Evidence for an evolutionary conserved memory coding scheme in the mammalian hippocampus

dc.contributor.authorThome, Alexander
dc.contributor.authorMarrone, Diano F.
dc.contributor.authorEllmore, Timothy M.
dc.contributor.authorChawla, Monica K.
dc.contributor.authorLipa, Peter
dc.contributor.authorRamirez-Amaya, Victor
dc.contributor.authorLisanby, Sarah H.
dc.contributor.authorMcNaughton, Bruce L.
dc.contributor.authorBarnes, Carol A.
dc.date.accessioned2019-04-23T21:20:16Z
dc.date.available2019-04-23T21:20:16Z
dc.date.issued2017
dc.descriptionSherpa Romeo yellow journal. Open access article. Creative Commons Attribution 4.0 International License (CC BY 4.0) appliesen_US
dc.description.abstractDecades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and non human primates (i.e.,virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between non human primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.en_US
dc.description.peer-reviewYesen_US
dc.identifier.citationThome, A., Marrone, D. F., Ellmore, T. M., Chawla, M. K., Lipa, P., Ramirez-Amaya, V.,...Barnes, C. A. (2017). Evidence for an evolutionary conserved memory coding scheme in the mammalian hippocampus. Journal of Neuroscience, 37(10), 2795-2801. DOI:10.1523/JNEUROSCI.3057-16.2017en_US
dc.identifier.urihttps://hdl.handle.net/10133/5336
dc.language.isoen_USen_US
dc.publisherSociety for Neuroscienceen_US
dc.publisher.departmentDepartment of Neuroscienceen_US
dc.publisher.facultyArts and Scienceen_US
dc.publisher.institutionEvelyn F. McKnight Brain Instituteen_US
dc.publisher.institutionUniversity of Arizonaen_US
dc.publisher.institutionWilfrid Laurier Universityen_US
dc.publisher.institutionCity College of New Yorken_US
dc.publisher.institutionUniversidad Autónoma de Queretaroen_US
dc.publisher.institutionInstituto deI nvestigación Médica Mercedes y Martín Ferreyraen_US
dc.publisher.institutionDuke Universityen_US
dc.publisher.institutionUniversity of Lethbridgeen_US
dc.publisher.institutionUniversity of Californiaen_US
dc.publisher.urlhttps://doi.org/10.1523/JNEUROSCI.3057-16.2017
dc.subjectNeural codingen_US
dc.subjectNeuroethologyen_US
dc.subjectPrimateen_US
dc.subjectRodenten_US
dc.subjectSpatial cognitionen_US
dc.subjectVirtual realityen_US
dc.subjectCA3
dc.subjectCA1
dc.subject.lcshMemory--Research
dc.subject.lcshEpisodic memory
dc.subject.lcshHippocampus (Brain)
dc.subject.lcshRats as laboratory animals
dc.titleEvidence for an evolutionary conserved memory coding scheme in the mammalian hippocampusen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
McNaughton-evidence-for-an-evolutionary.pdf
Size:
4.65 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: