Hopkinson, Christopher
Permanent URI for this collection
Browse
Browsing Hopkinson, Christopher by Author "Flade, Linda"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAboveground biomass allocation of boreal shrubs and short-stature trees in northwestern Canada(MDPI, 2021) Flade, Linda; Hopkinson, Christopher; Chasmer, LauraIn this follow-on study on aboveground biomass of shrubs and short-stature trees, we provide plant component aboveground biomass (herein ‘AGB’) as well as plant component AGB allometric models for five common boreal shrub and four common boreal short-stature tree genera/species. The analyzed plant components consist of stem, branch, and leaf organs. We found similar ratios of component biomass to total AGB for stems, branches, and leaves amongst shrubs and deciduous tree genera/species across the southern Northwest Territories, while the evergreen Picea genus differed in the biomass allocation to aboveground plant organs compared to the deciduous genera/species. Shrub component AGB allometric models were derived using the three-dimensional variable volume as predictor, determined as the sum of line-intercept cover, upper foliage width, and maximum height above ground. Tree component AGB was modeled using the cross-sectional area of the stem diameter as predictor variable, measured at 0.30 m along the stem length. For shrub component AGB, we achieved better model fits for stem biomass (60.33 g ≤ RMSE ≤ 163.59 g; 0.651 ≤ R2 ≤ 0.885) compared to leaf biomass (12.62 g ≤ RMSE ≤ 35.04 g; 0.380 ≤ R2 ≤ 0.735), as has been reported by others. For short-stature trees, leaf biomass predictions resulted in similar model fits (18.21 g ≤ RMSE ≤ 70.0 g; 0.702 ≤ R2 ≤ 0.882) compared to branch biomass (6.88 g ≤ RMSE ≤ 45.08 g; 0.736 ≤ R2 ≤ 0.923) and only slightly better model fits for stem biomass (30.87 g ≤ RMSE ≤ 11.72 g; 0.887 ≤ R2 ≤ 0.960), which suggests that leaf AGB of short-stature trees (<4.5 m) can be more accurately predicted using cross-sectional area as opposed to diameter at breast height for tall-stature trees. Our multi-species shrub and short-stature tree allometric models showed promising results for predicting plant component AGB, which can be utilized for remote sensing applications where plant functional types cannot always be distinguished. This study provides critical information on plant AGB allocation as well as component AGB modeling, required for understanding boreal AGB and aboveground carbon pools within the dynamic and rapidly changing Taiga Plains and Taiga Shield ecozones. In addition, the structural information and component AGB equations are important for integrating shrubs and short-stature tree AGB into carbon accounting strategies in order to improve our understanding of the rapidly changing boreal ecosystem function.
- ItemAllometric equations for shrubs and short-stature tree aboveground biomass within boreal ecosystems of northwestern Canada(MDPI, 2020) Flade, Linda; Hopkinson, Christopher; Chasmer, LauraAboveground biomass (AGB) of short-stature shrubs and trees contain a substantial part of the total carbon pool within boreal ecosystems. These ecosystems, however, are changing rapidly due to climate-mediated atmospheric changes, with overall observed decline in woody plant AGB in boreal northwestern Canada. Allometric equations provide a means to quantify woody plant AGB and are useful to understand aboveground carbon stocks as well as changes through time in unmanaged boreal ecosystems. In this paper, we provide allometric equations, regression coefficients, and error statistics to quantify total AGB of shrubs and short-stature trees. We provide species- and genus-specific as well as multispecies allometric models for shrub and tree species commonly found in northwestern boreal forest and peatland ecosystems. We found that the three-dimensional field variable (volume) provided the most accurate prediction of shrub multispecies AGB (R2 = 0.79, p < 0.001), as opposed to the commonly used one-dimensional variable (basal diameter) measured on the longest and thickest stem (R2 = 0.23, p < 0.001). Short-stature tree AGB was most accurately predicted by stem diameter measured at 0.3 m along the stem length (R2 = 0.99, p < 0.001) rather than stem length (R2 = 0.29, p < 0.001). Via the two-dimensional variable cross-sectional area, small-stature shrub AGB was combined with small-stature tree AGB within one single allometric model (R2 = 0.78, p < 0.001). The AGB models provided in this paper will improve our understanding of shrub and tree AGB within rapidly changing boreal environments.