Flanagan, Larry
Permanent URI for this collection
Browse
Browsing Flanagan, Larry by Author "Baker, Ian T."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCharacterizing the performance of ecosystem models across time scales: a spectral analysis of the North American Carbon Program site-level synthesis(American Geophysical Union, 2011) Dietze, Michael C.; Vargas, Rodrigo; Richardson, Andrew D.; Stoy, Paul C.; Barr, Alan G.; Anderson, Ryan S.; Arain, M. Altaf; Baker, Ian T.; Black, T. Andrew; Chen, Jing M.; Philippe, Ciais; Flanagan, Larry B.; Gough, Christopher M.; Grant, Robert F.; Hollinger, David Y.; Izaurralde, R. Cesar; Kucharik, Christopher J.; Lafleur, Peter M.; Liu, Shugang; Lokupitiya, Erandathie; Luo, Yiqi; Munger, J. William; Peng, Changhui; Poulter, Benjamin; Price, David T.; Ricciuto, Daniel M.; Riley, William J.; Sahoo, Alok Kumar; Schaefer, Kevin; Suyker, Andrew E.; Tian, Hanqin; Tonitto, Christina; Verbeeck, Hans; Verma, Shashi B.; Wang, Weifeng; Weng, EnshengEcosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the identification of the dominant time scales contributing to model performance in the frequency domain. In this study we used wavelet analyses to synthesize the performance of 21 ecosystem models at 9 eddy covariance towers as part of the North American Carbon Program’s site-level intercomparison. This study expands upon previous single-site and single-model analyses to determine what patterns of model error are consistent across a diverse range of models and sites. To assess the significance of model error at different time scales, a novel Monte Carlo approach was developed to incorporate flux observation error. Failing to account for observation error leads to a misidentification of the time scales that dominate model error. These analyses show that model error (1) is largest at the annual and 20–120 day scales, (2) has a clear peak at the diurnal scale, and (3) shows large variability among models in the 2–20 day scales. Errors at the annual scale were consistent across time, diurnal errors were predominantly during the growing season, and intermediate-scale errors were largely event driven. Breaking spectra into discrete temporal bands revealed a significant model-by-band effect but also a non significant model-by-site effect, which together suggest that individual models show consistency in their error patterns. Differences among models were related to model time step, soil hydrology, and the representation of photosynthesis and phenology but not the soil carbon or nitrogen cycles. These factors had the greatest impact on diurnal errors, were less important at annual scales, and had the least impact at intermediate time scales.
- ItemImpact of hydrological variations on modeling of peatland CO2 fluxes: results from the North American Carbon Program site synthesis(American Geophysical Union, 2012) Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.; Ricciuto, Daniel M.; Barr, Alan G.; Richardson, Andrew D.; Flanagan, Larry B.; Lafleur, Peter M.; Tian, Hanqin; Chen, Guangsheng; Grant, Robert F.; Poulter, Benjamin; Verbeeck, Hans; Ciais, Philippe; Ringeval, Bruno; Baker, Ian T.; Schaefer, Kevin; Luo, Yiqi; Wong, EnshengNorthern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2 fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor, sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated – observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.
- ItemA model-data intercomparison of CO2 exchange across North America: results from the North American Carbon Program site synthesis(American Geophysical Union, 2010) Schwalm, Christopher R.; Williams, Christopher A.; Schaefer, Kevin; Anderson, Ryan S.; Arain, M. Altaf; Baker, Ian T.; Barr, Alan G.; Black, T. Andrew; Chen, Guangsheng; Chen, Jing M.; Ciais, Philippe; Davis, Kenneth J.; Desai, Ankur R.; Dietze, Michael C.; Dragoni, Danilo; Fischer, Marc L.; Flanagan, Larry B.; Grant, Robert F.; Gu, Lianhong; Hollinger, David Y.; Izaurralde, R. Cesar; Kucharik, Christopher J.; Lafleur, Peter M.; Law, Beverly E.; Li, Longhui; Li, Zhengpeng; Liu, Shuguang; Lokupitiya, Erandathie; Luo, Yiqi; Ma, Siyan; Margolis, Hank; Matamala, Roser; McCaughey, Harry; Monson, Russell K.; Oechel, Walter C.; Peng, Changhui; Poulter, Benjamin; Price, David T.; Ricciuto, Daniel M.; Riley, William J.; Sahoo, Alok Kumar; Sprintsin, Michael; Sun, Jianfeng; Tian, Hanqin; Tonitto, Christina; Verbeeck, Hans; Verma, Shashi B.Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO2 exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO2 exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans ∼220 site‐years, 10 biomes, and includes two large‐scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models’ ability to simulate the seasonal cycle of CO2 exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was ∼10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model‐data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.