Whishaw, Ian
Permanent URI for this collection
Browse
Browsing Whishaw, Ian by Subject "Hand movements"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe syntactic organization of pasta-eating and the structure of reach movements in the head-fixed mouse(Nature Research, 2017) Whishaw, Ian Q.; Faraji, Jamshid; Kuntz, Jessica R.; Agha, Behroo M.; Metz, Gerlinde A. S.; Mohajerani, Majid H.Mice are adept in the use of their hands for activities such as feeding, which has led to their use in investigations of the neural basis of skilled-movements. We describe the syntactic organization of pasta-eating and the structure of hand movements used for pasta manipulation by the head-fixed mouse. An ethogram of mice consuming pieces of spaghetti reveals that they eat in bite/chew bouts. A bout begins with pasta lifted to the mouth and then manipulated with hand movements into a preferred orientation for biting. Manipulation involves many hand release-reach movements, each with a similar structure. A hand is advanced from a digit closed and flexed (collect) position to a digit extended and open position (overgrasp) and then to a digit closed and flexed (grasp) position. Reach distance, hand shaping, and grasp patterns featuring precision grasps or whole hand grasps are related. To bite, mice display hand preference and asymmetric grasps; one hand (guide grasp) directs food into the mouth and the other stabilizes the pasta for biting. When chewing after biting, the hands hold the pasta in a symmetric resting position. Pasta-eating is organized and features structured hand movements and so lends itself to the neural investigation of skilled-movements.
- ItemTwo types of withdraw-to-eat movement related to food size in long-tailed macaques (Macaca fascicularis): insights into the evolution of the visual control of hand shaping in anthropoid primates(Sciknow Publications, 2022) Hirsche, Laurie A.; Cenni, Camilla; Leca, Jean-Baptiste; Whishaw, IanThe details of the evolutionary steps in the transition from nonvisual guidance of hand movements for feeding, as displayed by many non-primate species, to visual guidance of hand movements in primates are sparse. Contemporary theory holds that a small-bodied stem primate evolved visual control of the reach to guide a hand to obtain small insects and fruit items from the terminal branches of trees. The subsequent evolution of the visual control of hand and finger shaping movements of the grasp of anthropoids is uncertain. The present study finds that Balinese long-tailed macaques (Macaca fascicularis), video recorded while spontaneously eating at the Sacred Monkey Forest Sanctuary in Ubud in Indonesia, displayed two types of hand movements associated with two types of withdraw movements to place food items in the mouth. Small food items were brought directly to the mouth with hand supination, often with no visual monitoring after grasping. Large food items that protruded from the hand were visually monitored to orient the food item on the initial part of the withdraw but visually disengaged with a head movement and often a blink before the item was placed in the mouth. The results are discussed in relation to the idea that visual information related to orientating food items of varying sizes to an appropriate position in the mouth contributed to the evolution of the visual control of hand shaping skills in anthropoid primates.