Thakor, Nehalkumar
Permanent URI for this collection
Browse
Browsing Thakor, Nehalkumar by Subject "ATF4"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDepletion of eukaryotic initiation factor 5B (eIF5B) reprograms the cellular transcriptome and leads to activation of endoplasmic reticulum (ER) stress and c-Jun N-terminal Kinase (JNK).(Springer, 2021) Bressler, Kamiko R.; Ross, Joseph A.; Ilnytskyy, Slava; Vanden Dungen, Keiran; Taylor, Katrina; Patel, Kush; Zovoilis, Athanasios; Kovalchuk, Igor; Thakor, NehalDuring the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.
- ItemProbabilistic models of uORF-mediated ATF4 translation control(Elsevier, 2022) Marasco, Olivia N. J. M.; Roussel, Marc R.; Thakor, NehalATF4 is a key transcription factor that activates transcription of genes needed to respond to cellular stress. Although the mRNA encoding ATF4 is present at constant levels in the cell during the initial response, translation of ATF4 increases under conditions of cellular stress while the global translation rate decreases. We study two models for the control system that regulates the translation of ATF4, both based on the Vattem-Wek hypothesis. This hypothesis is based on a race to reload, following the translation of a small upstream open reading frame (uORF), the ternary complex that brings the initiator tRNA to the ribosome as the 40S subunit scans along the mRNA, encountering first a start codon for an inhibitory uORF whose reading frame overlaps the start of the ATF4 coding sequence. We develop a pair of simple, analytic, probabilistic models, one of which assumes all nucleotide triplets have identical kinetic properties, while the other recognizes the existence of triplets at which the ternary complex loads more efficiently. We also consider two different functions representing the dependence of the rate of initiation at uORF1 on the ternary complex concentration. In keeping with the theme of this Special Issue, we studied the properties of these models in a Maple document, which can easily be modified to consider different parameters, translation rate initiation functions, and so on.