Graph structure modeling for multi-neuronal spike date

dc.contributor.authorAkaho, Shotaro
dc.contributor.authorHiguchi, Sho
dc.contributor.authorIwasaki, Taishi
dc.contributor.authorHino, Hideitsu
dc.contributor.authorTatsuno, Masami
dc.contributor.authorMurata, Noboru
dc.date.accessioned2017-03-17T18:40:38Z
dc.date.available2017-03-17T18:40:38Z
dc.date.issued2016
dc.descriptionSherpa Romeo green journal; open accessen_US
dc.description.abstractWe propose a method to extract connectivity between neurons for extracellularly recorded multiple spike trains. The method removes pseudo-correlation caused by propagation of information along an indirect pathway, and is also robust against the in uence from unobserved neurons. The estimation algorithm consists of iterations of a simple matrix inversion, which is scalable to large data sets. The performance is examined by synthetic spike data.en_US
dc.identifier.citationAkaho, S., Higuchi, S., Iwasaki, T., Hino, H., Tatsuno, M., & Murata, N. (2016). Graph structure modeling for multi-neuronal spike data. Journal of Physics: Conference Series, 699. doi:10.1088/1742-6596/699/1/012012en_US
dc.identifier.urihttps://hdl.handle.net/10133/4799
dc.language.isoen_USen_US
dc.publisherIOP Publishingen_US
dc.subjectSpike dataen_US
dc.subjectNeuronsen_US
dc.subjectPseudo-correlationen_US
dc.titleGraph structure modeling for multi-neuronal spike dateen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tatsuno graph structure modeling for multi-neuronal.pdf
Size:
970.6 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections