Dynamic 23S rRNA modification ho5C2501 benefits Escherichia coli under oxidative stress

dc.contributor.authorFasnacht, Michel
dc.contributor.authorGallo, Stefano
dc.contributor.authorSharma, Puneet
dc.contributor.authorHimmelstob, Maximilian
dc.contributor.authorLimbach, Patrick A.
dc.contributor.authorWilli, Jessica A.
dc.contributor.authorPolacek, Norbert
dc.date.accessioned2025-03-04T20:37:26Z
dc.date.available2025-03-04T20:37:26Z
dc.date.issued2021
dc.descriptionOpen access. Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0) applies
dc.description.abstractPost-transcriptional modifications are added to ribosomal RNAs (rRNAs) to govern ribosome biogenesis and to fine-tune protein biosynthesis. In Escherichia coli and related bacteria, RlhA uniquely catalyzes formation of a 5-hydroxycytidine (ho5C) at position 2501 of 23S rRNA. However, the molecular and biological functions as well as the regulation of ho5C2501 modification remain unclear. We measured growth curves with the modification-deficient ΔrlhA strain and quantified the extent of the modification during different conditions by mass spectrometry and reverse transcription. The levels of ho5C2501 in E. coli ribosomes turned out to be highly dynamic and growth phase-dependent, with the most effective hydroxylation yields observed in the stationary phase. We demonstrated a direct effect of ho5C2501 on translation efficiencies in vitro and in vivo. High ho5C2501 levels reduced protein biosynthesis which however turned out to be beneficial for E. coli for adapting to oxidative stress. This functional advantage was small under optimal conditions or during heat or cold shock, but becomes pronounced in the presence of hydrogen peroxide. Taken together, these data provided first functional insights into the role of this unique 23S rRNA modification for ribosome functions and bacterial growth under oxidative stress.
dc.description.peer-reviewYes
dc.identifier.citationFasnacht, M., Gallo, S., Sharma, P., Himmelstob, M., Limbach, P. A., Willi, J., & Polacek, N. (2022). Dynamic 23S rRNA modification ho5C2501 benefits Escherichia coli under oxidative stress. Nucleic Acids Research, 50(1), 473-489. https://doi.org/10.1093/nar/gkab1224
dc.identifier.urihttps://hdl.handle.net/10133/7018
dc.language.isoen
dc.publisherOxford Academic
dc.publisher.departmentDepartment of Chemistry & Biochemistry
dc.publisher.facultyArts and Science
dc.publisher.institutionUniversity of Bern
dc.publisher.institutionUniversity of Cincinnati
dc.publisher.institutionUniversity of Innsbruck
dc.publisher.institutionUniversity of Lethbridge
dc.publisher.urlhttps://doi.org/10.1093/nar/gkab1224
dc.subjectRibosomal RNAs
dc.subjectrRNA
dc.subjectRibosomes
dc.subjectE-coli
dc.titleDynamic 23S rRNA modification ho5C2501 benefits Escherichia coli under oxidative stress
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Willi-dynamic-23S.pdf
Size:
9.83 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections