Math & Computer Science
Permanent URI for this community
Browse
Browsing Math & Computer Science by Author "Dobson, Ted"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemClassification of vertex-transitive digraphs of order a product of two distinct primes via automorphism group(2025) Dobson, Ted; Hujdurovic, Ademir; Kutnar, Klavdija; Morris, JoyIn the mid-1990s, two groups of authors independently obtained classifications of vertex-transitive graphs whose order is a product of two distinct primes. In the intervening years it has become clear that there is additional information concerning these graphs that would be useful, as well as making explicit the extensions of these results to digraphs. Additionally, there are several small errors in some of the papers that were involved in this classification. The purpose of this paper is to fill in the missing information as well as correct all known errors.
- ItemGroups with elements of order 8 do not have the DCI property(University of Primorska, 2025) Dobson, Ted; Morris, Joy; Spiga, PabloLet k be odd, and n an odd multiple of 3. Although this can also be deduced from known results, we provide a new proof that Ck ⋊ C₈ and (Cn × C₃) ⋊ C₈ do not have the Directed Cayley Isomorphism (DCI) property. When k is prime, Ck ⋊ C₈ had previously been proved to have the Cayley Isomorphism (CI) property. To the best of our knowledge, the groups Cp ⋊ C₈ (where p is an odd prime) are only the second known infinite family of groups that have the CI property but do not have the DCI property. This also provides a new proof of the result (which follows from known results but was not explicitly published) that no group with an element of order 8 has the DCI property. One piece of our proof is a new result that may prove to be of independent interest: we show that if a permutation group has a regular subgroup of index 2 then it must be 2-closed.
- ItemVertex-transitive digraphs with extra automorphisms that preserve the natural arc-colouring(The University of Queensland, Centre for Discrete Mathematics and Computing, 2017) Dobson, Ted; Hujdurovic, Ademir; Kutnar, Klavdija; Morris, JoyIn a Cayley digraph on a group G, if a distinct colour is assigned to each arc-orbit under the left-regular action of G, it is not hard to show that the elements of the left-regular action of G are the only digraph automorphisms that preserve this colouring. In this paper, we show that the equivalent statement is not true in the most straightforward generalisation to G-vertex-transitive digraphs, even if we restrict the situation to avoid some obvious potential problems. Specifically, we display an infinite family of 2-closed groups G, and a G-arc-transitive digraph on each (without any digons) for which there exists an automorphism of the digraph that is not an element of G (it is an automorphism of G). Since the digraph is G-arc-transitive, the arcs would all be assigned the same colour under the colouring by arc-orbits, so this digraph automorphism is colour-preserving.