Morris, Joy
Permanent URI for this collection
Browse
Browsing Morris, Joy by Author "Morgan, Luke"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCharacterising CCA Sylow cyclic groups whose order is not divisible by four(Drustvo Matematikov, Fizikov in Astronomov, 2018) Morgan, Luke; Morris, Joy; Verret, GabrielA Cayley graph on a group G has a natural edge-colouring. We say that such a graph is CCA if every automorphism of the graph that preserves this edge-colouring is an element of the normaliser of the regular representation of G. A group G is then said to be CCA if every connected Cayley graph on G is CCA. Our main result is a characterisation of non-CCA graphs on groups that are Sylow cyclic and whose order is not divisible by four. We also provide several new constructions of non-CCA graphs.
- ItemDigraphs with small automorphism groups that are Cayley on two nonisomorphic groups(University of Primorska, 2020) Morgan, Luke; Morris, Joy; Verret, GabrielLet Γ = Cay(G, S) be a Cayley digraph on a group G and let A = Aut(Γ). The Cayley index of Γ is |A : G|. It has previously been shown that, if p is a prime, G is a cyclic p-group and A contains a noncyclic regular subgroup, then the Cayley index of Γ is superexponential in p. We present evidence suggesting that cyclic groups are exceptional in this respect. Specifically, we establish the contrasting result that, if p is an odd prime and G is abelian but not cyclic, and has order a power of p at least p3, then there is a Cayley digraph Γ on G whose Cayley index is just p, and whose automorphism group contains a nonabelian regular subgroup.