Semiregular automorphisms of cubic vertex-transitive graphs and the abelian normal quotient method

dc.contributor.authorMorris, Joy
dc.contributor.authorSpiga, Pablo
dc.contributor.authorVerret, Gabriel
dc.date.accessioned2018-06-29T18:05:20Z
dc.date.available2018-06-29T18:05:20Z
dc.date.issued2015
dc.descriptionSherpa Romeo green journal. Open accessen_US
dc.description.abstractWe characterise connected cubic graphs admitting a vertex-transitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph.en_US
dc.description.peer-reviewYesen_US
dc.identifier.citationMorris, J., Spiga, P., & Verret, G. (2015). Semiregular automorphisms of cubic vertex-transitive graphs and the abelian normal quotient method. Electronic Journal of Combinatorics, 22(3), P3.32en_US
dc.identifier.urihttps://hdl.handle.net/10133/5146
dc.language.isoen_USen_US
dc.publisherElectronic Journal of Combinatoricsen_US
dc.publisher.departmentDepartment of Mathematics and Computer Scienceen_US
dc.publisher.facultyArts and Scienceen_US
dc.publisher.institutionUniversity of Lethbridgeen_US
dc.publisher.institutionUniversity of Milano-Bicoccaen_US
dc.publisher.institutionThe University of Western Australiaen_US
dc.subjectCubic graphsen_US
dc.subjectVertex-transitive graphsen_US
dc.subjectSemiregular automorphismsen_US
dc.subject.lcshGraph theory
dc.subject.lcshCombinatorial analysis
dc.subject.lcshAutomorphisms
dc.titleSemiregular automorphisms of cubic vertex-transitive graphs and the abelian normal quotient methoden_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morris semiregular automorphisms of cubic vertex-transitive.pdf
Size:
262.26 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections