Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian

dc.contributor.authorGhaderpour, Ebrahim
dc.contributor.authorMorris, Dave W.
dc.date.accessioned2025-12-18T23:38:41Z
dc.date.available2025-12-18T23:38:41Z
dc.date.issued2014
dc.descriptionOpen access article. Creative Commons Attribution 4.0 International license (CC BY 4.0) applies
dc.description.abstractWe show that if G is any nilpotent, finite group, and the commutator subgroup of G is cyclic, then every connected Cayley graph on G has a hamiltonian cycle.
dc.identifier.citationGhaderpour, E., & Morris, D. W. (2014). Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian. Ars Mathematica Contemporanea, 7, 55-72. https://doi.org/10.26493/1855-3974.280.8d3
dc.identifier.urihttps://hdl.handle.net/10133/7267
dc.language.isoen
dc.publisherUniversity of Primorska
dc.publisherThe Slovenian Discrete and Applied Mathematics Society
dc.publisher.departmentDepartment of Mathematics and Computer Science
dc.publisher.facultyArts and Science
dc.publisher.institutionUniversity of Lethbridge
dc.publisher.urlhttps://doi.org/10.26493/1855-3974.280.8d3
dc.subjectCayley graph
dc.subjectHamiltonian cycle
dc.subjectNilpotent group
dc.subjectCommutator subgroup
dc.titleCayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morris-Cayley-graphs-on-nilpotent.pdf
Size:
3.04 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections