40. Waterborne Cd also induced an elevated Ca concentration on day 20 in the gill tissue of trout fed the Ca-supplemented diet and a decreased Ca concentration on day 35 in the gills of trout fed the control diet. Dietary Ca protected against Cd accumulation in gill, liver, and kidney, but did not protect against the inhibition of Ca uptake into the gill or plasma hypocalcemia. When fed Ca-supplemented diet and exposed to waterborne Cd, fish showed 35% mortality, compared to 0 2% in control fish and in the Cd-exposed fish with normal Ca in the diet. Growth, on the other hand, was not affected by any treatment.
- ItemSmelling salt: calcium as an odourant for fathead minnows(Elsevier, 2014) Dew, William A; Pyle, GregoryCalcium plays an essential role in olfactory sensory neuron function. Studies with fish have indicated that in addition to being involved in olfactory signalling, calcium is itself an odourant. In this study we used fathead minnows (Pimephales promelas) and employed two different techniques; electro-olfactography (EOG), a neurophysiological technique that measures olfactory acuity at the olfactory epithelium, and a behavioural choice assay using a trough maze. The results demonstrate that calcium and a known odourant L-arginine are cross-adaptive, that calcium induces an EOG response in a concentration-dependent manner, and that calcium induces a strong avoidance behaviour. The behavioural avoidance was also demonstrated to be olfactorydependent. Taken together, the results demonstrate that calcium is a potent odourant for fathead minnows. Being able to smell calcium may represent an ability to sense and avoid areas with significant changes in ionic strength, thereby avoiding physiological stress.
- ItemRadiotracer studies on waterborne copper uptake, distribution, and toxicity in rainbow trout and yellow perch: a comparative analysis(Taylor & Francis, 2008) Pyle, Gregory; Wood, Chris M.Rainbow trout (Oncorhynchus mykiss) are often used to estimate important biotic ligand model (BLM) parameters, such as metal-binding affinity (log K) and capacity (Bmax). However, rainbow trout do not typically occupy metal-contaminated environments, whereas yellow perch (Perca flavescens) are ubiquitous throughout most of North America. This study demonstrates that dynamic processes that regulate Cu uptake at the gill differ between rainbow trout and yellow perch. Rainbow trout were more sensitive to acute aqueous Cu than yellow perch, and toxicity was exacerbated in soft water relative to similar exposures in hard water. Whole body Na loss rate could account for acute Cu toxicity in both species, as opposed to new Cu uptake rate that was not as predictive. Time course experiments using radiolabelled Cu (64Cu) revealed that branchial Cu uptake was rather variable within the first 12 h of exposure, and appeared to be a function of Cu concentration, water hardness, and fish species. After 12 h, new branchial Cu concentrations stabilized in both species, suggesting that metal exposures used to estimate BLM parameters should be increased in duration from 3 h to 12+ h. In rainbow trout, 71% of the new Cu bound to the gill was exchangeable (i.e., able to either enter the fish or be released back to the water), as opposed to only 48% in yellow perch. This suggests that at equal exposure concentrations, proportionally more branchial Cu can be taken up by rainbow trout than yellow perch, which can then go on to confer toxicity. These qualitative differences in branchial Cu handling between the two species emphasize the need to develop BLM parameters for each species of interest, rather than the current practice of extrapolating BLM results derived from rainbow trout (or other laboratory-reared species) to other species. Data reported here indicate that a one-size-fits-all approach to predictive modeling, mostly based on rainbow trout studies, may not suffice for making predictions about metal toxicity to yellow perch—that is, a species that inhabits metal-contaminated lakes around northern Canadian industrial operations.
- ItemCopper-impaired chemosensory function and behavior in aquatic animals(Taylor & Francis, 2007) Pyle, Gregory; Mirza, Reehan S.Chemosensation is one of the oldest and most important sensory modalities utilized by aquatic animals to provide information about the location of predators, location of prey, sexual status of potential mates, genetic relatedness of kin, and migratory routes, among many other essential processes. The impressive sophistication of chemical communication systems among aquatic animals probably evolved because of the selective pressures exerted by water as a “universal solvent.” Impairment of chemosensation by toxicants at the molecular or cellular level can potentially lead to major perturbations at higher levels of biological organization. We have examined the consequences of metal-impaired chemosensory function in a range of aquatic animals that represents several levels of a typical aquatic ecosystem. In each case, low, environmentally relevant metal concentrations were sufficient to cause chemosensory dysfunction. Because the underlying molecular signal transduction machinery of chemosensory systems demonstrates a high degree of phylogenetic conservation, we speculate that metal-impaired chemosensation among phylogenetically disparate animal groups probably results from a common mechanism of impairment. We propose developing a chronic chemosensory-based biotic ligand model (BLM) that maintains the advantages of the current BLM approach, while simultaneously overcoming known difficulties of the current gill-based approach and increasing the ecological relevance of current BLM predictions.
- ItemSeasonal and regional variations in metal contamination and condition indicators in yellow perch (Perca flavescens) along two polymetallic gradients. III. Energetic and physiological indicators(Taylor & Francis, 2008) Couture, Patrice; Rajotte, James W.; Pyle, GregoryThe influences of metal contamination, fish size, season, and region on tissue metabolic capacities and protein concentrations were examined in yellow perch from two metal gradients (Sudbury, Ontario, and Rouyn-Noranda, Qu´ebec, Canada) in two seasons (spring and summer). In general, increased tissue Cu and Cd contamination was associated with lower aerobic capacities, suggesting direct metal inhibition of aerobic enzymes. However, our data also revealed that tissue Ni contamination positively affected aerobic capacities, possibly due to oxidative damage to mitochondrial membranes leading to compensatory increases in the activity of mitochondrial enzymes. Tissue aerobic capacities decreased, but anaerobic capacities increased, with size. Tissue protein concentrations and metabolic capacities were also influenced by season. A novel finding of this study is that size-corrected tissue enzyme activities can differ markedly in yellow perch sampled in the same season in similar lakes, but separated by a few hundred kilometers. Overall, the results from this large dataset support that tissue metabolic capacities are under seasonal and regional influences, but are also affected by metal contamination. Our study indicates that tissue metabolic enzyme activities should be considered as a tool for ecological risk assessment studies aiming at detecting metal stress in wild fish. However, fish should be sampled over a short period, and reference sites should be close to contaminated sites