Morris, Joy
Permanent URI for this collection
Browse
Browsing Morris, Joy by Author "Verret, Gabriel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCharacterising CCA Sylow cyclic groups whose order is not divisible by four(Drustvo Matematikov, Fizikov in Astronomov, 2018) Morgan, Luke; Morris, Joy; Verret, GabrielA Cayley graph on a group G has a natural edge-colouring. We say that such a graph is CCA if every automorphism of the graph that preserves this edge-colouring is an element of the normaliser of the regular representation of G. A group G is then said to be CCA if every connected Cayley graph on G is CCA. Our main result is a characterisation of non-CCA graphs on groups that are Sylow cyclic and whose order is not divisible by four. We also provide several new constructions of non-CCA graphs.
- ItemSemiregular automorphisms of cubic vertex-transitive graphs and the abelian normal quotient method(Electronic Journal of Combinatorics, 2015) Morris, Joy; Spiga, Pablo; Verret, GabrielWe characterise connected cubic graphs admitting a vertex-transitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph.