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Abstract

Let A be a finitely-generated free abelian group, and let R be an integral domain. An

elliptic net is a map W : A −→ R with W (0) = 0, such that for all p, q, r, s ∈ A,

W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0.

Let E be an elliptic curve defined over a field K. Let P = (P1, P2, . . . , Pn) be an n-

tuple of points in E(K), the group of K-rational points on E. An important example

of an elliptic net is Ψ(P;E), the elliptic net associated to E and P.

In this thesis the following results are proved:

1. For an elliptic curve E defined over R and P = (P1, P2, . . . , Pn), an n-tuple of

linear independent points in E(R)n, let Ψ(P;E) be the elliptic net associated

to E and P. For v = (v1, v2, . . . vn) ∈ Zn we give an explicit formula for the sign

of Ψv(P;E), the value of Ψ(P;E) at v.

2. For any non-singular, non-degenerate elliptic net W : Zn −→ R and v =

(v1, v2, . . . vn) ∈ Zn we give a formula to compute the sign of W (v) up to the

sign of a quadratic form.

3. For a rank one elliptic net we prove that the distribution of the signs is uniform.

4. For an elliptic curve E defined over Q and an n-tuple of linear independent

points P = (P1, P2, . . . , Pn) in E(Q)n. For every prime ` let Pi (mod `) is non-

iv



DEDICATION

singular for each 1 ≤ i ≤ n. If (Dv·P ) is the elliptic denominator net associated

to E and P (defined in 5.2), we give a way to assign signs to the net (Dv·P )

such that it becomes an elliptic net.
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Chapter 1

Introduction and Statement of the
Results

1.1 Introduction

An elliptic divisibility sequence (Wn) is a sequence of integers satisfying the non-

linear recurrence

Wm+nWm−n = Wm+1Wm−1W
2
n −Wn+1Wn−1W

2
m (1.1)

for all m ≥ n ≥ 1 and such that Wn|Wm whenever n|m.

In 1948, M. Ward [14] introduced this concept of an elliptic divisibility sequence

and studied arithmetic properties of such sequences. He also studied the relation of

elliptic divisibility sequences with elliptic curves and elliptic functions. The following

are some examples of an elliptic divisibility sequences.

Example 1.1.1. Wn = (0) and Wn = (n) are trivial examples of elliptic divisibility

sequences. Some other examples are:

1. Wn = (n/3), where (n/p) is the Legendre symbol.

2. (Wn) = 1, 1,−1, 1, 2,−1,−3,−5, 7,−4,−23, 29, 59, 129,−314,−65, 1529,−3689, . . .

3. (Wn) = 1, 1, 2, 1,−7,−16,−57,−113, 670, 3983, 23647, 140576,−833503,−14871471

− 147165662,−2273917871, 11396432249, . . .

1



1.1. INTRODUCTION

A fundamental fact in Ward’s investigation was the connection of sequences satis-

fying (1.1) with elliptic curves and elliptic functions. For example elliptic divisibility

sequences in parts 2 and 3 in the above example are related to the elliptic curves given

by y2 + y = x3−x and y2 +xy+ y = x3 +x2− 416x+ 3009 respectively. The relation

is given via elliptic functions and is described in detail in Chapter 3. This was Ward’s

fundamental result in his memoir. More precisely Ward proved the following theorem.

Theorem 1.1.2 (Ward). Let (Wn) be a non-singular, non-degenerate elliptic divis-

ibility sequence. Then there is a lattice Λ ⊂ C and a complex number z ∈ C such

that

Wn =
σ(nz; Λ)

σ(z; Λ)n2 for all n ≥ 1. (1.2)

The function σ(z) in the above theorem is the Weierstrass σ-function defined in

Section 2.2.2. See Definitions 2.2.1, 3.1.2, and 3.2.5 for the other relevant definitions.

Let E/Q be an elliptic curve and let P ∈ E(Q) be a non-torsion point, where

E(Q) is the group of Q-rational points on E. Then for each n ≥ 1 we can write

nP =

(
AnP
D2
nP

,
BnP

D3
nP

)
,

(see Proposition 5.2.1).

The sequence (DnP ) is called the elliptic denominator sequence associated to E and

P . The construction of elliptic denominator sequences via rational points on elliptic

curves gives rise to a sequence of positive integers, whereas the recurrence (1.1) yields

a sequence of signed integers. It can be proved that (DnP ) is a divisibility sequence.

Moreover, Shipsey [8] showed that if the signs are chosen correctly then (DnP ) can

be made into an elliptic divisibility sequence. Thus it is interesting to know about

the behavior of the signs of an elliptic divisibility sequence. In [11] Silverman and

Stephens answered the question about the behavior of signs in an elliptic divisibility

sequence and they gave a formula for the signs of the terms of an elliptic divisibility

2



1.1. INTRODUCTION

sequence. In order to state their theorem we need the following definition.

Definition 1.1.3. Let x be any real number. Then the Parity of x is defined as

Sign(x) = (−1)Parity(x) with Parity(x) ∈ Z/2Z.

Observe that, Sign(x) = 1 if and only if Parity(x) ≡ 0 (mod 2) and Sign(x) = −1

if and only if Parity(x) ≡ 1 (mod 2).

Theorem 1.1.4 (Silverman-Stephens). Let (Wn) be an non-singular, non-degenerate

elliptic divisibility sequence. Then possibly after replacing (Wn) by the related sequence

((−1)n−1Wn), there is an irrational number β ∈ R so that the parity of Wn is given

by one of the following formulas:

Parity(Wn) = bnβc for all n.

Parity(Wn) =


bnβc+ n/2 if n is even,

(n− 1)/2 if n is odd,

where b.c denotes the greatest integer function.

The number β in the above theorem can be calculated explicitly using the elliptic

curve associated to (Wn) (see [11, Appendix A] for details on elliptic curves related

to (Wn)).

In 2008 K. Stange in her Ph.D. thesis [12] gave a higher-dimensional analogue of

elliptic divisibility sequences called elliptic nets. Thus generalizes the recurrence (1.1)

to the following recurrence relation

W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0,

3



1.2. STATEMENTS OF THE RESULTS

where W : A −→ R is a map from a finitely generated free abelian group A to an

integral domain R. She also generalized the concept of division polynomials to net

polynomials and using them she proved that under certain conditions there is a one

to one correspondence between elliptic nets and elliptic curves. In other words, there

exists a bijection which takes an elliptic net of rank n to the tuple of an elliptic curve

and n-points on it (See Section 3.5).

In this thesis, we generalize Theorem 1.1.4 to elliptic nets. More precisely, we give

a formula to compute the signs of the values of the net polynomials. Furthermore,

under some conditions we give a formula to compute the signs in an elliptic net up to

the sign of a quadratic form. We introduce some of the results proved in this thesis

in the next section.

1.2 Statements of the Results

The first result of this thesis gives a formula to compute the sign of any term of

an elliptic net Ψ(P;E) associated to an elliptic curve E and a collection of points P

on it (see Definition 3.4.4).

Theorem 1.2.1. Let E be an elliptic curve defined over R and Λ ⊂ C be its cor-

responding lattice. Let P = (P1, P2, . . . , Pn) be an n-tuple consisting of n linearly

independent points in E(R), and ui 7−→ Pi be the corresponding real numbers under

the isomorphism E(R) ∼= R/qZ. For v = (v1, v2, . . . , vn) ∈ Zn let Ψv(P;E) be the value

of the v-th net polynomial at P. Then there are n irrational numbers β1, β2, . . . , βn,

which are Q-linearly independent, given by the rules in the following table

so that, possibly after replacing Ψv(P;E) with (−1)

n∑
i=1

v2i −
∑

1≤i<j≤n

vivj − 1

Ψv(P;E), the

4



1.2. STATEMENTS OF THE RESULTS

q βi

0 < q < 1 logq |ui|

−1 < q < 0 1
2

log|q| ui

Table 1.1: Explicit expressions for βi

parity of Ψv(P;E) is given by one of the following formulas:

Parity(Ψv(P;E)) ≡

⌊
n∑
i=1

viβi

⌋
+

∑
1≤i<j≤n

bβi + βjcvivj (mod 2), (1.3)

Parity(Ψv(P;E)) ≡



∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n

bβi + βjcvivj

+
⌊ n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is even,

∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n

bβi + βjcvivj

+
k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is odd,

(1.4)

In the above theorem for a fixed elliptic curve E each irrational number βi corre-

sponds to the point Pi in E(R) and can be computed explicitly.

The next theorem gives a formula for the signs in any general non-singular, non-

degenerate elliptic net up to the sign of a quadratic form (see Definition 3.3.7).

Theorem 1.2.2. Let W : Zn −→ R be a non-singular, non-degenerate elliptic net.

Then possibly after replacing W (v) with f(v)W (v) for a quadratic form f : Zn −→ R∗

there are n irrational numbers β1, β2, · · · , βn given by the rule in the Table 1.1 and

can be calculated using an elliptic curve associated to W and points on it. Then the

5



1.2. STATEMENTS OF THE RESULTS

parity of W (v) is given by one of the following formulas:

Parity[W (v)] ≡

⌊
n∑
i=1

viβi

⌋
(mod 2).

Parity[W (v)] ≡


⌊ n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is even

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is odd .

The next two results are regarding the applications of our main theorems intro-

duced above. The first application is regarding the distribution of signs in an elliptic

net.

Theorem 1.2.3. Let W : Z −→ R be an elliptic sequence. Then the sequence

(Sign[W (n)]), of signs of the terms of an elliptic sequence, is uniformly distributed.

The next proposition gives a way to assign signs to each terms of an elliptic

denominator net so that it results in an elliptic net.

Proposition 1.2.4. Let E/Q be an elliptic curve. Let P = (P1, P2, . . . , Pn) be an

n-tuple of linear independent points in E(Q). Let ` be a prime so that Pi (mod `) is

non-singular for 1 ≤ i ≤ n. Define a map W (v) : Zn −→ Q as

W (v) = (−1)Parity[Ψv(P;E)]Dv·P ,

where Ψ(P;E) is the elliptic net associated to E and a collection of points P. Then

W (v) is an elliptic net.

The structure of the thesis is as follows.

In chapter 2 we give necessary background required to read this thesis. First two

sections deal with the theory of elliptic curves and elliptic functions. Third section

is devoted to the study of division polynomials. The last two sections of this chapter

6



1.2. STATEMENTS OF THE RESULTS

describe the product expansions and the geometry of elliptic curves defined over field

of real numbers.

In chapter 3 we define the concept of elliptic sequences and their generalizations to

elliptic nets. We also give details on elliptic divisibility sequences and state Silverman-

Stephens’ result regarding the sign of an elliptic divisibility sequence. This chapter

also deals with the constructions of net polynomials. Finally in the last section we

study the relationship between elliptic nets and elliptic curves.

In chapter 4 we state and prove the main results of this thesis. Our first main

result, Theorem 1.2.1, is regarding the signs in an elliptic net associated to an elliptic

curve and a collection of points on it. The second main result, Theorem 1.2.2, is

related to the signs in any non-singular, non-degenerate elliptic net. These theorems

generalize the result of Silverman-Stephens about the behavior of signs in an elliptic

divisibility sequence to the case of elliptic nets. Some examples illustrating the various

cases of the main theorem are also given in this chapter.

Finally in chapter 5 we give some applications to the results obtained in Chapter

4. First application, Theorem 1.2.3, is related to the distribution of the signs in an

elliptic net of rank 1. We prove that the signs in an elliptic net of rank 1 are uni-

formly distributed. The second application, Proposition 1.2.4, is regarding the elliptic

denominator net. We give a way to assign signs to terms of an elliptic denominator

net such that it becomes an elliptic net.

7



Chapter 2

Preliminaries

This chapter describes the background on elliptic curves and elliptic functions. To

know more on elliptic curves see [9] and [10]. Details on elliptic functions can be

found in [5]. We start with the section on elliptic curves.

2.1 Elliptic Curves

An elliptic curve defined over a field K, is a non-singular cubic curve in two

variables x and y of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where a1, a2, a3, a4, a6 ∈ K. There is a specified point O = [0 : 1 : 0] called point

at infinity. We denote an elliptic curve over K with E/K. Equation (2.1) is known

as the generalized Weierstrass equation of an elliptic curve. Geometrically the term

non-singular means that the graph of the curve has no cusp or self-intersection. When

working with the elliptic curve defined over a field of characteristic 6= 2, 3, there is a

simpler form of (2.1). If characteristic of underlying field is not equal to 2, we can

divide by 2 and complete the square as follows

(
y +

a1x

2
+
a3

2

)2

= x3 +

(
a2 +

a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x+

(
a2

3

4
+ a6

)
,

8



2.1. ELLIPTIC CURVES

which we can write as

y2
1 = x3 + a′2x

2 + a′4x+ a′6,

where y1 = y+ a1x/2 + a3/2 and a′2, a
′
4, a
′
6 are constants. Further if the characteristic

of the field is not 3, then by letting x1 = x + a′2/3 we get y2
1 = x3

1 + Ax1 + B, or

equivalently

y2 = x3 + Ax+B, (2.2)

for some constants A and B. Equation (2.2) is know as the Weierstrass equation of

an elliptic curve. Since E is non-singular, the cubic x3 + Ax + B does not have any

repeated roots, or equivalently, the discriminant of the Weierstrass equation (2.2)

given by ∆ = −16(4A3 + 27B2) is non-zero.

Definition 2.1.1. Let E/K be an elliptic curve given by f(x, y) = 0, where f(x, y) =

y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6. Let P be any point on the curve f(x, y) = 0.

We say that the P is a singular point if

∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

If P is not a singular point we call it non-singular.

Any elliptic curve can be equipped with a group law. The next section describes

this fact in detail.

2.1.1 The Group law for Elliptic Curves

Let E be an elliptic curve defined over a field K. Then

E(K) = {(x, y) ∈ K ×K | y2 = x3 + Ax+B} ∪ {O}

denotes the set of K-rational points on E. It is possible to define a group operation

on E(K). We define the composition law ⊕ on E(K) as follows:

9



2.2. ELLIPTIC FUNCTIONS

Let P,Q ∈ E(K), let L be the line through P and Q (if P = Q, let L be the

tangent line to E(K) at P ), and let R be the third point of intersection of L with

E(K). Let L′ be the line through R and O. Then L′ intersects E(K) at R,O, and a

third point. Denote that third point by P ⊕Q.

The next proposition give some properties of the above composition law under

which E(K) will be an abelian group.

Proposition 2.1.2. Let P,Q, and R be in E(K) and let O be the point at infinity.

Then the above described composition law ⊕ on E(K) has following properties.

(a) If a line L intersects E at the points P,Q,R (not necessarily distinct), then

(P ⊕Q)⊕R = O.

(b) P ⊕O = P.

(c) For every P in E(K), there is a point, denoted by 	P in E(K) such that

P ⊕ (	P ) = O.

(d) (P ⊕Q)⊕R = P ⊕ (Q⊕R).

(e) P ⊕Q = Q⊕ P

Thus (E(K),⊕) is an abelian group.

Proof. See [9, Chapter III, Proposition 2.2].

The composition law is given geometrically in Figure 2.1.

For the purpose of this thesis we are mostly interested in elliptic curves defined

over the fields C or R. Since an elliptic curve over R can also be viewed as an elliptic

curve over C, so for most parts we will be restricting our attention to the elliptic curves

defined over C. In the case that K = C, the group of C-rational points, denoted by

E(C) has a simple structure. In order to study elliptic curves over complex numbers

we need to introduce some topics form the theory of elliptic functions.

10



2.2. ELLIPTIC FUNCTIONS

Figure 2.1: Addition of points on an elliptic curve

2.2 Elliptic Functions

In order to define elliptic functions we need the following definitions. We start

with the concept of a lattice.

Definition 2.2.1. A lattice Λ is a discrete subgroup of C generated by ω1 and ω2.

That is

Λ = ω1Z + ω2Z = {mω1 + nω2 | m,n ∈ Z},

where ω1, ω2 ∈ C are R-linearly independent. [ω1, ω2] is called a basis for Λ.

Definition 2.2.2. A function f of a complex variable is called doubly periodic (with

respect to Λ) if

f(z + ω) = f(z)

for all z ∈ C and ω ∈ Λ.

Equivalently, we say that a function f is doubly periodic if and only if

f(z + ω1) = f(z + ω2) = f(z)

11



2.2. ELLIPTIC FUNCTIONS

for R-linearly independent ω1, ω2 ∈ C and z ∈ C.

Definition 2.2.3. A function f (with respect to Λ) is called an elliptic function if it

has the following two properties:

(a) f is doubly periodic.

(b) f is meromorphic (i.e., its singularities are only poles).

Definition 2.2.4. A fundamental parallelogram for Λ is a set of the form

F = {t1ω1 + t2ω2 | 0 ≤ t1, t2 < 1},

where ω1, ω2 are basis elements of Λ.

A different choice of basis for Λ will give a different fundamental parallelogram.

Any elliptic function f is completely determined by its values on a fundamental par-

allelogram. Next we will describe some properties of elliptic functions that we will be

using in this thesis. We start with the following theorem.

Theorem 2.2.5. Any elliptic function with no poles (or no zeros) is a constant func-

tion.

Proof. Let f be an elliptic function with no poles. Then f is holomorphic. Let F be

a fundamental parallelogram for a lattice Λ. Then by periodicity of f we have that

sup
z∈C
|f(z)| = sup

z∈F
|f(z)|,

where F is the closure of F . Since f is holomorphic and F is compact, so |f(z)|

is bounded on F . Thus |f(z)| is bounded on complex plane. Hence by Liouville’s

theorem (see [7, Theorem 8.27]) f is constant. Note that if f has no zeros then

1/f has no poles. Hence by the same argument 1/f is constant, which means f is

constant.

12



2.2. ELLIPTIC FUNCTIONS

The following is an immediate corollary of the above theorem.

Corollary 2.2.6. Two elliptic functions differ by a constant multiple if and only if

they have same zeros and poles.

Proof. Let f and g be two elliptic functions with the same zeros and poles. Then the

ratio f/g has no zeros or poles. Hence by the previous theorem f/g is a constant.

Theorem 2.2.7. The number of zeros of an elliptic function in any fundamental

parallelogram is equal to the number of its poles, each counted with multiplicity.

Proof. See [1, Chapter 1, Theorem 1.8].

Definition 2.2.8. The order of an elliptic function is the number of poles (counted

with multiplicity) it has in a fundamental parallelogram.

Constant functions are trivial examples of elliptic functions. Any non-constant

elliptic function will have order at least 2 (see [1, Chapter 1, Theorem 1.7] ). The most

important example of a non-constant elliptic function is the Weierstrass ℘-function,

which we will describe next.

2.2.1 Weierstrass ℘-function

Definition 2.2.9. For a given lattice Λ the Weierstrass ℘-function is defined by

℘(z) = ℘(z; Λ) :=
1

z2
+
∑
ω∈Λ
w 6=0

[
1

(z − ω)2
− 1

ω2

]
. (2.3)

In (2.3) the series converges absolutely and uniformly on every compact subset of

C \ Λ (see [9, Chapter 6, Theorem 3.1]). Thus it defines a meromorphic function on

C having a double pole at each lattice point with residue 0 and no other poles. Note

that

℘(−z) =
1

z2
+
∑
ω∈Λ
w 6=0

[
1

(z + ω)2
− 1

ω2

]
= ℘(z),

13



2.2. ELLIPTIC FUNCTIONS

as the above sum is over all the non-zero lattice points. Thus the Weierstrass ℘-

function is an even function. Next we observe that since the series for ℘(z) is uniformly

convergent on compact subsets of C \ Λ, we can differentiate (2.3) term by term.

Differentiating (2.3) with respect to z yields

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
. (2.4)

Note that ℘′(z) is a meromorphic function with poles of order 3 at each lattice points.

Moreover, since ℘′(−z) = −℘′(z), we see that ℘′(z) is an odd function.

Next we show that ℘ and ℘′ are elliptic functions. In (2.4) since ω runs over all

the lattice points we see that ℘′(z + ω) = ℘′(z) for all ω ∈ Λ. This shows that ℘′(z)

is an elliptic function. Integrating equation ℘′(z + ω) = ℘′(z) yields

℘(z + ω) = ℘(z) + C (2.5)

where C is a constant which may depends on ω. By setting z = −ω/2 in (2.5), and

using the fact that ℘(z) is even we get that C = 0. Thus ℘(z + ω) = ℘(z) for all

ω ∈ Λ. Hence ℘(z) is an elliptic function.

The addition and multiplication of two elliptic functions are elliptic functions. In

other words the collection of all elliptic functions forms a field. More precisely we

have the following important result.

Theorem 2.2.10. The collection of elliptic functions (with respect to Λ) forms a field

generated by ℘(z; Λ) and ℘′(z; Λ).

Proof. See [4, Theorem 2.1].

The above theorem says that every non-constant elliptic function can be written

as a rational expression in terms of ℘(z) and ℘′(z). There is an algebraic relation

between the functions ℘(z) and ℘′(z). To establish this relation we need the power

14
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series expansions for ℘(z) and ℘′(z). We start with the following definition.

Definition 2.2.11. The Eisenstein series of weight k for Λ is defined as

Gk(Λ) =
∑
w∈Λ
w 6=0

1

ωk
. (2.6)

It can be shown that Gk is absolutely convergent for k > 2 (see [1, Chapter 1,

Lemma 1]). Moreover, from (2.6) we can see that Gk = 0 for all odd values of k.

The Eisenstein series appear in the differential equation satisfied by the Weierstrass

℘-function, which also gives the relation between ℘-function and elliptic curves. More

precisely we have the following assertion.

Theorem 2.2.12. Let Λ ⊂ C be a lattice and ℘(z) be the Weierstrass function. We

have the following assertions:

(a) The Laurent expansion around z = 0 for ℘(z) is

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)G2n+2(Λ)z2n, (2.7)

where Gk is the Eisenstein series of weight k.

(b) The function ℘(z) satisfies the differential equation

(℘′(z))2 = 4℘3(z)− g2(Λ)℘(z)− g3(Λ), (2.8)

where g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

Proof. (a) For ω ∈ Λ, consider the disk 0 < |z| < |ω|. We have

℘(z) =
1

z2
+
∑
ω∈Λ
w 6=0

1

ω2

[(
1− z

w

)−2

− 1

]
.

15
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Expanding (1− z/w)−2 in the latter equation yields

℘(z) =
1

z2
+
∑
ω∈Λ
w 6=0

1

ω2

∞∑
n=1

(n+ 1)zn

ωn

=
1

z2
+
∞∑
n=1

(n+ 1)znGn+2(Λ).

Observing that Gk = 0 whenever k is odd, we have

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)G2n+2(Λ)z2n.

(b) First of all note that first few terms of the expansion of ℘(z) in part (a) can be

written as

℘(z) = z−2 + 3G4(Λ)z2 + 5G6(Λ)z4 + 7G8(Λ)z6 · · · . (2.9)

From here we have that

4℘(z)3 = 4z−6 + 36G4(Λ)z−2 + 60G6(Λ) + · · · . (2.10)

Next by differentiating (2.9) with respect to z and squaring we get

℘′(z)2 = 4z−6 − 24G4(Λ)z−2 − 80G4(Λ) + · · · . (2.11)

Define a function

f(z) = ℘′(z)2 − 4℘(z)3 + 60G4(Λ)℘(z) + 140G6(Λ). (2.12)

Using equations (2.9), (2.10), and (2.11) in (2.12) we see that the function f(z)

has no constant terms and no terms with negative powers of z. Thus f(z) has

16
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no poles and therefore it is holomorphic. On the other hand by Theorem 2.2.10

f(z) is an elliptic function. Thus by using Theorem 2.2.5 it must be a constant.

Letting z = 0 in (2.12) yields f(0) = 0, hence f is identically zero. Thus we get

the desired result.

The above theorem shows that the point (℘(z), ℘′(z)) lies on the curve defined by

the equation

EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ), (2.13)

and as long as the discriminant ∆ = 16(g3
2− 27g2

3) of the cubic on the right-hand side

of equation (2.13) is non-zero, (2.13) defines an elliptic curve over C. We will show

that ∆ is indeed not zero. In order to do this we need the following lemma.

Lemma 2.2.13. A complex number u, such that u 6≡ 0 (mod Λ), is a zero of ℘′(z) if

and only if u ≡ −u (mod Λ).

Proof. Let u be a complex number such that 2u ≡ 0 (mod Λ) but u 6≡ 0 (mod Λ).

Observe that for a lattice Λ = [ω1, ω2], the points

ω1

2
,
ω2

2
, and

ω3

2
,

where ω3 = ω1 + ω2, are the only points in a fundamental parallelogram with the

above property (i.e., u 6∈ Λ but 2u ∈ Λ). Next using the facts that ℘′ is odd and

periodic we see that

℘′(u) = ℘′(2u− u) = ℘′(−u) = −℘′(u)

2℘′(u) = 0 =⇒ ℘′(u) = 0.

Since ℘′(z) is an elliptic function of order 3, it has only three zeros in F , a fundamental

parallelogram. Hence the lemma.

17
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We will now prove our claim about non-vanishing of the discriminant ∆.

Proposition 2.2.14. The discriminant ∆ = 16(g3
2 − 27g2

3) of the cubic equation

4x3 − g2(Λ)x− g3(Λ) is non-zero.

Proof. Let Λ = [ω1, ω2] be a lattice, then from Lemma 2.2.13 we know that

ω1

2
,
ω2

2
, and

ω3

2

are the only zeros of ℘′(z), where ω3 = ω1 + ω2. Hence we see that

℘
(ω1

2

)
, ℘
(ω2

2

)
, and ℘

(ω3

2

)

are the roots of the equation (2.8). In order to prove that ∆ 6= 0 we need to show

that all three roots are distinct. For i = 1, 2, and 3 define a function

Pi(z) = ℘(z)− ℘
(ωi

2

)
.

Then Pi(z) is an elliptic function of order 2 (its poles are the poles of ℘(z)), thus by

Theorem 2.2.7, Pi(z) has exactly 2 zeros. Moreover, since Pi(ωi/2) = P ′i (ωi/2) = 0

we have that ωi/2 is a zero of order 2 of Pi(z) and there is no other zero of Pi(z).

Therefore Pi(z) 6= Pj(z) for i 6= j or equivalently ℘(ωi/2) 6= ℘(ωj/2) for i 6= j. Thus

all the roots of (2.8) are distinct. Hence ∆ = 16(g3
2 − 27g2

3) 6= 0.

The above proposition implies that (2.13) is an equation of an elliptic curve. Since

the functions ℘(z) and ℘′(z) depend only on the points z (mod Λ) then the map

z 7−→ (℘(z), ℘′(z)) define a function from C/Λ to EΛ(C). More precisely this map is a

complex analytic isomorphism which maps the points of C/Λ to the points in EΛ(C).

In fact we have the following very important theorem.

18
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Theorem 2.2.15 (Uniformization Theorem). Let E/C be an elliptic curve given

by E : y2 = x3 + ax+ b. Then there is a unique lattice Λ ⊂ C such that

g2(Λ) = 60G4 = −4a and g3(Λ) = 140G6(Λ) = −4b.

The map

ϕ : C/Λ −→ E(C)

z 7−→
(
℘(z),

1

2
℘′(z)

)
0 7−→ O

is a complex analytic isomorphism.

Proof. See [10, Chapter I Corollary 4.3].

In other words, to every elliptic curve over C we can associate a lattice Λ and

conversely every lattice Λ gives rise to an elliptic curve E/C. The group law on E(C)

corresponds to the usual addition in C/Λ.

Next we define another very important function in the theory of elliptic functions.

2.2.2 Weierstrass σ-function

Definition 2.2.16. The Weierstrass σ-function (associated to a lattice Λ) is defined

as

σ(z) = σ(z; Λ) := z
∏
ω∈Λ
ω 6=0

(
1− z

ω

)
e

z
ω

+ 1
2( z

ω )
2

, (2.14)

where z is a complex variable.

The Weierstrass σ-function is of much importance to us because an elliptic divis-

ibility sequence can be parametrized using it. Therefore we will study the properties

of Weierstrass σ-function in detail. We start with the following proposition.
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Proposition 2.2.17. Let Λ ⊂ C be a fixed lattice. Let σ(z) be the corresponding

Weierstrass σ-function. Then the following statements holds.

(a) The infinite product (2.14) for σ(z) defines a holomorphic function on C. The

function σ(z) has simple zeros at each lattice point and no other zeros.

(b) For all z ∈ C \ Λ we have

d2

dz2
log σ(z) = −℘(z).

(c) For all z ∈ C and for every ω ∈ Λ there are constants a, b ∈ C, depending on ω,

such that

σ(z + ω) = eaz+bσ(z). (2.15)

(d) The function σ(z) is an odd function ( i.e., σ(−z) = −σ(z)).

Proof. (a) See [9, Chapter 6, Lemma 3.3].

(b) Taking logarithm in (2.14) yields

log σ(z) = log z +
∑
ω∈Λ
ω 6=0

[
log
(

1− z

ω

)
+
z

ω
+

1

2

( z
ω

)2
]
.

Using (a) we can differentiate the above series, twice with respect to z, to get

d

dz
log σ(z) =

1

z
+
∑
ω∈Λ
ω 6=0

[
1

z − ω
+

1

ω
+

z

ω2

]
. (2.16)

Differentiating again with respect to z yields

d2

dz2
log σ(z) = − 1

z2
−
∑
ω∈Λ
ω 6=0

[
1

(z − ω)2
− 1

ω2

]
= −℘(z). (2.17)

20



2.2. ELLIPTIC FUNCTIONS

(c) Using the fact that ℘(z) is periodic, from part (b) we have

d2

dz2
log σ(z + ω) = −℘(z + ω) = −℘(z) =

d2

dz2
log σ(z).

Integrating, last equation, twice with respect to z yields

log σ(z + ω) = log σ(z) + az + b,

where a and b are constants. The result follows by exponentiating the above

equation.

(d) We have

σ(−z) = −z
∏
ω∈Λ
ω 6=0

(
1 +

z

ω

)
e

−z
ω

+ 1
2(−z

ω )
2

.

The above expression is equal to −σ(z), since the product is taken over all the

non-zero lattice points.

We continue by introducing another important function form the theory of elliptic

functions.

Definition 2.2.18. The Weierstrass ζ-function for lattice Λ is defined as

ζ(z) = ζ(z; Λ) :=
1

z
+
∑
ω∈Λ
ω 6=0

[
1

z − ω
+

1

ω
+

z

ω2

]
, (2.18)

where z is a complex variable.

The following proposition describes the main properties of the Weierstrass ζ-

function.

Proposition 2.2.19. (a) The series defining ζ(z) is absolutely and uniformly con-

vergent on the compact subsets of C \ Λ.
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(b) The function ζ(z) defines a meromorphic function on C with simple poles at each

point of lattice Λ and no other poles.

Proof. See [10, Proposition 5.1].

From (2.16) and (2.17) we see that there is a relation between Weierstrass’s func-

tions ℘(z), σ(z), and ζ(z). The next proposition describes these relations. Moreover,

we introduce an another function called Weierstrass’s η-function.

Proposition 2.2.20. Let ℘(z), σ(z), and ζ(z) be the Weierstrass’s functions as de-

fined earlier,

(a) We have

(i)
d

dz
log σ(z) = ζ(z), (ii)

d

dz
ζ(z) = −℘(z), (iii) ζ(−z) = −ζ(z)

(b) For all z ∈ C and for all ω ∈ Λ there exists a function of ω, denoted by η(ω),

satisfying

ζ(z + ω) = ζ(z) + η(ω). (2.19)

(c) The map η : Λ −→ C has the following properties:

(i) It is a homomorphism form Λ into C.

(ii) If ω ∈ Λ and ω 6∈ 2Λ, then η(ω) is given by the formula

η(ω) = 2ζ(ω/2). (2.20)

(iii) Let Λ = Zω1 + Zω2 be a lattice with [ω1, ω2] satisfying =(ω1/ω2) > 0. Then

ω1η(ω2)− ω2η(ω1) = 2πi. (2.21)

Proof. (a) Part (i) and (ii) can be seen from (2.16) and (2.16). Part (iii) is a c

consequence of the definition of ζ(z).
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(b) From part (a) we have that

d

dz
ζ(z + ω) = −℘(z + ω) = −℘(z) =

d

dz
ζ(z).

By integrating both sides of the above equation respect to z we get that

ζ(z + ω) = ζ(z) + η(ω),

where η(w) depends only on ω.

(c) Let η : Λ −→ C be the function as introduced above. Then

(i) Let ω1, ω2 ∈ Λ, then

η(ω1 + ω2)− η(ω1) = ζ(z + ω1 + ω2)− ζ(z)− ζ(z + ω1) + ζ(z)

= ζ(z + ω1 + ω2)− ζ(z + ω1)

= η(ω2).

(ii) Note that ω 6∈ 2Λ is equivalent to ω/2 6∈ Λ and by Proposition 2.2.19(b) the

function ζ(z) is holomorphic for all the points not in the lattice. Therefore

by setting z = −ω/2 in (2.19) and using the fact that ζ is an odd function

we get the result.

(iii) See [10, Proposition 5.2(d)].

The function η introduced in (2.19) is called the quasi-period homomorphism for

Λ. We are now in a position to prove a transformation property for the Weierstrass

σ-function. We know that the function σ(z) is not elliptic because it does not have

any poles. From (2.15) it is clear that σ(z) is also not periodic. However it satisfies

a transformation formula given by the next proposition.
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Proposition 2.2.21. Let Λ ⊂ C be a lattice and σ(z) be the Weierstrass σ- function,

then for all z ∈ C and ω ∈ Λ,

σ(z + ω; Λ) = λ(ω)eη(ω)(z+ 1
2
ω)σ(z; Λ), (2.22)

where η : Λ −→ C is the quasi-period homomorphism for Λ, and λ : Λ −→ {±1} is

given by

λ(ω) =


1 if ω ∈ 2Λ,

−1 if ω /∈ 2Λ.

Proof. Using parts (a) and (b) of Proposition 2.2.20 we can write

ζ(z + ω) = ζ(z) + η(ω)

d

dz
log σ(z + ω) =

d

dz
log σ(z) + η(ω).

Integrating and taking exponential we get

σ(z + ω; Λ) = Ceη(ω)zσ(z; Λ),

where C is a constant which may depend upon ω. We consider two cases. First, if

ω 6∈ 2Λ or equivalently ω/2 6∈ Λ, then σ(z) does not vanish at ±ω/2. Hence by setting

z = −ω/2 we get

σ
(ω

2
; Λ
)

= Ce−
1
2
η(ω)ωσ

(
−ω

2
; Λ
)
.

Since σ(z) is an odd function we have that

C = −e
1
2
η(ω)ω.

Second, if ω ∈ 2Λ or equivalently ω/2 ∈ Λ, then σ(z) has a simple zero at ±ω/2.
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Employing L’Hôpital’s rule yields

Ce−
1
2
η(ω)ω = lim

z→−ω/2

σ(z + ω; Λ)

σ(z; Λ)
= lim

z→−ω/2

σ′(−ω/2; Λ)

σ′(−ω/2; Λ)
= 1. (2.23)

Here we have used the fact that σ′(z) is even. Hence (2.23) we find that

C = e
1
2
η(ω)ω.

Combining the two cases finishes our proof.

We have already mentioned that the Weierstrass σ-function is of much interest

for us because elliptic divisibility sequences can be parametrized by the Weierstrass

σ-function. In order to establish that relation we need the concept of division poly-

nomials. In the theory of elliptic divisibility sequences division polynomials play a

significant role because the terms of an elliptic divisibility sequence can be realized as

the values of division polynomials. Moreover, division polynomials can be written as

rational functions in terms of the σ-function.

2.3 Division Polynomials

Division polynomials can be formulated in two different ways. One way is analytic

and uses the Weierstrass ℘-function. The other is algebraic, in which for any generic

point (x, y) the multiple n(x, y) can be expressed as rational functions in x and y,

and the denominators of these rational functions give rise to division polynomials.

Here we will define division polynomials analytically using elliptic functions and later

in this section we give algebraic formulation of them. We start with the following

definitions.

Definition 2.3.1. Let E/C be an elliptic curve. For each n ∈ Z define multiplication
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by n map

[n] : E(C) −→ E(C)

as follows. If n > 0 and P ∈ E(C), we have

[n]P = P + P + · · ·+ P︸ ︷︷ ︸
n-times

.

If n < 0 then [n]P = [−n](−P ). We also define [0]P = O.

Definition 2.3.2. Let n be an integer and P be a point in E(C). Then P is called

an n-torsion point if [n]P = O.

Definition 2.3.3. Let E/C be an elliptic curve and n ∈ Z \ {0}. The set of n-torsion

points, denoted by E[n], is defined as

E[n] = {P ∈ E(C) | [n]P = O}.

The set E[n] is a subgroup of E(C). Henceforth we will write nP for [n]P.

In order to define division polynomials we will start by employing the Weierstrass

℘-function to construct a certain elliptic function. The next proposition shows the

existence of such elliptic function fn(z) that can be written as polynomials in terms

of ℘(z) and ℘′(z), for a complex variable z.

Proposition 2.3.4. There exists an elliptic function fn, for each integer n ≥ 1, such

that

fn(z)2 = n2
∏

u∈(C/Λ)[n]
u6=0

(℘(z)− ℘(u)) , (2.24)

where (C/Λ)[n] is the subgroup of elements u ∈ C/Λ such that nu ≡ 0 mod Λ.

Furthermore

(a) fn = n℘(n2−1)/2 + . . . if n is odd.
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(b) fn =
n

2
℘′℘(n2−4)/2 + . . . if n is even.

(c) In all cases, the expansion of fn at z = 0 is of the form

fn(z) =
(−1)n+1n

zn2−1
+ · · · . (2.25)

Proof. See [4, Chapter II, Section 1].

In the next proposition we describe another relation between ℘(z) and fn(z).

Proposition 2.3.5. We have

℘(z)− ℘(nz) =
fn+1(z)fn−1(z)

f 2
n(z)

. (2.26)

Proof. First of all recall that Weierstrass ℘-function has a double pole at each lattice

point and no other pole. Next observe that for z 6≡ 0 (mod Λ) (i.e., z is not a lattice

point) the function

℘(z)− ℘(nz)

has the following properties:

(i) It has n2 double poles located at the n-torsion points of C/Λ, which exactly are

the zeros of f 2
n(z) with the multiplicity 2.

(ii) It has 2n2 simple zeros at z such that z ≡ ±nz (mod Λ). These are points z

such that

(n+ 1)z ≡ 0 (mod Λ) and (n− 1)z ≡ 0 (mod Λ),

which are the zeros of the functions fn+1(z) and fn−1(z). Hence, by Theorem 2.2.10,

the function

f 2
n(z)(℘(nz)− ℘(z))

fn+1(z)fn−1(z)
(2.27)

27



2.3. DIVISION POLYNOMIALS

is elliptic and has no zeros or poles other than 0 in C/Λ. Thus by Theorem 2.2.5 it is a

constant. To evaluate the constant observe that using (2.7) and (2.25) the expansion

of (2.27) at 0 is given by

n2(−n2 + 1)/n2

(n+ 1)(n− 1)
= −1.

Hence the result follows.

The next proposition establishes a fundamental identity for fn(z).

Proposition 2.3.6. For m > n, we have

fm+nfm−n = fm+1fm−1f
2
n − fn+1fn−1f

2
m. (2.28)

Proof. From (2.26) we have

℘(z)− ℘(nz) =
fn+1(z)fn−1(z)

f 2
n(z)

and

℘(z)− ℘(mz) =
fm+1(z)fm−1(z)

f 2
m(z)

.

Subtracting the above two identities yields

℘(mz)− ℘(nz) =
fm+1(z)fm−1(z)f 2

n(z)− fn+1(z)fn−1(z)f 2
m(z)

f 2
m(z)f 2

n(z)
. (2.29)

Observe that the function ℘(mz)− ℘(nz) has a zero at those points such that

mz ≡ ±nz 6≡ 0 (mod Λ).

For such a point note that

m℘′(mz)− n℘′(nz) 6= 0,
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so a point (m ± n)z ≡ 0 (mod Λ) is a simple zero of the function ℘(mz) − ℘(nz).

Since mz ≡ ±nz 6≡ 0 (mod Λ), therefore fm(z) and fn(z) can not have zeros at

(m± n)z ≡ 0 (mod Λ). Hence these points are the zeros of

fm+1(z)fm−1(z)f 2
n(z)− fn+1(z)fn−1(z)f 2

m(z). (2.30)

On the other hand (m± n)z ≡ 0 (mod Λ) are zeros of

fm+n(z)fm−n(z). (2.31)

Furthermore, note that (2.30) and (2.31) are polynomial in ℘ so they have poles only

at lattice points. Hence (2.30) and (2.31) are constant multiple of each other. The

expansion for the quotient of (2.30) over (2.31) gives 1 as the constant. Thus Theorem

2.2.5 yields the desired result.

Note that (2.28) is the same recurrence relation as in the definition of an elliptic

divisibility sequence.

Definition 2.3.7. For all n ≥ 1, we define the function ψn : E(C) → C by the

relation

ψn(x, y) = fn(z), where x = ℘(z) and y =
1

2
℘′(z).

The function ψn is called the n-th division polynomial associated to E and a generic

point (x, y).

The map (x, y) 7−→
(
℘(z), 1

2
℘′(z)

)
is well defined by using Theorem 2.2.15.

Division polynomials are closely related to torsion points. A point P is an n-torsion

point of E(C) if and only if the n-th division polynomial associated to E vanishes at

P. We are specifically interested in points which are not sent to the identity element

(infinity) of E(C) by any integer. Such points are called non-torsion points.
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In the next section we give algebraic formulas for division polynomials.

2.3.1 Algebraic Formulation of Division Polynomials

The expressions obtained in the previous section about division polynomials are all

in terms of the Weierstrass ℘-function and its derivative ℘′. However using Theorem

2.2.15 (Uniformization Theorem) we can give the algebraic formulation of the division

Polynomials. Let E be an elliptic curve given by the equation E : y2 = x3 + ax + b.

Let ℘(z; Λ) be the Weierstrass ℘-function. Then by Theorem 2.2.15 we may let

x = ℘(z), y =
1

2
℘′(z), a = −1

4
g2(Λ), b = −1

4
g2(Λ).

It can be shown that the division polynomials ψn can be constructed algebraically

using initial values

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2),

and to calculate rest of terms inductively as

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 for n ≥ 2, (2.32)

ψ2nψ2 = ψn(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1) for n ≥ 3. (2.33)

The division polynomials have several interesting properties. The next theorem sum-

marizes the main properties of division polynomials.

Theorem 2.3.8. Let P = (x, y) be a point on the elliptic curve y2 = x3 +ax+ b, and

let n be a positive integer. Then
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(a)

n(x, y) =

(
φn(x, y)

ψ2
n(x, y)

,
ωn(x, y)

ψ3
n(x, y)

)
,

where

φn = xψ2
n − ψn+1ψn−1,

and

ωn = (4y)−1(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1).

(b) The expressions φn, ψn, y
−1ωn (for n odd), and φn, (2y)−1ψn, ωn (for n even) are

polynomials in Z[a, b, x, y2]. Hence, replacing y2 with x3 + ax + b, they are poly-

nomials in Z[a, b, x].

(c) For all m > n > r, ψn satisfies

ψm+nψm−nψ
2
r = ψm+rψm−rψ

2
n − ψn+rψn−rψ

2
m.

Proof. See [4, Theorem 2.1].

Theorem 2.3.9. Let E/C be an elliptic curve and let ψn be the n-th division poly-

nomial. Considered as a function on C/Λ,

ψn

(
℘(z),

1

2
℘′(z)

)
= fn(z) = (−1)n+1 σ(nz; Λ)

σ(z; Λ)n2 .

Proof. First of all observe that using (2.22) we have

σ(nz + nω; Λ)

σ(z + ω; Λ)n2 =
λ(nω)eη(nω)(nz+ 1

2
nω)σ(nz; Λ)

(λ(ω)eη(ω)(z+ 1
2
ω)σ(z; Λ))n2

=
λ(nω)σ(nz; Λ)

λ(ω)n2σ(zΛ)n2 .

If ω, nω /∈ 2Λ, then we see that n is odd, so λ(ω)n
2

= λ(nω) = −1. If ω /∈ 2Λ but

nω ∈ 2Λ, then n must be even, and so λ(ω)n
2

= λ(nω) = 1. Finally, if ω ∈ 2Λ, then
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nω ∈ 2Λ, and λ(ω) = λ(nω) = 1. Thus in all cases we have

λ(nω)

λ(ω)n2 = 1

. In conclusion

σ(nz + nω; Λ)

σ(z + ω; Λ)n2 =
σ(nz; Λ)

σ(z; Λ)n2 .

This means that σ(nz; Λ)/σ(z; Λ)n
2

is an elliptic function. From (2.24) we have that

fn(z)2 = n2
∏

u∈(C/Λ)[n]
u6=0

(℘(z)− ℘(u)) ,

where (C/Λ)[n] is the subgroup of elements u ∈ C/Λ such that nu ≡ 0 mod Λ. We

will compare the zeros and poles of fn(z) and σ(nz; Λ)/σ(z; Λ)n
2
. The function fn(z)

has zero at 0 6= u ∈ (C/Λ)[n]. There are n2 − 1 such points. In other words z is zero

of fn(z) for nz ∈ Λ, which are precisely the zeros of σ(nz; Λ)/σ(z; Λ)n
2
. Since σ(z; Λ)

does not have any poles so the only poles for the function σ(nz; Λ)/σ(z; Λ)n
2

are the

zeros of the denominator, which are the points z ∈ Λ. Each z ∈ Λ is a pole of order

n2 − 1 for fn(z). Hence using Corollary 2.2.6 we see that

fn(z) = C
σ(nz; Λ)

σ(z; Λ)n2 .

Using equations (2.14) and (2.25)

(−1)n+1n

zn2−1
+ · · · = C

nz
∏

ω∈Λ
ω 6=0

(
1− nz

ω

)
e

nz
ω

+ 1
2(nz

ω )
2

zn2
∏

ω∈Λ
ω 6=0

(
1− z

ω

)n2

e
n2z
ω

+ 1
2(nz

ω )
2 .
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After simplification we get

(−1)n+1 = C
∏
ω∈Λ
ω 6=0

(
1− nz

ω

)(
1− z

ω

)−n2

e
nz
ω
−n2z

ω

. Taking z → 0 we get that C = (−1)n+1, which proves the result.

2.4 q-Expansions

In this section we describe q-product expansions or q-expansions of some elliptic

functions. The q-expansion of the Weierstrass σ-function was a major tool in the proof

of Silverman-Stephens’ theorem for the sign of terms of an elliptic divisibility sequence.

The q- expansions will also play an important role in the proof of the main theorem

of this thesis. Study of q-expansions will also lead us to another uniformization for

elliptic curves which we will describe in this section. We start with the following

definition.

Definition 2.4.1. Two lattices Λ1 and Λ2 are called homothetic if there exists α ∈ C∗

such that

Λ1 = αΛ2.

Proposition 2.4.2. Let Λ = ω1Z + ω2Z be any lattice. Then Λ is homothetic to

the lattice Λτ = τZ + Z (generated by τ and 1) where τ is in the upper half plane

H = {z ∈ Z | =(z) > 0}.

Proof. Since for any lattice Λ = ω1Z + ω2Z the complex numbers ω1 and ω2 are

linearly independent over R. One of the numbers ω1/ω2 or ω2/ω1 will be in the upper

half plane. Without loss of generality we assume that the number ω1/ω2 is in the
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upper half plane. Let τ = ω1/ω2 ∈ H and define

Λτ = τZ + Z

be the lattice generated by τ and 1. Then the lattices Λ and Λτ are homothetic since

Λτ =
1

ω2

Λ.

Definition 2.4.3. A lattice is called normalized if one of its generators in 1.

Let Λ = ω1Z + ω2Z be any lattice such that =(ω1/ω2) > 0. Let Λτ = τZ + Z

be a normalized lattice, where τ = ω1/ω2. Then the multiplication map z 7−→ ω2z

from C/Λ −→ C/Λτ is an isomorphism and carries field of elliptic functions for Λ

isomorphically to the filed of elliptic functions for Λτ . Let ℘(z; Λτ ) and σ(z; Λτ ) be

the Weierstrass functions for lattice Λτ . From now on for simplicity we will denote

℘(z; Λτ ) by ℘(z, τ) and σ(z; Λτ ) by σ(z, τ). We observe that the functions ℘ and σ

can be considered as functions of two variables (z, τ) ∈ Z×H.

Since 1 ∈ Λτ and ℘(z) is periodic we see that ℘-function satisfies the relation

℘(z + 1, τ) = ℘(z, τ).

Thus we can expand ℘ as a Fourier series in the variable u = e2πiz. Furthermore,

observe that since (τ +1)Z+Z = τZ+Z we have Λτ+1 = Λτ , thus ℘-function satisfies

℘(z, τ + 1) = ℘(z, τ).

Consequently, as a function of τ , the function ℘ has a Fourier expansion in terms of

a variable q = e2πiτ as well. More precisely, let

u = e2πiz and q = e2πiτ
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and let

qZ = {qk | k ∈ Z}

be the cyclic subgroup generated by q of the multiplicative group C∗. Observe that

since τ ∈ H we have |q| < 1. Observe that under the exponential map z 7−→ e2πiz

form C −→ C∗ with kernel Z, the lattice Λτ is mapped to infinite cyclic group qZ.

Thus there is a complex analytic isomorphism

C/Λτ
∼−→ C∗/qZ

z 7−→ e2πiz.

Using this isomorphism, the next two theorems give the formula for the ℘-function

and σ-function in terms of variables u and q in C∗/qZ.

Theorem 2.4.4. Let u = e2πiz and q = e2πiτ .

(a) Then for ℘ we have

1

(2πi)2
℘(u, q) =

∑
n∈Z

qnu

(1− qnu)2
− 2

∑
n≥1

qn

(1− qn)2
+

1

12
. (2.34)

(b) For ℘′ we have

1

(2πi)3
℘′(u, q) =

∑
n∈Z

qnu(1 + qnu)

(1− qnu)3
. (2.35)

Proof. See [10, Chapter 1, Theorem 6.2].

Theorem 2.4.5. The q-product expansion for the σ-function is given by

σ(u, q) = − 1

2πi
e

1
2
ηz2−πiz(1− u)

∏
m≥1

(1− qmu)(1− qmu−1)

(1− qm)2
.

Proof. See [10, Chapter I, Theorem 6.4].
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Theorem 2.4.4 can be used to describe another uniformization for elliptic curves

over C. Let E/C be an elliptic curve corresponding to a normalized lattice Λτ = τZ+Z.

From Theorem 2.2.15 we know that C/Λτ
∼= E(C), thus have that C∗/qZ ∼= E(C).

More precisely, there is an isomorphism

C∗/qZ ∼−→ E(C)

u 7−→ (℘(u, q), ℘′(u, q)),

where the power series expansions of ℘(u, q) and ℘′(u, q) are given by (2.34) and

(2.35).

2.5 Geometry of E(R)

In this section, we will study some elementary facts for an elliptic curve E defined

over R. Since an elliptic curve defined over R can be viewed as an elliptic curve defined

over C, we can use the isomorphism E(C) ∼= C∗/qZ to classify elliptic curves over R.

For any q = e2πiτ let Eq be the elliptic curve defined as

Eq : y2 + xy = x3 + a4(q)x+ a6(q),

where a4(q) and a6(q) are the power series given by

a4(q) = −5
∑
n≥1

n3qn

1− qn

a6(q) = − 5

12

∑
n≥1

n3qn

1− qn
− 7

12

∑
n≥1

n5qn

1− qn
.

Let

φ : C∗/qZ ∼−→ Eq(C) (2.36)

u 7−→ (X(u, q), Y (u, q)) (2.37)
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be the C-analytic isomorphism, where

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2

∑
n≥1

qn

(1− qn)2
,

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)2
+
∑
n≥1

qn

(1− qn)2
.

(See [10, Chapter 5, Theorem 1.1] for a proof).

Then the following theorem will play a very important role in our investigation.

Theorem 2.5.1. Let E/R be an elliptic curve. Then the following assertions hold.

(a) There is a unique q ∈ R with 0 < |q| < 1 such that

E ∼=/R Eq

(i.e., E is R-isomorphic to Eq.)

(b) The composition of the isomorphism in part (a) with the isomorphism φ defined

in (2.36), yields an isomorphism

ψ : C∗/qZ ∼−→ E(C)

which commutes with complex conjugation. Thus ψ is defined over R and more-

over,

ψ : R∗/qZ ∼−→ E(R)

is an R-analytic isomorphism.

Proof. See [10, Chapter V, Theorem 2.3].

We are interested in describing the shape of the group of the R-rational points

E(R).
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Let E/R be an elliptic curve given by the Weierstrass equation

E : y2 = x3 + ax+ b. (2.38)

The geometry of E(R) depends upon the roots of the cubic equation x3 + ax+ b = 0.

Recall form Section that E is non-singular if and only if the cubic x3 + ax + b does

not have any repeated roots, or equivalently, the discriminant ∆(E) = −(4a3 + 27b2)

is non-zero. If the cubic x3 + ax + b has three real roots (i.e., ∆(E) > 0) then E is

disconnected and will have two components. On the other hand if cubic x3 + ax + b

has only one real root (i.e., ∆(E) < 0) then E is connected. Figure 2.2 represents the

connected elliptic curve y2 = x3 − x + 1 with ∆ = −368. The disconnected elliptic

curve y2 = x3 − x with two components and ∆ = 64 is shown in Figure 2.3. We will

be using the following definition in later part of this thesis.

Figure 2.2: Elliptic Curve given by y2 = x3 − x+ 1

Next proposition summarizes the geometry of E(R) and its relation with q = e2πiτ

defined in Section 2.4.

Proposition 2.5.2. Let E/R be an elliptic curve given by (2.38). Let ∆(E) be the
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Figure 2.3: Elliptic Curve given by y2 = x3 − x

discriminant of Weierstrass equation of E/R. Then there is an isomorphism of real

Lie groups

E(R) ∼=


R/Z if ∆(E) < 0

(R/Z)× (Z/2Z) if ∆(E) > 0.

Proof. From Theorem 2.5.1 we have that for any elliptic curve E/R there is a unique

q ∈ R with 0 < |q| < 1 and an elliptic curve Eq such that E ∼=R Eq. Then using

Jacobi’s product formula (see [10, Chapter I, Theorem 8.1]) we have

u12∆(E) = ∆(Eq) = q
∏
n≥1

(1− qn)24

for some u ∈ R. Hence

Sign ∆(E) = Sign ∆(Eq) = Sign q.
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By [10, Chapter V, Theorem 2.3(b)] there is an isomorphism

E(R) ∼= Eq(R) ∼= R∗/qZ.

Thus using the following isomorphisms result follows:

R∗/qZ −→ R/Z; u 7−→ 1

2

(
log |u|
log |q|

− sign(u) + 1

)
(mod Z) if q < 0,

R∗/qZ −→ (R/Z)× {±1}; u 7−→
(

log |u|
log q

(mod Z), sign(u)

)
if q > 0.
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Chapter 3

Elliptic Sequences and Elliptic Nets

3.1 Elliptic Sequences

Definition 3.1.1. An elliptic sequence over an integral domain R is any sequence

(Wn), with Wn ∈ R, satisfying the homogeneous recurrence relation

Wm+nWm−nW
2
1 = Wm+1Wm−1W

2
n −Wn+1Wn−1W

2
m, m > n > 0. (3.1)

Moreover, we can extend an elliptic sequence (Wn) backwards by setting W0 = 0 and

W−n = −Wn over R.

Definition 3.1.2. We say that an elliptic sequence is non-degenerate if W1W2W3 6= 0.

Furthermore, if W1 = 1. we call it a normalized elliptic sequence.

We give some examples of elliptic sequences.

Example 3.1.3. Wn = (0) and Wn = (n) are trivial examples of elliptic sequences.

Some other examples are

1. Wn = (n/3), where (n/p) is the Legendre symbol.

2. Wn = (−8/n), where (d/n) is the Kronecker symbol.

3. Wn = ψn(P ), where ψn(P ) is the value of n-th division polynomial evaluated at

P for an elliptic curve E/K and point P ∈ E(K) (see Section 2.3).
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Note that, if (Wn) is an elliptic sequence over a field K, then the sequences (aWn)

and (bn
2
Wn) are also elliptic sequences for a and b in K. Furthermore, observe that

if (Wn) is an elliptic sequence over R then the sequence (Wn/W1) is a normalized

elliptic sequence over K, where K is the field of fractions of R.

The next proposition shows that certain elliptic sequences can be completely de-

termined by their four initial terms.

Proposition 3.1.4. Let (Wn) be an elliptic sequence over R with W1W2 6= 0. Then

Wn satisfies the following two recurrences

W2n+1W
3
1 = Wn+2W

3
n −Wn−1W

3
n+1 n ≥ 1, (3.2)

W2nW2W
2
1 = Wn(Wn+2W

2
n−1 −Wn−2W

2
n+1) n ≥ 2. (3.3)

Moreover, (Wn) is completely determined by initial values W1,W2,W3, and W4.

Proof. First observe that by replacing m by n + 1 in (3.1) we obtain the recurrence

(3.2). Second, if we replace m with n + 1 and n with n − 1 in (3.1), the resultant

recurrence is (3.3). If W1W2 6= 0 then the fact that (Wn) is completely determined

by initial values W1,W2,W3, and W4 can be seen by using induction on recurrences

(3.2) and (3.3).

In the above proposition we saw that if a sequence (Wn) satisfy (3.1) it will also

satisfy (3.2) and (3.3). The converse of the above fact is also true. In other words, it

can also be shown that for a sequence (Wn) to be an elliptic sequence it is enough to

show that Wn satisfy (3.2) and (3.3) (see [9, Chapter III, Exercise 3.34]).

In the case when R = Z, an elliptic sequence, with an additional condition of

divisibility has many interesting properties. This leads to the concept of an elliptic

divisibility sequence. The next section is devoted to the study of elliptic divisibility

sequences.
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3.2 Elliptic Divisibility Sequences

In [14] gave a complete description of elliptic divisibility sequences. In this section

we describe some of his results. We start with some definitions.

Definition 3.2.1. An integer sequence (Dn) is called a divisibility sequence if Dm|Dn

whenever m|n.

Definition 3.2.2. An integer elliptic sequence (Wn) is called an elliptic divisibility

sequence if it is also a divisibility sequence.

As in the case of elliptic sequences an elliptic divisibility sequence is completely

determined by its initial values W1,W2,W3, and W4. In other words, given any integers

W1,W2,W3, and W4 (under certain conditions) we can create an elliptic divisibility

sequence. More precisely we have the following theorem

Theorem 3.2.3. Let (Wn) be a sequence with W0 = 0,W1 = 1 and W2,W3 6= 0 such

that (Wn) is a solution of the recurrence

Wm+nWm−n = Wm+1Wm−1W
2
n −Wn+1Wn−1W

2
m, m ≥ n ≥ 1. (3.4)

Then (Wn) is an elliptic divisibility sequence if and only if W2,W3, and W4 are

integers and W2|W4.

Proof. See [14, Theorem 4.1].

It is known that a generic elliptic divisibility sequence can be realized as values of

division polynomials. This important fact was proved by Ward [14] in 1948. In order

to state Ward’s result we need the following definition.

Definition 3.2.4. The Discriminant of an elliptic divisibility sequence (Wn) is defined
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by

Disc(Wn) = W4W
15
2 −W 3

3W
12
2 + 3W 2

4W
10
2 − 20W4W

3
3W

7
2

+ 3W 3
4W

5
2 + 16W 6

3W
4
2 + 8W 2

4W
3
3W

2
2 +W 4

4 . (3.5)

Definition 3.2.5. An elliptic divisibility sequence (Wn) is said to be non-singular if

Disc(Wn) 6= 0.

We are ready to describe Ward’s structure theorem for elliptic divisibility se-

quences. The theorem, under certain conditions, says that the values of elliptic divis-

ibility sequences can be written in terms of the values of elliptic functions.

Theorem 3.2.6 (Ward). Let (Wn) be a non-singular, non-degenerate elliptic divis-

ibility sequence. Then there is a lattice Λ ⊂ C and a complex number z ∈ C such

that

Wn =
σ(nz; Λ)

σ(z; Λ)n2 for all n ≥ 1, (3.6)

where σ(z; Λ) is the Weierstrass σ-function associated to the lattice Λ. Further, the

Eisenstein series g2(Λ) and g3(Λ) associated to the lattice Λ and the Weierstrass values

℘(z; Λ) and ℘′(z; Λ) associated to the point z on the elliptic curve C/Λ are in the field

Q(W2,W3,W4). In other words g2(Λ), g3(Λ), ℘(z; Λ), ℘′(z; Λ) are all defined over the

same field as the terms of the sequence (Wn).

Proof. See [14, Theorem 12.1 and 19.1].

The expression for Disc(Wn) is related to the discriminant of the elliptic curve

which is associated with the sequence (Wn)

In [11], by employing Theorem 2.4.5 and Theorem 3.2.6, Silverman and Stephens

proved the following result regarding the sign of an elliptic divisibility sequence.
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Theorem 3.2.7 (Silverman-Stephens). Let (Wn) be a non-singular, non-degenerate

elliptic divisibility sequence. Then possibly after replacing (Wn) by the related sequence

((−1)n−1Wn), there is an irrational number β ∈ R given by

q E(R) P u Formula β

0 < q < 1

Disconnected
Identity

component
u > 0 (3.7)

logq u = logq |u|

Disconnected
Nondentity
component

u < 0 (3.8) logq |u|

−1 < q < 0 Connected (3.7)
1

2
log|q| u

Table 3.1: Explicit expressions for β

so that the sign of Wn is given by one of the following formulas:

Sign(Wn) = (−1)bnβc for all n. (3.7)

Sign(Wn) =


(−1)bnβc+n/2 if n is even,

(−1)(n−1)/2 if n is odd,

(3.8)

where b.c denotes the greatest integer function.

Silverman-Stephens, using Theorem 3.2.6, associated an elliptic curve over R and a

point P in E(R) an to elliptic divisibility sequence (Wn). Then the quantity q in

the above Table 3.1 is related to a fixed R-isomorphism E(R) ∼= R∗/qZ. The number

u ∈ R∗ corresponds to a point P in E(R) under the same isomorphism described

above. Furthermore, u is normalized to satisfy q < |u| < 1 if q > 0 and q2 < u < 1 if

q < 0.

Proof. Let (Wn) be a nonsingular elliptic divisibility sequence, the using Theorem
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3.2.6 choose a lattice Λ and complex number z so that

Wn =
σ(nz,Λ)

σ(z,Λ)n2 . (3.9)

For the lattice Λ, let E be the associated elliptic curve

E : Y 2 = 4X3 − g2(L)X − g3(L) (3.10)

and P =
(
℘(z,Λ), ℘′(z,Λ)

)
the associated point on E. Theorem 3.2.6 implies that the

curve E is defined over Q (i.e., g2(L), g3(L) ∈ Q) and that P ∈ E(Q). In particular, E

and P are defined over R. Then [9, Theorem 2.3(b), Chapter V] says that there exists

a unique q ∈ R∗ with 0 < |q| < 1 such that there is an R-isomorphism

ψ : R∗/qZ ∼−→ E(R). (3.11)

so the fact that P ∈ E(R) implies that ψ−1(P ) ∈ R∗/qZ. Let u ∈ R∗ be a representa-

tive for ψ−1(P ). Write u = e2πiz with (say) z ∈ iR if u > 0 and z ∈ 1
2

+ iR if u < 0.

Then the σ-function on C∗/qZ given by the Theorem 2.4.5 is

σ(u, q) = − 1

2πi
e

1
2
ηz2−πizθ(u, q) with

θ(u, q) = (1− u)
∏
m≥1

(1− qmu)(1− qmu−1)

(1− qm)2
(3.12)

were η is a quasi-period homomorphism defined for lattice Λ, and it disappears when

we substitute (3.12) into (3.9). It is important to observe that the σ- function in

formula (3.9) and the σ-function defined by the formula (3.12) may only be constant

multiples of one another, since σ(z,Λ) has weight one (i.e., σ(cz, cΛ) = cσ(z,Λ)).
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Hence substituting (3.12) into (3.9), yields

Wn = γn
2−1u(n2−n)/2 θ(u

n, q)

θ(u, q)n2 (3.13)

for some γ ∈ C∗. However, since u, q, and Wn are all in R, taking n = 2 and n = 3

shows that γ3 ∈ R and γ8 ∈ R, so γ ∈ R∗.

Next observe that since n2 − 1 ≡ n − 1 (mod 2) for all n ∈ Z, the effect of a

negative γ is simply to replace an elliptic divisibility sequence (Wn) with the equivalent

sequence ((−1)n−1Wn). Hence without loss of generality, we may assume that γ > 0.

Furthermore, since the factor (1−qm)2 always positive it does not contribute to the

sign of (3.13). Hence we may discard the (1− qm)2 factors appearing in the product

expansion (3.12) for θ(u, q). We now consider several cases, depending on the sign

of q and u.

Case I: 0 < q < 1 and u > 0

Geometrically, this is the case that R∗/qZ has two components and the point P = ψ(u)

is on the identity component. The value of the right-hand side of (3.13) is invariant

under u→ q±1u, so we may choose u to satisfy q < u < 1 (See Lemma 4.1.3). Then

1− u > 0 and 1− qmu±1 > 0 for all m ≥ 1,

so θ(u, q) ≥ 0. Doing a similar analysis for θ(un, q) implies that

1− qmun > 0 for all m ≥ 1.

Next we have

1− qmu−n < 0 ⇐⇒ un < qm ⇐⇒ n logq u > m.
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Hence there are bn logq(u)c negative signs. This proves that

Parity(Wn) ≡ Parity(θ(un, q)) ≡ bnβc (mod 2),

where β = logq u.

Case II: 0 < q < 1 and u < 0

Geometrically, we are again in the case that R∗/qZ has two components, and the

point u is on the nonidentity component. We may choose u to satisfy q < |u| < 1,

and then as in Case I, we see that θ(u, q) > 0 and that all factors 1− qmun are

positive. Further, since u < 0 and q > 0, it is clear that 1− qmu−n > 0 for all odd

values of n. Thus if n is odd, we also have θ(un, q) > 0.

For the case when n is even we have

1− qmu−n < 0 ⇐⇒ |u|n < qm ⇐⇒ n logq |u| > m.

Hence there are bn logq |u|c negative signs, so

Parity(θ(un, q)) ≡ bnβc (mod 2) when n is even,

with β = logq |u|.

Finally, since u < 0, we observe that

Parity
[
u(n2−n)/2

]
≡ n2 − n

2
≡


n/2 (mod 2) if n is even,

(n− 1)/2 (mod 2) if n is odd.

Case III: q < 0

Geometrically, this is the case that the curve R∗/qZ is connected. Using Lemma 4.1.3
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we may assume that

u > 0 and q2 < u < 1.

For above choice of u, we have

1− qmu±1 > 1− |q|m−2 ≥ 0 for m ≥ 2,

However, when m = 1, it is also positive, since q < 0 and u > 0. Hence θ(u, q) > 0.

Next we examine the factors of θ(un, q). Since |q| < 1 and u < 1, the factors

1− qmun are positive. Further, the factors 1− qmu−n with m odd are also positive,

since q < 0 and u > 0. Suppose now that m is even. Then

1− qmu−n < 0 ⇐⇒ un < |q|m ⇐⇒ n log|q| u > m.

Thus we get one negative factor in θ(un, q) for each even integer smaller than n log|q|(u),

so

Parity(Wn) ≡ Parity(θ(un, q)) ≡ bnβc (mod 2), (3.14)

where β = 1
2

log|q| u.

Example 3.2.8. Consider the elliptic divisibility sequence

1, 1, −5, −16, 109, 735, −9529, −103904, 3464585, 28525409, −5987285341,

160484333520, 53055650250901,−6621577642502849, . . .

This is the elliptic divisibility sequence associated to the elliptic curve y2 +xy = x3−x

defined over Q and point P = (−1, 1) ∈ E(Q). Then there is an R-isomorphism
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E(R) ∼= R∗/qZ where P ←→ u with explicit values

q = 0.0012925374529095057365381814551 . . . ,

u = −0.54050181433028242974505191985 . . . .

Observe that q is positive, thus E(R) is disconnected. Using Theorem 3.2.7 the sign

of Wn is given by

Parity(Wn) ≡


bnβc+

n

2
+ 1 if n is even,

n− 1

2
if n is odd,

with explicit value β = 0.092503923753913072607717383131 . . . .

3.3 Elliptic Nets

This section is devoted to the theory of elliptic nets. Elliptic nets are higher

dimensional analogue of elliptic sequences. In 2008, K. Stange in her Ph.D. thesis

[12] introduced the concept of an elliptic net. We start by giving the definition of an

elliptic net.

Definition 3.3.1. Let A be a finitely-generated free abelian group, and let R be an

integral domain. An elliptic net is a map W : A −→ R with W (0) = 0, and such that

for all p, q, r, s ∈ A,

W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0. (3.15)

We also define the rank of an elliptic net to be the rank of the free abelian group A.
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Example 3.3.2. The following are some examples of elliptic nets.

(1) The zero map W : Zn −→ R defined as W (v) = 0 for all v ∈ Zn. This map is

called the zero net.

(2) The identity map W : Z −→ Z defined as W (v) = v for all v ∈ Z is a rank 1

elliptic net.

(3) The map W : Z −→ Z given by W (n) =
(
n
3

)
, the Legendre symbol of n modulo

3, is an elliptic net of rank 1. The fact that W (n) is an elliptic net can be verified

by observing that at least one of p, q, r, p− q, q− r, and r− p is divisible by 3.

(4) The next example is the most important class of elliptic nets.

Let E : y2 + xy = x3− x2 + 4x− 4 be an elliptic curve over Q. Let P = (1, 0) and

Q = (2, 2) be two points in E(Q). Then the following table is an example of a

rank 2 elliptic net W (m,n) derived from the values of net polynomials associated

to curve E and points P and Q (for definition of net polynomials and the fact

that they satisfy recurrence (3.15) see Definition 3.4.1 and Theorem 3.4.2).

...

−193904640 239163904 171823616 −583063552 −3544041984

−1013696 74944 805824 396224 −17965504

−4656 −3392 3952 24560 −76032

· · · 20 −92 −84 764 6364 · · ·

6 −2 −16 2 1194

1 1 −3 −25 227

0 1 1 −28 −309

...

In the above array, the bottom-left corner represents the value W (0, 0), and the

top-right corner is the value W (4, 6). The dots show that the table is just a portion
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of the elliptic net. The row and column containing zero in the table are elliptic

nets of rank 1. In other words the row and column having zero in the table are

elliptic sequences.

Next proposition summarizes some basic properties of elliptic nets which we will

be using in this thesis.

Proposition 3.3.3. Let W : A −→ R be an elliptic net, then

(a) For any v ∈ A, we have W (−v) = −W (v) (i.e., W is an odd function).

(b) Let B ⊂ A be any subgroup of A, then the restriction map W |B : B −→ R is an

elliptic net.

(c) Let I be an integral domain and π : R −→ S be any homomorphism of integral

domains, then the composition π ◦W : A −→ S is an elliptic net.

Proof. (a) If W (−v) = −W (v) = 0 for all v ∈ A, then there is nothing to prove.

Assume that one of W (v) or W (−v) is non-zero, without loss of generality we

may assume that W (v) 6= 0. Then by letting p = q = v and r = s = 0 in (3.15)

and using the fact that W (0) = 0 we have

W (v)3[W (v) +W (−v)] = 0.

Since R is an integral domain and W (v) 6= 0, we see that W (−v) = −W (v).

The proofs of (b) and (c) are straightforward and can be seen easily by verifying

that W |B and π ◦W satisfy the recurrence (3.15).

Proposition 3.3.4. The values of a rank 1 elliptic net can be realized as an elliptic

sequence.
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Proof. Let A = Z in the definition of the elliptic net and set p = m, q = n, r = 1,

and s = 0 in (3.15), then using the fact that W is an odd function we see that

(W (n)) satisfies (3.4). In other words the values of rank 1 elliptic net form an elliptic

sequence.

The above proposition shows that elliptic nets can be considered as generalization

of elliptic sequences.

We give the following definitions in order to have a better understanding of elliptic

nets. These definitions generalize the concepts of normalized and non-degenerate

elliptic sequence to elliptic nets.

Definition 3.3.5. Let W : Zn −→ R be an elliptic net. Let B = {e1, e2, . . . , en} be

the standard basis of Zn. We say that W is non-degenerate if W (ei), W (2ei) 6= 0 for

all 1 ≤ i ≤ n, and W (ei ± ej) 6= 0 for 1 ≤ i, j ≤ n, i 6= j. For the case of n = 1 we

need an additional condition that W (3ei) 6= 0. If any of the above conditions is not

satisfied we say that W is degenerate.

Definition 3.3.6. Let W : Zn −→ R be an elliptic net. Then we say that W is

normalized if W (ei) = 1 for all 1 ≤ i ≤ n and W (ei + ej) = 1 for all 1 ≤ i < j ≤ n.

Next we will describe an equivalence relation among elliptic nets. In order to do

this, we recall some facts about quadratic forms on abelian groups. We start with the

following definition.

Definition 3.3.7. Let B and C be two abelian groups under addition. A quadratic

form is a function f : B −→ C such that

f(a+ b+ c)− f(a+ b)− f(b+ c)− f(a+ c) + f(a) + f(b) + f(c) = 0 (3.16)

for all a, b, c ∈ B.
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For purpose of this thesis we are interested in the case when B = Zn under addition

while the group C is the multiplicative group of real numbers. In this case we can

rewrite (3.16) as follows

f(a+ b+ c)f(a+ b)−1f(b+ c)−1f(c+ a)−1f(a)f(b)f(c) = 1. (3.17)

Example 3.3.8. Let K be a field. These are some examples of quadratic forms:

(1) Let ai, bij ∈ K. Then the function f : Zn −→ K defined by

f(v1, v2, . . . , vn) =
n∑
i=1

aiv
2
i +

∑
1≤i<≤jn

bijvivj

is a quadratic form on Zn with values in K.

(2) Let pi, qij ∈ K∗. Then the function g : Zn −→ K∗ defined by

g(v1, v2, . . . , vn) =
n∏
i=1

p
v2i
i

∏
1≤i<≤jn

q
vivj
ij

is a quadratic form on Zn with values in K∗.

Lemma 3.3.9. Let f : Zn −→ C be a quadratic form, where C is a group under

addition. Let B = {e1, e2, . . . , en} be the standard basis of Zn. Suppose that the

values of f at the basis vectors ei and ei + ej are known. Then we can find the value

of f at any v ∈ Zn.

Proof. It is known that a quadratic form f : Zn −→ C satisfies

f

(
n∑
i=1

viei

)
=

n∑
i=1

(
2v2

i −
n∑
i=1

vivj

)
f(ei) +

∑
1≤i<j≤n

vivjf(ei + ej),

(See [13, Lemma 4.5]). Since the values of ei and ei + ej are known, the result follows

from the above identity.
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Next proposition gives a way to create a new elliptic net out of a known elliptic

net.

Proposition 3.3.10. Let W : A −→ R be an elliptic net. Let f : A −→ R∗ be a

quadratic form. Then the map W f : A −→ R defined by

W f (v) = f(v)W (v)

is an elliptic net.

Proof. See [13, Theorem 6.1].

Definition 3.3.11. Let W : A −→ R and W ′ : A −→ R be two elliptic nets. Let

f : A −→ R∗ be a quadratic form such that

W (v) = f(v)W ′(v).

Then we say that the elliptic nets W and W ′ are scale equivalent.

The relation of being scale equivalent is an equivalence relation. Note that given

any non-degenerate elliptic net W : Zn −→ R we have only one scale equivalent nor-

malized elliptic net associated to W. More precisely we have the following proposition.

Proposition 3.3.12. Let W : Zn −→ R be a non-degenerate elliptic net. Then there

is exactly one scaling W f which is normalized.

Proof. Let B = {e1, e2, . . . , en} be the standard basis for Zn. Define

Aii = W (ei)
−1, for 1 ≤ i ≤ n,

Aij =
W (ei)W (ej)

W (ei + ej)
for 1 ≤ i < j ≤ n,

f(v) =
∏

1≤i≤j≤n

A
vivj
ij .
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Then W f = f(v)W is a normalized, non-degenerate elliptic net.

To prove the uniqueness let f and g be two scalings such that W f and W g are

normalized. Then we have

f(ei)W (ei) = g(ei)W (ei) = 1 for 1 ≤ i ≤ n.

Since W is non-degenerate we have that W (ei) = 1. Thus we see that (f − g)(ei) = 0

for all 1 ≤ i ≤ n. Similarly, we have that (f − g)(ei + ej) = 0 for all 1 ≤ i < j ≤ n.

Using Lemma 3.3.9 we get that (f − g)(v) = 0 or equivalently f(v) = g(v).

3.4 Net Polynomials

As we saw in Section 2.3, division polynomials can be used to construct elliptic

divisibility sequences. Here we describe a generalization of division polynomials, the

so called net polynomials, and show that the values of these polynomials generate

elliptic nets. We start with the following definition.

Definition 3.4.1. Let Λ ⊂ C be a fixed lattice corresponding to an elliptic curve

E/C. For an n-tuple v = (v1, v2, ..., vn) ∈ Zn, define a function Ωv (with respect to

Λ) on Cn in variable z = (z1, z2, ..., zn) as follows:

Ωv(z; Λ) = (−1)

n∑
i=1

v2
i −

∑
1≤i<j≤n

vivj − 1
σ(v1z1 + v2z2 + ...+ vnzn; Λ)

n∏
i=1

σ(zi; Λ)2v2i−
∑n

j=1 vivj
∏

1≤i<j≤n

σ(zi + zj; Λ)vivj

(3.18)

where σ(z; Λ) is the Weierstrass σ-function defined in Section 2.2.2.

In special case of n = 1, for each v ∈ Z, we have

Ωv(z; Λ) = (−1)v
2−1 σ(vz,Λ)

σ(z,Λ)v2
= ψv(℘(z),

1

2
℘′(z)),
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where ψv(x, y) is the v-th division polynomial defined in Section 2.3. See Theorem

2.3.9.

In the case n = 2, for each pair (v1, v2) ∈ Z× Z, the function Ω(v1,v2) on C×C in

variables z1 and z2 is

Ω(v1,v2)((z1, z2); Λ) =
σ(v1z1 + v2z2; Λ)

σ(z1; Λ)v
2
1−v1v2σ(z1 + z2; Λ)v1v2σ(z2; Λ)v

2
2−v1v2

.

We can show that Ωv(z; Λ) satisfies (3.15). Thus we have the following theorem.

Theorem 3.4.2 (Stange). Let Λ ⊂ C be a fixed lattice corresponding to an elliptic

curve E/C. Then for a fixed z ∈ Cn, the function

Ω(z; Λ) : Zn −→ C

v 7−→ Ωv(z; Λ)

is an elliptic net.

Proof. See [13, Theorem 3.7].

There is a close relation between the rational function Ωv(z; Λ) and elliptic func-

tions. In fact we can show that Ωv(z; Λ) is itself an elliptic function with respect to

each variable zi. More precisely we have the following proposition.

Proposition 3.4.3. Let E be an elliptic curve and Λ be its corresponding lattice.

Then the rational functions Ωv(z; Λ) are elliptic functions in each variable.

Proof. Let z = (z1, z2, . . . , zn) ∈ C and let ω1 ∈ Λ. Without loss of generality we

will show that Ωv(z; Λ) is elliptic in the variable z1. Let v = (v1, . . . , vn) ∈ Zn and

w = (ω1, 0, . . . , 0) ∈ Cn. Using (2.22), we have

Ωv(z + w; Λ)

Ωv(z; Λ)
=
λ(v1ω1)

λ(ω1)v
2
1
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If ω1, v1ω1 /∈ 2Λ, then we see that v1 is odd, so λ(ω1)v
2
1 = λ(v1ω1) = −1. If ω1 /∈ 2Λ

but v1ω1 ∈ 2Λ, then v1 must be even, and so λ(ω1)v
2
1 = λ(v1ω1) = 1. Finally, if

ω ∈ 2Λ, then v1ω ∈ 2Λ, and λ(ω1) = λ(v1ω1) = 1. Therefore we have

λ(v1ω1)

λ(ω1)v
2
1

= 1

in each case. Thus Ωv is invariant under adding a period to the variable z1. Similarly

Ωv is elliptic in each variable.

Definition 3.4.4. Let E be an elliptic curve defined over C, and let Λ be its corre-

sponding lattice. Let P = (P1, P2, . . . , Pn) be an n-tuple consisting of n points in E(C)

such that Pi 6= O for each i and Pi±Pj 6= O for 1 ≤ i < j ≤ n. Let z = (z1, z2, ..., zn)

in Cn be such that each zi corresponds to Pi under the isomorphism C/Λ ∼= E(C).

Then the function

Ψ(P;E) : Zn −→ C

v 7−→ Ωv(z; Λ)

is an elliptic net with values in C. We call Ψ(P;E) the elliptic net associated to E

(over C) and P.

Note that in the above definition we have an elliptic curve over C and the associated

elliptic net Ψ(P;E) have values in C as well. However for the purpose of this thesis

we are only interested in elliptic nets with values in R. Next we show that if E is

defined over R and P ∈ E(R)n then Ψ(P;E) takes values in R.

Let E be an elliptic curve defined over R with the Weierstrass equation f(x, y) = 0,

where

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 ; ai ∈ R. (3.19)

Let Suniv = Z[α1, α3, α3, α4, α6] be the polynomial ring over Z in variables αi. For any
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positive integer n let

Runiv
n = Suniv[xi, yi]1≤i≤n[(xi − xj)−1]1≤i<j≤n/〈funiv(xi, yi)〉1≤i≤n,

where funiv(x, y) = y2 + α1xy + α3y − x3 − α2x
2 − α4x − α6. Then for every elliptic

curve E/R defined by the polynomial (3.19) and point P = (P1, P2, . . . , Pn) in E(R)n

such that Pi 6= O for each i and Pi ± Pj 6= O for 1 ≤ i < j ≤ n, we can find a

morphism

π = πP;E : Runiv
n −→ R

so that π(αi) = ai, and (π(xi), π(yi)) = Pi. Then we have the following theorem.

Theorem 3.4.5 (Stange). For each v ∈ Zn, there is a Ψuniv
v ∈ Runiv so that the map

Ψuniv : v 7−→ Ψuniv
v is an elliptic net, and for any elliptic curve E/C and P ∈ E(C)n

with Pi 6= O for each i and Pi ± Pj 6= O for 1 ≤ i < j ≤ n, we have

πP;E ◦Ψuniv = Ψ(P;E).

Proof. See [13, Section 4].

Let Runiv
n , Suniv as before and let E/R be an elliptic curve. Then there exists a

map πE : Suniv −→ R, such that πE(αi) = ai. This induces a map

(πE)∗ : Runiv
n −→ R[xi, yi]1≤i≤n[(xi − xj)−1]1≤i<j≤n/〈f(xi, yi)〉1≤i≤n.

Then by part (c) of Proposition 3.3.3, the map Ψ = (πE)∗ ◦ Ψuniv defines an elliptic

net with values in

Rn = R[xi, yi]1≤i≤n[(xi − xj)−1]1≤i<j≤n/〈f(xi, yi)〉1≤i≤n.

We call Ψv ∈ Rn the v-th net polynomial associated to E. Now let Pi 6= O for
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each i and Pi ± Pj 6= O for 1 ≤ i < j ≤ n, then by part (c) of Proposition 3.3.3,

Ψ(P;E) : v 7−→ Ψv(P) is an elliptic net with values in R. We call Ψ(P;E) the elliptic

net associated to E (over R) and P.

In the next proposition we give explicit expressions for the net polynomials for the

case of n = 1 and 2.

Proposition 3.4.6. Let E/K be an elliptic curve given by the generalized Weierstrass

equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and let

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

Let Ψv(P;E) be the net polynomial associated to E and point P. Then we have the

following expressions for Ψv(P;E).

(a) For rank 1 elliptic net Ψn(P ;E) where P = (x, y), we have

Ψ1 = 1, Ψ2 = 2y + a1x+ a3,

Ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

Ψ4 = Ψ2(2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ b4b8 − b2
6).
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(b) For rank 2 elliptic net Ψv(P;E) where P1 = (x1, y1) and P2 = (x2, y2), we have

Ψ(1,0) = Ψ(0,1) = Ψ(1,1) = 1,

Ψ(1,−1) = x2 − x1, Ψ(−1,1) = x1 − x2,

Ψ(2,1) = 2x1 + x2 −
(
y2 − y1

x2 − x1

)2

− a1

(
y2 − y1

x2 − x1

)
+ a2,

Ψ(1,2) = x1 + 2x2 −
(
y2 − y1

x2 − x1

)2

− a1

(
y2 − y1

x2 − x1

)
+ a2.

Proof. See [13, Proposition 3.8].

3.5 Curve-Net Theorem

In the previous section we showed that given an elliptic curve E/K and a collection

of points P = (P1, P2, . . . , Pn) in E(K)n we can generate an elliptic net Ψ(P;E) with

values in K. (These elliptic nets arise as values of the net polynomials associated to

elliptic curves and points on them). One can ask the following question: Given an

elliptic net W : Zn −→ K, can we find an elliptic curve E/K and a collection of points

P = (P1, P2, . . . , Pn) in E(K)n such that W = Ψ(P;E). This section deals with this

question. We will show that for certain elliptic nets the answer to the above question

is positive. More precisely, for certain elliptic nets W : Z −→ K or W : Z2 −→ K,

we have the following two propositions that associate to W an elliptic curve E and a

collection of points P such that W = Ψ(P;E).

Proposition 3.5.1 (Swart). Let W : Z −→ K be a normalized non-degenerate

elliptic net. Then there is a cubic curve C given by

C : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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3.5. CURVE-NET THEOREM

where

a1 =
W (2) +W (2)5 − 2W (2)W (3)

W (2)2W (3)
,

a2 =
W (2)W (3)2 +W (4) +W (2)5 −W (2)W (3)

W (2)3W (3)
,

a3 = W (2), a4 = 1, a6 = 0,

such that Ψ(P ; Cns) = W, where P = (0, 0) is non-singular point and Cns is the non-

singular part of C.

Proof. See [13, Proposition 6.3].

Proposition 3.5.2 (Stange). Let W : Z2 −→ R be a normalized non-degenerate

elliptic net. Then there is a cubic curve C given by

C : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where

a1 =
W (2, 0)−W (0, 2)

W (2, 1)−W (1, 2)
, a2 = 2W (2, 1)−W (1, 2),

a3 = W (2, 0), a4 = W (2, 1)[W (2, 1)−W (1, 2)], a6 = 0,

along with the points

P1 = (0, 0), Q = (W (1, 2)−W (2, 1), 0),

such that Ψ(P; Cns) = W, where P = (P,Q) and Cns is the non-singular part of C.

Proof. See [13, Proposition 6.4].

More generally, similar to the case of elliptic divisibility sequences, there is a

relationship between elliptic nets and elliptic curves. In [13] this relationship is made
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3.5. CURVE-NET THEOREM

explicit using curve-net theorem. In order to state this theorem we need the following

definitions.

Definition 3.5.3. We call a change of variables of a cubic curve in Weierstrass form

to be unihomothetic if it is of the form

x′ = x+ r, y′ = y + sx+ t

for some r, s, and t.

Definition 3.5.4. Let C be a cubic curve given by f(x, y) = 0 defined over a field K,

where

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6

Let Cns(K) denotes the non-singular part of C defined over K. Then the set of points

{P1, P2, . . . , Pn} on Cns(K) are called appropriate if the following holds:

(1) Pi 6= 0 for each i,

(2) 2Pi 6= 0 for each i,

(3) 3P1 6= 0 whenever n = 1 and

(4) Pi 6= ±Pj for i 6= j.

The next theorem establishes the relation between elliptic nets and elliptic curves.

Theorem 3.5.5 (Stange). For each field K, there is an explicit isomorphism of sets

{scale equivalence classes of non-degenerate

elliptic nets W : Zn → K for some n }

l
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{tuples (C,P1, P2....Pn) for some n, where C is a cubic curve in

Weierstrass form over K, considered modulo unihomothetic

changes of variables, and such that {Pi} ∈ Cns(K)n is appropriate }

Non-singular nets correspond to elliptic curves. The bijection takes an elliptic net of

rank n to a tuple with n points. The elliptic net W associated to a tuple (C,P1, P2....Pn)

satisfies the property that W (v1, . . . , vn) = 0 if and only if v1P1 + · · · + vnPn = 0 on

the curve C.

Proof. See [13, Theorem 7.4].
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Chapter 4

The Signs in an Elliptic Net

In this chapter we prove the main result of this thesis which generalizes Silverman-

Stephens’ theorem [11, Theorem 4] for elliptic divisibility sequences to the case of

elliptic nets. The first section of this chapter is devoted to developing a formula for

the sign of elliptic nets arising from values of net polynomials. Some examples for

various cases of the formula are also given. The second section of the chapter gives a

formula for signs in non-singular, non-degenerate elliptic nets up to quadratic forms.

4.1 The Signs in the Elliptic Net Ψ(P;E)

Let E be an elliptic curve defined over R and Λ be a lattice associated to it. Let

P = (P1, P2, . . . , Pn) ∈ E(R)n be such that Pi 6= O for 1 ≤ i ≤ n and Pi±Pj 6= O for

1 ≤ i < j ≤ n. Let

Ψ(P ;E) : Zn −→ R

v 7−→ Ψv(P ;E)

be the elliptic net associated to E and P. From the construction of net polynomials

over field R described in Section 3.4 we know that

Ψv(P ;E) = Ωv(z; Λ),
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where z is the n-tuple corresponding to P under the isomorphism C/Λ ∼= E(C) and

Ωv(z; Λ) is given by

Ωv(z; Λ) = (−1)

n∑
i=1

v2
i −

∑
1≤i<j≤n

vivj − 1
σ(v1z1 + v2z2 + ...+ vnzn; Λ)

n∏
i=1

σ(zi; Λ)2v2i−
∑n

j=1 vivj
∏

1≤i<j≤n

σ(zi + zj; Λ)vivj
.

(4.1)

We compute the sign of Ψv(P ;E) or equivalently Ωv(z; Λ). We start by finding

the q-expansion of Ωv(z; Λ).

Let Λ = Zω1 +Zω2 be a lattice with basis [ω1, ω2]. Let Λτ be the normalized lattice

with basis [τ, 1], where τ = ω1/ω2 is in the upper half-plane. Recall from Theorem

2.4.5 that the q-expansion for σ(z; Λτ ) is given by

σ(z; Λτ ) = − 1

2πi
e

1
2
z2η−πiz(1− w)

∏
m≥1

(1− qmw)(1− qmw−1)

(1− qm)2
, (4.2)

where w = e2πiz, q = e2πiτ , and η is the quasi-period homomorphism. The next

proposition gives the q-expansion for the numerator in the expression for Ωv(z; Λτ ) in

(4.1).

Proposition 4.1.1. Let v = (v1, v2, . . . , vn) ∈ Zn and z = (z1, z2, . . . , zn) ∈ Cn. Let

wj = e2πizj for j = 1, 2, . . . n and q = e2πiτ . Then

σ(v·z; Λτ ) = − 1

2πi
e

1
2

(v·z)2η−πi(v·z)
(

1−
n∏
j=1

w
vj
j

) ∏
m≥1

(1− qm
∏n

j=1 w
vj
j )(1− qm

∏n
j=1 w

−vj
j )

(1− qm)2
,

(4.3)

where v · z = v1z1 + v2z2 + ...+ vnzn.

Proof. Note that (4.2) gives the q-expansion for σ-function. The result is obtained

by replacing z with v · z = v1z1 + v2z2 + + · · · vnzn in (4.2). Observe that the map

z 7−→ v1z1 + v2z2 + + · · · vnzn, corresponds to w 7−→
∏n

j=1w
vj
j .
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Next, by applying (4.3) and (4.2) in the numerator and the denominator of (4.1),

we have the following explicit expression for Ωv(z; Λτ ).

Proposition 4.1.2. Let v, z, wi and q be the same as in Proposition 4.1.1. Then we

have

Ωv(z; Λτ ) = (2πi)

n∑
j=1

v2
j −

∑
1≤j<k≤n

vjvk − 1 n∏
j=1

w
v2j−vj

2
j

θ
( n∏
j=1

w
vj
j , q

)
n∏
j=1

θ(wj, q)
2v2j−

∑n
k=1 vjvk

∏
1≤j<k≤n

θ(wjwk, q)
vjvk

,

where

θ(wj, q) = (1− wj)
∏
m≥1

(1− qmwj)(1− qmw−1
j )

(1− qm)2
,

θ(wjwk, q) = (1− wjwk)
∏
m≥1

(1− qmwjwk)(1− qmw−1
j w−1

k )

(1− qm)2
,

and

θ
( n∏
j=1

w
vj
j , q

)
=
(

1−
n∏
j=1

w
vj
j

) ∏
m≥1

(1− qm
∏n

j=1w
vj
j )(1− qm

∏n
i=1 w

−vj
j )

(1− qm)2
.

Proof. The proof is highly computational and follows by substituting the q-expansions

(4.2) and (4.3) in (4.1). The one thing to note is that the product expansion of

Ωv(z; Λτ ) is independent of η, the quasi-period homomorphism. It disappears after

substituting the q-expansions and simplifying the terms.

We also need the following elementary fact in the proof of our main result.

Lemma 4.1.3. Let q ∈ R be such that 0 < |q| < 1 and u ∈ R+, we have the following

statements.

(i) For 0 < q < 1 there exists an integer k such that 0 < q < qku < 1.
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(ii) For −1 < q < 0 there exists an integer k such that 0 < q2 < qku < 1.

Proof. (i) Let k0 = min{k ∈ Z | qku < 1}. Then qk0u < 1 and qk0−1u > 1. We

claim that q < qk0u < 1. Clearly qk0u < 1. If qk0u ≤ q then qk0−1u ≤ 1 which

contradicts the minimality of k0. So the claim holds.

(ii) If −1 < q < 0, then 0 < q2 < 1, so the result follows from part (i).

We also recall the concept of parity as defined in the introduction. For any real

number x, the Parity of x is defined by

Sign(x) = (−1) Parity(x) with Parity(x) ∈ Z/2Z.

We are only concerned about elliptic net Ψv(P;E) with values in R. By Theorem

3.4.5 if is defined over R, then we have Ψv(P;E) ∈ R for any v ∈ Zn. So from now

on we assume that our elliptic curves is defined over R.

We are now ready to state and prove the main theorem of this section.

Theorem 4.1.4. Let E be an elliptic curve defined over R and Λ ⊂ C be its corre-

sponding lattice. Let P = (P1, P2, . . . , Pn) be an n-tuple consisting of n linearly inde-

pendent points in E(R), and z = (z1, z2, . . . , zn) ∈ Cn be the corresponding n-tuple of

complex numbers under the isomorphism C/Λ ∼= E(C). Let v = (v1, v2, . . . , vn) ∈ Zn

be any n-tuple of integers. Let Ψv(P;E) = Ωv(z; Λ) be the value of the v-th net

polynomial at P. Let each ui ←→ Pi under a fix R-isomorphism R∗/qZ ∼= E(R) with

q ∈ R∗ and 0 < |q| < 1. Then there are n irrational numbers β1, β2, . . . , βn, which are

Q-linearly independent, given by the rules in the following table

so that, possibly after replacing Ψv(P;E) with (−1)

n∑
i=1

v2i −
∑

1≤i<j≤n

vivj − 1

Ψv(P;E), the
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q E(R) Pi ui βi

0 < q < 1
Disconnected

Identity
component

ui > 0 logq ui = logq |ui|

Disconnected
Nondentity
component

ui < 0 logq |ui|

−1 < q < 0 Connected
1

2
log|q| ui

Table 4.1: Explicit expressions for βi

parity of Ψv(P;E) is given by one of the following formulas:

Parity(Ψv(P;E)) ≡

⌊
n∑
i=1

viβi

⌋
+

∑
1≤i<j≤n

bβi + βjcvivj (mod 2), (4.4)

Parity(Ψv(P;E)) ≡



∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n

bβi + βjcvivj

+
⌊ n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is even,

∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n

bβi + βjcvivj

+
k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is odd,

(4.5)

where k is a positive integer such that u1, u2, . . . , uk < 0 and uk+1, uk+2, . . . , un > 0.

Here each ui is normalized to satisfy q2 < ui < 1 if q < 0 and |q| < |ui| < 1 otherwise.

The formula (4.4) is used when ui > 0 for all 1 ≤ i ≤ n, otherwise (4.5) is used.

Proof. Since E is defined over R, by Theorem 2.5.1, there is a unique real number

q ∈ R with 0 < |q| < 1 such that E ∼=/R Eq. Assume that π represents the isomorphism

E ∼=/R Eq. Let τ be the unique complex number associated to q given in Theorem

2.5.1 such that q = e2πiτ and let Λτ be the lattice generated by [τ, 1]. Since E ∼= Eq,

there exists an α ∈ C∗ such that Λ = αΛτ . The multiplication by α carries C/Λ
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isomorphically to C/Λτ . Let zi be the corresponding complex number to Pi ∈ E(R)

under the isomorphism E(C) ∼= C/Λ. Then zi/α is the corresponding complex number

to π−1(Pi) ∈ Eq(R) under the isomorphism Eq(C) ∼= C/Λτ . From part (b) of Theorem

2.5.1, the map

ψ = π o φ : C∗/qZ ∼−→ Eq(C)
∼−→ E(C)

is an isomorphism, moreover the map ψ (restricted to R∗/qZ)

ψ : R∗/qZ ∼−→ Eq(R)
∼−→ E(R)

is an R-isomorphism. Thus from construction of ψ, we can consider ui = e2πizi/α

as a representative in R∗/qZ for ψ−1(Pi). Since ψ is an R isomorphism we have that

ui ∈ R∗.

Next Let Ψv(P, E) = Ωv(z; Λ) be the value of the v-th net polynomial at P. Then

for v = (v1, v2, . . . , vn) ∈ Zn, fixed z = (z1, z2, . . . , zn) ∈ Cn, and Λ, we have

Ωv(z; Λ) = Ωv(z;αΛτ ) = (α−1)

n∑
i=1

v2
i −

∑
1≤i<j≤n

vivj − 1

Ωv(α−1z; Λτ ).

Here we have used the fact that the σ-function is of weight one (i.e., for a non-zero

α ∈ C∗ we have σ(αz;αΛ) = ασ(z; Λ)). Now substituting the value of Ωv (α−1z; Λτ )

from Proposition 4.1.2 yields

Ωv(z; Λ) =

(
2πi

α

) n∑
j=1

v2
j −

∑
1≤j<k≤n

vjvk − 1 n∏
j=1

u

v2j−vj
2

j

θ
( n∏
j=1

u
vj
j , q

)
n∏
j=1

θ(uj, q)
2v2j−

∑n
k=1 vjvk

∏
1≤j<k≤n

θ(ujuk, q)
vjvk

,

(4.6)
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where

θ(uj, q) = (1− uj)
∏
m≥1

(1− qmuj)(1− qmu−1
j )

(1− qm)2
, (4.7)

θ(ujuk, q) = (1− ujuk)
∏
m≥1

(1− qmujuk)(1− qmu−1
j u−1

k )

(1− qm)2
, (4.8)

and

θ
( n∏
j=1

u
vj
j , q

)
=
(

1−
n∏
j=1

u
vj
j

) ∏
m≥1

(1− qm
∏n

j=1 u
vj
j )(1− qm

∏n
i=1 u

−vj
j )

(1− qm)2
. (4.9)

Observe that in the above expressions uj, and q are in R∗. Therefore the product

containing uj and q are also in R. Moreover, by the construction of net polynomials

described in the last chapter we have Ωv(z; Λ) ∈ R. Hence from (4.6) we conclude that

the expression (2πi/α)

∑n
i=1 v

2
i −

∑
1≤i<j≤n vivj − 1 ∈ R∗. Note that this statement

is true for all v ∈ Zn, therefore, taking v1 = 1, v2 = 2 and vi = 0 for all 3 ≤

i ≤ n, we get that (2πi/α)2 ∈ R∗. Furthermore, taking v1 = 2 and vi = 0 for all

2 ≤ i ≤ n, shows that (2πi/α)3 ∈ R∗. Since (2πi/α)2 and (2πi/α)3 ∈ R∗ we have

that 2πi/α ∈ R∗. Hence 2πi/α is either a positive real number or a negative real

number. From now on, without loss of generality, we will assume that 2πi/α >

0. Note that if 2πi/α < 0 we can compute the sign of Ωv(z; Λ) by considering

(−1)

∑n
i=1 v

2
i −

∑
1≤i<j≤n vivj − 1

Ωv(z; Λ). Since 2πiα−1 > 0, it does not play any role

in determining the sign of (4.6). Thus from (4.6) we have that the Parity
[
Ωv(z; Λ)

]
in Z/2Z is equal to

Parity

[
n∏
i=1

u
(v2i−vi)/2
i

]
+ Parity

[
n∏
i=1

θ(ui, q)
2v2i−

∑n
j=1 vivj

]

+ Parity

[ ∏
1≤i<j≤n

θ(uiuj, q)
vivj

]
+ Parity

[
θ
( n∏
i=1

uvii , q
)]

. (4.10)
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We will examine each of these parities individually. However, before computing

these parities we make the following observations.

(a) In studying the parities in (4.10), without loss of generality, we normalize ui as

follows:

(i) We may assume 0 < q < |ui| < 1, if q > 0.

(ii) We may assume 0 < q2 < ui < 1, if q < 0.

The above assertions are direct consequences of Lemma 4.1.3 and the fact that the

value of the right hand side of (4.6) is invariant under ui 7−→ q±1ui. Thus while

computing the signs in (4.6) we may focus our attention to values of Ωv(z; Λ) for

these specific ranges of ui.

(b) Our second observation is that the factor (1−qm)2 appearing in the denominators

of all the expansions of θ-terms in (4.6) does not contributes to the signs in (4.6).

Thus we may discard the factor (1− qm)2 while computing the signs of Ωv(z; Λ)

in (4.6).

Next we compute the parities in (4.10). We consider two cases according to the sign

of q.

Case I. Assume that 0 < q < 1.

We start by computing Parity
[∏n

i=1 θ(ui, q)
2v2i−

∑n
j=1 vivj

]
in (4.10).

As stated in our assumption we have

u1, u2, u3, . . . , uk < 0 and uk+1, uk+2, uk+3, . . . , un > 0.

First we observe that if ui < 0, from (4.7), it is clear that θ(ui, q) > 0. Thus for all

1 ≤ i ≤ k we have that θ(ui, q) > 0. On the other hand if ui > 0, as described above,
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we may assume that 0 < q < ui < 1. Then for all k + 1 ≤ i ≤ n we have

1− ui > 0 and 1− qmu±1
i > 0 for all m ≥ 1.

Thus from (4.7) we have θ(ui, q) > 0 for all 1 ≤ i ≤ n. Hence from the above discussion

we conclude that

Parity

[
n∏
i=1

θ(ui, q)
2v2i−

∑n
j=1 vivj

]
≡ 0 (mod 2). (4.11)

Next we compute Parity
[∏

1≤i<j≤n θ(uiuj, q)
vivj

]
in (4.10).

From (4.8) we see that when uiuj < 0 we have θ(uiuj, q) > 0. So while computing

the signs in
∏

1≤i<j≤n θ(uiuj, q)
vivj we will only focus on θ(uiuj, q) with pairs (ui, uj)

such that uiuj > 0, which is equivalent of saying that ui and uj should have the same

parity. Hence we either have

0 < q < ui < 1 and 0 < q < uj < 1 (4.12)

or we have

0 < q < |ui| < 1 and 0 < q < |uj| < 1. (4.13)

First assume that (4.12) holds. Then we have 1− uiuj > 0. This along with the fact

that qm < 1 implies that

1− qmuiuj > 0 for all m ≥ 1.

Again from (4.12) we get that 0 < q2 < uiuj < 1 or equivalently 0 < q2u−1
i u−1

j < 1

for all 1 ≤ i < j ≤ k. Thus

1− qmu−1
i u−1

j > 0 for all m ≥ 2.
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However, there is possibly one negative sign in (4.8) coming from the factor 1 −

qu−1
i u−1

j . Observe that

1− qu−1
i u−1

j < 0 ⇐⇒ 1 < logq ui + logq uj ⇐⇒ blogq ui + logq ujc ≥ 1.

On the other hand, since 1 − q2u−1
i u−1

j > 0 we have blogq ui + logq ujc < 2. By

combining the above two inequalities for blogq ui + logq ujc we get that

1− qu−1
i u−1

j < 0 ⇐⇒ blogq ui + logq ujc = 1.

Thus for the case when both ui > 0 and uj > 0 there is one negative sign in (4.8) if

and only if blogq ui + logq ujc = 1. Hence

Parity[θ(uiuj, q)
vivj ] ≡ Parity[(−1)blogq ui+logq ujcvivj ]

≡ blogq ui + logq ujcvivj (mod 2) when ui > 0, uj > 0.

(4.14)

Next, assume that (4.13) holds. With a similar argument as above, in this case we see

that there is one negative sign in (4.8) if and only if blogq |ui|+ logq |uj|c = 1. Thus

Parity[θ(uiuj, q)
vivj ] ≡ Parity[(−1)blogq |ui|+logq |uj |cvivj ]

≡ blogq |ui|+ logq |uj|cvivj (mod 2) when ui < 0, uj < 0.

(4.15)

We therefore, from (4.14) and (4.15), conclude that in
∏

1≤i<j≤n θ(uiuj, q)
vivj the

only terms that contribute to the sign of the product are

θ(u1u2, q), θ(u1u3, q), . . . , θ(u1uk, q), θ(u2u3, q), . . . , θ(uk−1uk, q),

θ(uk+1uk+2, q), θ(uk+1uk+3, q), . . . , θ(uk+1un, q), θ(uk+2uk+3, q), . . . , θ(un−1un, q).
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Thus,

Parity

[ ∏
1≤i<j≤n

θ(uiuj, q)
vivj

]
= Parity

[ ∏
1≤i<j≤k

θ(uiuj, q)
vivj

∏
k+1≤i<j≤n

θ(uiuj, q)
vivj

]

= Parity

[ ∏
1≤i<j≤k

θ(uiuj, q)
vivj

]
+ Parity

[ ∏
k+1≤i<j≤n

θ(uiuj, q)
vivj

]

≡
∑

1≤i<j≤k

blogq |ui|+logq |uj|cvivj+
∑

k+1≤i<j≤n

blogq ui+logq ujcvivj (mod 2)

where the last congruence is written by using (4.14) and (4.15). In conclusion

Parity

[ ∏
1≤i<j≤n

θ(uiuj, q)
vivj

]
≡

∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n

bβi + βjcvivj (mod 2)

(4.16)

with explicit values βi = logq |ui| (since when ui > 0 we can write ui = |ui|).

Next, we will analyze the parity of θ
(∏n

i=1 u
vi
i , q
)

in (4.10).

Recall that u1, u2, u3, . . . , uk < 0 and uk+1, uk+2, uk+3, . . . , un > 0. For all ui < 0 we

can write ui = (−1)|ui|. Thus the expansion (4.9) for θ
(∏n

i=1 u
vi
i , q
)

can be rewritten

as

(
1−(−1)

∑k
i=1 vi

n∏
i=1

|ui|vi
) ∏
m≥1

(1− qm(−1)
∑k

i=1 vi
∏n

i=1 |ui|vi)(1− qm(−1)
∑k

i=1 vi
∏n

i=1 |ui|−vi)
(1− qm)2

.

Since q > 0, it is clear from the above expression that if
∑k

i=1 vi is odd then θ
(∏n

i=1 u
vi
i , q
)

is positive. For the case that
∑k

i=1 vi is even, the factor 1−
∏n

i=1 |ui|vi may be positive

or negative depending upon the sign of vi. Thus we further split into two cases.

Sub-case I. Assume that 1−
∏n

i=1 |ui|vi > 0.

We observe that for all m ≥ 1 we have qm < 1, and so 1−qm
∏n

i=1 |ui|vi > 0. However,

1− qm
n∏
i=1

|ui|−vi < 0 ⇐⇒
n∏
i=1

|ui|vi < qm
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⇐⇒
n∑
i=1

vi log |ui| < m log q ⇐⇒ m <

n∑
i=1

vi logq |ui|.

Hence for this case there are
⌊ ∑n

i=1 vi logq |ui|
⌋

negative signs in the expression for

θ
(∏n

i=1 u
vi
i , q
)
.

Sub-case II. Assume that 1−
∏n

i=1 |ui|vi < 0.

Following a similar argument used in the Sub-case I we see that,

1− qm
n∏
i=1

|ui|vi < 0 ⇐⇒ m <
n∑
i=1

−vi logq |ui|.

Observe that since 1−
∏n

i=1 |ui|vi < 0, we have
∑n

i=1−vi logq |ui| > 0. Hence there are⌊
−
∑n

i=1 vi logq |ui|
⌋

+ 1 negative signs in expression (4.9) for θ
(∏n

i=1 u
vi
i , q
)
. The 1

in the above expression comes from the factor 1−
∏n

i=1 |ui|vi .

Now we claim that the number
∑n

i=1 vi logq |ui| is not an integer. In other words

we claim that logq |u1|, logq |u2|, . . . , logq |un|, and 1 are linearly independent over Q.

To see this suppose that there are integers k0, k1, k2, . . . , kn not all zero such that the

sum
∑n

i=1 ki logq |ui|+ k0 = 0. Equivalently we have that
∑n

i=1 kizi = −k0. Note that

since our lattice is normalized we have 1 ∈ Λτ hence under the isomorphism C/Λτ
∼=

E(C) all the integers are mapped to the identity element of E(C). Thus
∑n

i=1 kizi =

−k0 under the isomorphism C/Λτ
∼= E(C) leads to having

∑n
i=1 kiPi = O. This

contradicts our assumption that the points P1, P2, . . . , Pn are linearly independent in

E(R). Hence we have that logq |u1|, logq |u2|, . . . , logq |un|, and 1 are linear independent

over Q. This also shows that each number logq |ui| is irrational. Therefore the number∑n
i=1 vi logq |ui| can not be an integer. Using this fact and the property of the greatest

integer function that

bxc+ b−xc =


0 if x ∈ Z

−1 if x 6∈ Z
(4.17)
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we see that the number of negative signs in both sub-cases are same. Therefore we

can combine the results from these two sub-cases to get that

Parity

[
θ
( n∏
i=1

uvii , q
)]
≡

⌊
n∑
i=1

viβi

⌋
(mod 2) if

k∑
i=1

vi is even, (4.18)

where βi = logq |ui| for all 1 ≤ i ≤ n.

Finally we deal with Parity
[∏n

i=1 u
(v2i−vi)/2
i

]
in (4.10).

Recall that u1, u2, u3, . . . , uk < 0 and uk+1, uk+2, uk+3 . . . un > 0. Thus we have

Parity

[
n∏
i=1

u
(v2i−vi)/2
i

]
= Parity

[
k∏
i=1

u
(v2i−vi)/2
i

]

= Parity

[
k∏
i=1

(−1)(v2i−vi)/2

]

≡
k∑
i=1

v2
i − vi

2
(mod 2) (4.19)

≡
k∑
i=1

⌊vi
2

⌋
(mod 2). (4.20)

Applying (4.11), (4.16), (4.18), and (4.19) in (4.10) yields

Parity[Ωv(z; Λ)] ≡



∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n

bβi + βjcvivj

+
⌊ n∑

i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is even

∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n

bβi + βjcvivj

+
k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is odd
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which is the desired result (4.5) with the explicit values βi = logq |ui|.

Case II. Assume that −1 < q < 0.

First of all as described earlier we may assume that

ui > 0 and q2 < ui < 1 for all 1 ≤ i ≤ n.

Consequently we see that

Parity

[
n∏
i=1

u
(v2i−vi)/2
i

]
≡ 0 (mod 2). (4.21)

Next note that in the expansion of θ(ui, q), from (4.7), for all 1 ≤ i ≤ n, we have

1− qmu±1
i > 1− |q|m−2 ≥ 0 for all m ≥ 2.

Therefore 1 − qmu±1
i > 0 for all m, except possibly for m = 1. However for m = 1,

since q < 0 and ui > 0 we see that 1− qu±1
i > 0 for all 1 ≤ i ≤ n. Hence all the terms

in the expansion for θ(ui, q) in (4.7) are positive. In conclusion we have

Parity

[
n∏
i=1

θ(ui, q)
2v2i−

∑n
j=1 vivj

]
≡ 0 (mod 2). (4.22)

In analyzing the parity of
∏

1≤i<j≤n θ(uiuj, q)
vivj in (4.10), first of all observe that

1 − uiuj > 0 for all 1 ≤ i, j ≤ n. Furthermore, using our normalization conditions

q2 < ui < 1 and q2 < uj < 1, we have q4 < uiuj < 1 or equivalently 1− q4u±1
i u±1

j > 0.

As a consequence of this fact, in expansion of (4.8) we have that

1− qmu±1
i u±1

j > 1− |q|m−4 ≥ 0 for all m ≥ 4.

So the factor 1− qmu±1
i u±1

j may be negative for m = 1, 2, 3. However, for the case of

m = 1 and 3 notice that 1−qmu±1
i u±1

j > 0 because q < 0 and ui > 0 for all 1 ≤ i ≤ n.
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Moreover observe that since uiuj < 1 and q2 < 1 we have 1 − q2uiuj > 0. Hence the

only possible contribution to the sign in the expansion of θ(uiuj, q) comes from the

factor 1− q2u−1
i u−1

j . Thus

1− q2u−1
i u−1

j < 0 ⇐⇒ log|q| ui + log|q| uj > 2 ⇐⇒
⌊

1

2
log|q| ui +

1

2
log|q| uj

⌋
≥ 1.

On the other hand we observe that q4 < uiuj < 1, which implies that

⌊
1

2
log|q| ui +

1

2
log|q| uj

⌋
≤ 1.

By combining the above two inequalities for b1
2

log|q| ui + 1
2

log|q| ujc we conclude that

there is one negative sign in the expansion of θ(uiuj, q) if and only if

⌊
1

2
log|q| ui +

1

2
log|q| uj

⌋
= 1.

Hence from the above discussion we have

Parity

[ ∏
1≤i<j≤n

θ(uiuj, q)
vivj

]
≡

∑
1≤i<j≤n

bβi + βjc vivj (mod 2), (4.23)

where βi = 1
2

log|q| ui for all 1 ≤ i ≤ n.

Next, we examine the signs in θ
(∏n

i=1 u
vi
i , q
)
. From the expression (4.9) notice

that, as in Case I, the factor 1 −
∏n

i=1 u
vi
i may be positive or negative depending on

the indices vi. So we further split our analysis in two sub-cases.

Sub-case I. Assume that 1−
∏n

i=1 u
vi
i > 0.

Since |q|m < 1 for all m ≥ 1 and
∏n

i=1 u
vi
i < 1, we see that 1 − qm

∏n
i=1 u

vi
i > 0.

Further observe that, since q < 0, the factors 1− qm
∏n

i=1 u
−vi
i are positive for all odd
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values of m. However for the case when m is even

1− qm
n∏
i=1

u−vii < 0 ⇐⇒
n∏
i=1

uvii < |q|m,

which is the same as

n∑
i=1

vi log ui < m log |q| ⇐⇒ m <

n∑
i=1

vi log|q| ui.

Thus for every positive even integer smaller than
∑n

i=1 vi log|q| ui we get a negative

sign in (4.9). Hence, in this sub-case, the total number of negative signs in the ex-

pression for θ
(∏n

i=1 u
vi
i , q
)

is given by
⌊ 1

2

n∑
i=1

vi log|q| ui

⌋
.

Sub-case II. Assume that 1−
∏n

i=1 u
vi
i < 0.

Following a similar argument used in the previous sub-case we see that, there are⌊
− 1

2

n∑
i=1

vi log|q| ui

⌋
+ 1 negative signs in the expression for θ

(∏n
i=1 u

vi
i , q
)
. The 1

in the above expression is coming from the factor 1−
∏n

i=1 u
vi
i < 0.

Again using a similar argument as in Case I we can show that
n∑
i=1

vi log|q| ui is

not an integer, and as earlier using the property (4.17) of greatest integer function we

can combine both sub-cases. Thus we see that in both sub-cases the total number of

negative signs in θ
(∏n

i=1 u
vi
i , q
)

is equal to
⌊ 1

2

n∑
i=1

vi log|q| ui

⌋
. As a consequence we

have that

Parity

[
θ
( n∏
i=1

uvii , q
)]
≡

⌊
1

2

n∑
i=1

vi log|q| ui

⌋
(mod 2). (4.24)

80



4.1. THE SIGNS IN THE ELLIPTIC NET Ψ(P;E)

In conclusion combining (4.21), (4.22), (4.23), and (4.25) yields

Parity[Ωv(z; Λ)] ≡

⌊
1

2

n∑
i=1

vi log|q| ui

⌋
+

∑
1≤i<j≤n

⌊
1

2
log|q| ui +

1

2
log|q| uj

⌋
vivj (mod 2)

≡

⌊
n∑
i=1

viβi

⌋
+

∑
1≤i<j≤n

bβi + βjcvivj (mod 2). (4.25)

This is the required expression (4.4) with the explicit value of βi = 1
2

log|q| ui for all

1 ≤ i ≤ n. The proof of our theorem is complete.

Remark 4.1.5. Note that in the statement of the Theorem 4.1.4 we have assumed that

u1, u2, . . . , uk < 0 and uk+1, uk+2, uk+3, . . . , un > 0 (i.e., first k elements are negative).

We want to show that we are not losing any generality by having this assumption.

For simplicity we explain the case when n = 2 and k = 1.

Let u2 < 0 and u1 > 0. Let Pi ←→ ui be corresponding point in E(R) under the

isomorphism E(R) ∼= R/qZ. We want to calculate sign of

Ψ(v1,v2)((P1, P2);E). (4.26)

Observe that since

v1P1 + v2P2 = v2P2 + v1P1

we have

Ψ(v1,v2)((P1, P2);E) = Ψ(v2,v1)((P2, P1);E)

Thus instead of calculating the sign of (4.26) we calculate sign of

Ψ(v2,v1)((P2, P1);E).

Remark 4.1.6. We give a brief comparison for the proof of Theorem 4.1.4 and the

proof of Theorem 3.2.7. The first observation is that in Theorem 3.2.7 the n is always
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positive. However it can be used to calculate the sign of Wn when n is negative

using relation W−n = −Wn. For higher ranks there is a similar relation. For v =

(v1, v2, . . . , vn) ∈ Zn we have W−v = −Wv. However we have to deal with the case

when some of the vi are positive and others are negative.

Second observation is that in proof of Theorem 3.2.7 the denominator of Wn is

always positive. However in Theorem 4.1.4 the denominator of Ψv(P;E) contains

negative signs.

Finally, in Theorem 4.1.4 for the case when 0 < q < 1 there are two possible cases

depending on sign of u. However in Theorem 3.2.7 for higher rank for 0 < q < 1 we

have u1, u2, . . . , un and each may be positive or negative in any possible combination.

Thus instead of splitting in to a number of possible cases we consider a general case

where u1, u2, . . . , uk > 0 and uk+1, uk+2, . . . , uk+n < 0, where 0 ≤ k ≤ n.

We now give illustrations of various cases of Theorem 4.1.4 with the help of some

examples. For sake of simplicity we only give examples for rank 2 elliptic nets.

Software: All the computations were done using mathematical software SAGE.

Keeping the assumptions and notations used in Theorem 4.1.4, for the case n = 2,

the sign of either Ψv(P;E) or (−1)v
2
1+v22−v1v2−1Ψv(P;E), can be computed using one

of the following parity formulas:

Parity[Ψv(P ;E)] ≡
⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2 (mod 2) (4.27)

Parity[Ψv(P ;E)] ≡


⌊
v1β1 + v2β2

⌋
+
⌊v1

2

⌋
(mod 2) if v1 is even,⌊v1

2

⌋
(mod 2) if v1 is odd.

(4.28)
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Parity[Ψv(P ;E)] ≡


⌊
v1β1 + v2β2

⌋
+
⌊v2

2

⌋
(mod 2) if v2 is even,⌊v2

2

⌋
(mod 2) if v2 is odd.

(4.29)

Parity[Ψv(P ;E)] ≡



⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2

+
⌊v1

2

⌋
+
⌊v2

2

⌋
(mod 2) if v1 + v2 is even,⌊

β1 + β2

⌋
v1v2 +

⌊v1

2

⌋
+
⌊v2

2

⌋
(mod 2) if v1 + v2 is odd.

(4.30)

Here the two irrational numbers β1 and β2 are given by

q β1 β2

0 < q < 1 logq |u1| logq |u2|

−1 < q < 0 1
2

log|q| u1
1
2

log|q| u2

Table 4.2: Explicit expression for β1 and β2

The formula (4.27) is used when u1 > 0 and u2 > 0 and formula (4.28) is used for the

case when u1 < 0 and u2 > 0. We use the formula (4.29) when u1 > 0 and u2 < 0.

Finally the formula (4.30) is used when both u1 < 0 and u2 < 0.

We have verified the truth of above formulas for several rank 2 elliptic net W (v1, v2)

for range of 0 ≤ v1 ≤ 500 and 0 ≤ v2 ≤ 500. Thus the results have been verified for

the up to 25× 104 terms and same for the negative indices as well.

Example 4.1.7. Let E be the elliptic curve defined over R given by the Weierstrass

equation y2 + xy = x3 − x2 − 4x + 4. Let P1 = (69/25,−32/125) and P2 = (2,−2)

be two points in E(R). Let P = (P1, P2). The following table presents the values of

Ψv(P;E) for v = (v1, v2) in the range 0 ≤ v1 ≤ 3 and 0 ≤ v2 ≤ 5.
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...

−832 1232600000 430685595625000000 3330569636331576171875000000

112 −12560000 −18772893750000 121093285553785156250000

· · · −4 −165500 −141878687500 −1754232556789062500 · · ·

−2 −150 196317500 −1270400610718750

1 95 152725 −181061702375

0 5 −3595 63803440

...

Table 4.3: Elliptic net Ψ(P;E) associated to elliptic curve E : y2+xy = x3−x2−4x+4
and points P1 = (69/25,−32/125), P2 = (2,−2).

In the above array the bottom left corner represent the value Ψ(0,0)(P;E) and the

upper right corner represents Ψ(3,5)(P;E).

There is an isomorphism E(R) ∼= R∗/qZ such that P1 ←→ u1 and P2 ←→ u2 with

the explicit values

q = 0.0001199632944492781512985480142643667840 . . . . . . ,

u1 = 0.0803285719586868777961922659399264909608 . . . . . . ,

u2 = 0.03600942542966326797848808049477306988456 . . . . . .

Observe that q > 0, thus from Proposition 2.5.2, E(R) is disconnected having two

components. The points P1 and P2 both are on the component having identity. Since

u1 > 0, and u2 > 0 so using Theorem 4.1.4, the sign of Ψv(P;E) can be calculated

by either

Parity[Ψv(P;E)] ≡
⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2 (mod 2) (4.31)
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or

Parity[Ψv(P;E)] ≡
⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2 + (v2

1 + v2
2 − v1v2 − 1) (mod 2)

≡
⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2 + (v1 + v2 + v1v2 + 1) (mod 2)

(4.32)

with

β1 = 0.2793020829801927957749331343976812416467 . . . ,

β2 = 0.3681717984734797193981452826601334954064 . . . ,

since Theorem 4.1.4 gives either sign of Ψv(P;E) or (−1)v
2
1+v22−v1v2−1Ψv(P;E). By

computing the sign of Ψ(2,2)(P;E) using (4.31) and (4.32) we conclude that in this

case the parity is given by formula (4.32). Next we illustrate the truth of our formula

using two special cases.

sign[Ψ(1,3)(P;E)] = (−1)ParityΨ(1,3)(P;E)

= (−1)bβ1+3β2c+3bβ1+β2c+8 = −1

and from the table we see that Ψ(1,3)(P;E) = −150 having negative sign and

sign[Ψ(3,4)(P;E)] = (−1)b3β1+4β2c+12bβ1+β2c+20

= (−1)22 = 1

and from the table we see that Ψ(3,4)(P;E) = 121093285553785156250000 having

positive sign

Example 4.1.8. Let E be the elliptic curve defined over R given by the Weierstrass

equation y2 + xy = x3 − x2 − 4x+ 4. Let P1 = (−1, 3) and P2 = (3, 2) be two points

in E(R) so that P = (P1, P2). The following table presents the values of Ψv(P;E) for
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v = (v1, v2) in the range 0 ≤ v1 ≤ 3 and 0 ≤ v2 ≤ 6.

...

−219900856 71486913947 48178148140103 −112925826309806338

−495235 58762243 3246745150 −20471103308793

−749 170718 −24093133 −16532329817

· · · 62 2291 −154139 −28273396 · · ·

7 67 −1256 −101083

1 4 3 −1579

0 1 5 −94

...

Table 4.4: Elliptic net Ψ(P;E) associated to elliptic curve E : y2+xy = x3−x2−4x+4
and points P1 = (−1, 3), P2 = (3,−2).

In the above array the bottom left corner represent the value Ψ(0,0)(P;E) and the

upper right corner represents Ψ(3,6)(P;E).

In this case there is an isomorphism E(R) ∼= R∗/qZ such that P1 ←→ u1 and

P2 ←→ u2 with the explicit values

q = 0.0001199632944492781512985480142643667840 . . . . . . ,

u1 = −0.283422955948679072053638499724508663516 . . . . . . ,

u2 = 0.00129667871977447963166306014589504823338 . . . . . .

Observe that q is same as in the previous example. The point P1 is not on the identity

component, however P2 is on the component having identity. Further since u1 < 0,
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and u2 > 0 so using Theorem 4.1.4, parity of Ψv(P;E) is either given by

Parity[Ψv(P;E)] ≡


⌊
v1β1 + v2β2

⌋
+
⌊v1

2

⌋
(mod 2) if v1 is even⌊v1

2

⌋
(mod 2) if v1 is odd

(4.33)

or

Parity[Ψv(P;E)] ≡


⌊
v1β1 + v2β2

⌋
+
⌊v1

2

⌋
+ v2

1 + v2
2 − v1v2 − 1 (mod 2) if v1 is even⌊v1

2

⌋
(mod 2) if v1 is odd

≡


⌊
v1β1 + v2β2

⌋
+
⌊v1

2

⌋
+ v2 + 1 (mod 2) if v1 is even⌊v1

2

⌋
(mod 2) if v1 is odd

(4.34)

with

β1 = 0.1396510414900963978874665671988406208233 . . . ,

β2 = 0.7363435969469594387962905653202669908128 . . . ,

since Theorem 4.1.4 gives either sign of Ψv(P;E) or (−1)v
2
1+v22−v1v2−1Ψv(P;E). By

computing the sign of Ψ(2,2)(P;E) using (4.33) and (4.34) we conclude that in this

case the parity is given by formula (4.34). Next we illustrate the truth of our formula

using two special cases.

sign[Ψ(2,3)(P;E)] = (−1)ParityΨ(2,3)(P;E)

= (−1)b2β1+3β2c+b1c+3+1 = (−1)7 = −1
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and from the table we see that Ψ(2,3)(P;E)] = −154139 is of negative sign and

sign[Ψ(1,5)(P;E)] = (−1)ParityΨ(1,5)(P;E)

= (−1)b
1
2
c = (−1)0 = 1

and from the table we see that Ψ(1,5)(P;E) = 58762243 is of positive sign.

Example 4.1.9. Let E be the elliptic curve defined over R given by the Weierstrass

equation y2 + y = x3 + x2 − 2x. Let P1 = (−1, 1) and P2 = (0,−1) be two points

in E(R). Let P = (P1, P2). The following table presents the values of Ψv(P;E) for

v = (v1, v2) in the range −5 ≤ v1 ≤ 5 and −2 ≤ v2 ≤ 2.

...

535 44 −7 −1 1 −1 −4 17 151 −55 −106201

1187 67 1 −2 −1 1 1 −5 26 709 −19061

· · · −3376 129 19 −3 −1 0 1 3 −19 −129 3376 · · ·

19061 −709 −26 5 −1 −1 1 2 −1 −67 −1187

106201 55 −151 −17 4 1 −1 1 7 −44 −535

...

Table 4.5: Elliptic net Ψ(P;E) associated to elliptic curve E : y2 + y = x3 + x2 − 2x
and points P1 = (−1, 1), P2 = (0,−1).

The above array is centered at Ψ(0,0)(P;E) = 0. The bottom left corner represent the

value Ψ(−5,−2)(P;E) and the upper right corner represents Ψ(5,2)(P;E).

For this example we have the isomorphism E(R) ∼= R∗/qZ such that P1 ←→ u1
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and P2 ←→ u2 with the explicit values

q = 0.00035785976153723480818280896702856223292 . . . . . . ,

u1 = −0.2170771835085414203450101536155224134341 . . . . . . ,

u2 = −0.0077622720300518161218942441500824493219 . . . . . . ,

Observe that q > 0, thus from Proposition 2.5.2, E(R) is disconnected. Moreover,

both the points P1 and P2 both are on the non-identity component. Since both u1 < 0

and u2 < 0 so using Theorem 4.1.4, sign of Ψv(P;E) is given by either

Parity[Ψv(P ;E)] ≡



⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2

+
⌊v1

2

⌋
+
⌊v2

2

⌋
(mod 2) if v1 + v2 is even⌊

β1 + β2

⌋
v1v2 +

⌊v1

2

⌋
+
⌊v2

2

⌋
(mod 2) if v1 + v2 is odd

(4.35)

or

Parity[Ψv(P ;E)] ≡



⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2

+
⌊v1

2

⌋
+
⌊v2

2

⌋
+ v1v2 + 1 (mod 2) if v1 + v2 is even⌊

β1 + β2

⌋
v1v2 +

⌊v1

2

⌋
+
⌊v2

2

⌋
(mod 2) if v1 + v2 is odd

(4.36)

with

β1 = 0.1924929051139423228173765652973000996307 . . . . . . ,

β2 = 0.6122563386959476420220464745591944344939 . . . . . . ,

since Theorem 4.1.4 gives either sign of Ψv(P;E) or (−1)v
2
1+v22−v1v2−1Ψv(P;E). Note

that in formula (4.36) we have used v1v2 + 1 for every v1 + v2 even instead of v2
1 +
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v2
2 − v1v2 − 1 since these two expressions are congruent modulo 2. By computing the

sign of Ψ(2,2)(P;E) using (4.35) and (4.36) we conclude that in this case the parity is

given by formula (4.36). Next we illustrate the truth of our formula using two special

cases.

sign[Ψ(−4,−1)(P;E)] = (−1)ParityΨ(−4,−1)(P;E)

= (−1)bβ1+β2c(−4)(−1)+b−4
2
c+b−1

2
c

= (−1)−3 = −1

and from the table we see that Ψ(−4,−1)(P;E) = −709 having negative sign and

sign[Ψ(4,0)(P;E)] = (−1)ParityΨ(4,0)(P;E)

= (−1)b4β1c+1

= (−1)1 = −1

and from the table we see that Ψ(4,0)(P;E) = −129 having negative sign. Note that

from the table it is also clear that Ψ−v(P;E) = −Ψv(P;E).

Example 4.1.10. Let E be the elliptic curve defined over R given by Weierstrass

equation y2 = x3−7x+10. Let P1 = (−2, 4) and P2 = (1, 2) be two linear independent

points in E(R). Let P = (P1, P2) The following table presents the values of Ψv(P;E)

for v = (v1, v2) in range 0 ≤ v1 ≤ 4 and 0 ≤ v2 ≤ 6.
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...

−54525952 1086324736 81340137472 −15800157077504 −29481936481157120

−163840 −950272 131956736 30954979328 −31977195339776

−2048 −17408 280576 85124096 30585993216

· · · 32 −352 −9440 979488 449423648 · · ·

4 −4 −276 −16028 8814788

1 3 −31 −1697 67225

0 1 8 −409 −65488

...

Table 4.6: Elliptic net Ψ(P;E) associated to elliptic curve E : y2 = x3 − 7x+ 10
and points P1 = (−2, 4), P2 = (1, 2).

In the above array the bottom left corner represent the value Ψ(0,0)(P;E) and the

upper right corner represents Ψ(4,6)(P;E).

In this case there is an isomorphism E(R) ∼= R∗/qZ such that P1 ←→ u1 and

P2 ←→ u2 with explicit values

q = −0.0004077489822343239057667854741817549172 . . . . . . ,

u1 = 0.001201936348983837429349696735400418601519 . . . . . . ,

u2 = 0.008992979917906651664620780969726498312814 . . . . . .

Observe that q < 0, thus from Proposition 2.5.2, E(R) is connected. Since u1 > 0

and u2 > 0 so using Theorem 4.1.4, by calculating the sign of Ψ(2,2)(P;E) we notice

that the sign of Ψv(P;E) in this case is given by

Parity[Ψv(P;E)] ≡
⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2 (mod 2)
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with

β1 = 0.4307458699792390794239197192204249668246 . . . . . . ,

β2 = 0.3018191057841811111031361738974315389666 . . . . . . .

Next we illustrate the truth of our formula using two special case examples:

sign[Ψ(2,3)(P;E) = (−1)ParityΨ(2,3)(P;E)

= (−1)b2β1+3β2c+6bβ1+β2c

= (−1)1 = −1

and from the table we see that Ψ(2,3)(P;E) = −9440, having negative sign and

sign[Ψ(3,5)(P;E)] = (−1)ParityΨ(3,5)(P;E)

= (−1)b3β1+5β2c+15bβ1+β2c

= (−1)2 = 1

and from the table we see that Ψ(3,5)(P;E) = 30954979328 having positive sign

Note that Theorem 4.1.4 gives the sign of an elliptic net Ψ(P;E) associated to

an elliptic curve E and a collection of points P on it. In the next section we show

this theorem can be used for calculating the signs in any general non-singular non-

degenerate elliptic net W.

4.2 The Signs in a General Elliptic Net

We can use Theorem 4.1.4 in order to find the sign of any non-singular non-

degenerate elliptic net. The main observation is that non-singular non-degenerate

elliptic nets W are scale equivalent to the nets Ψ(P;E) associated elliptic curves E
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and collection of points P. More precisely, given any non-singular, non-degenerate

elliptic net W : Zn −→ K we can find an elliptic net E over K and an n-tuple of

points P = (P1, P2, . . . , Pn) ∈ E(K)n, such that

W (v) = f(v)Ψv(P ;E)

for any v ∈ Zn, where f : Zn −→ K∗ is a quadratic form. We next prove a general

result regarding the sign of an elliptic net.

Theorem 4.2.1. Let W : Zn −→ R be a non-singular non-degenerate elliptic net.

Then possibly after replacing W (v) with f(v)W (v) for a quadratic form f : Zn −→ R∗

there are n irrational numbers β1, β2, · · · , βn given by Table 4.1 and can be calculated

using an elliptic curve attached to W and points on it by following the similar procedure

as described in Theorem 4.1.4 so that the parity of W (v) up to parity of a quadratic

form is given by one of the following formulas:

Parity[W (v)] ≡

⌊
n∑
i=1

viβi

⌋
(mod 2). (4.37)

Parity[W (v)] ≡


⌊ n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is even

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is odd

(4.38)

where the formula (4.37) is used when ui > 0 for all 1 ≤ i ≤ n, otherwise (4.38) is

used.

Proof. First of all note that by Theorem 3.5.5, for a non-singular non-degenerate

elliptic net W : Zn −→ R there exists an elliptic curve E defined over R and a

collection P = (P1, P2, . . . , Pn) of points in E(R), such that

W (v) = f(v)Ψv(P;E)
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for any v ∈ Zn. Here f : Zn −→ R∗ is a quadratic form and Ψ(P ;E) is the elliptic

net associated to P and E. Thus

Sign[W (v)] = Sign[f(v)] Sign[Ψv(P ;E)]

= (−1)Parity[f(v)] Sign[Ψv(P ;E)], (4.39)

where Parity[f(v)] is in Z/2Z.

Next, consider g : Zn −→ Z defined as

g(v) =


∑

1≤i<j≤n

bβi + βjcvivj if 0 < q < 1

∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n

bβi + βjcvivj if − 1 < q < 0,

and H : Zn −→ Z defined as

H(v) =

⌊
n∑
i=1

viβi

⌋
if 0 < q < 1

H(v) =


⌊ n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
if

k∑
i=1

vi is even

k∑
i=1

⌊vi
2

⌋
if

k∑
i=1

vi is odd if 0 < q < 1

where q and βi are defined in Theorem 4.1.4. Then using Theorem 4.1.4 we know that

Sign[Ψv(P ;E)] = (−1)g(v)+H(v).

So we can rewrite (4.39) as follows

Sign[W (v)] = (−1)Parity[f(v)] (−1)g(v)+H(v)

= (−1)Parity[f(v)]+g(v) (−1)H(v) (4.40)
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Furthermore, note that f(v)(−1)g(v) is a quadratic form. So up to the sign of a

quadratic form

Sign[W (v)] = (−1)H(v).

In other words,

Parity[W (v)] ≡ H(v) (mod 2).

Remark 4.2.2. We remark that in order to use Theorem 4.2.1 in applications, we need

an effective version of the curve-net theorem (Theorem 3.5.5). In other words for

a given non-degenerate, non-singular elliptic net we should be able to compute the

corresponding curve E and the points P on it. For simplicity we explain concretely

how we can compute the sign of any non-singular, non-degenerate elliptic net of rank

1 and 2. For higher ranks see [13].

Procedure for elliptic net of rank 1.

Let W : Z −→ R be a non-singular, non-degenerate elliptic net. By using Proposition

3.3.12, there is a quadratic form f(n) : Z −→ R given by

f(n) = W (1)−n
2

such that W = f(n)W ′, where W ′ is a normalized elliptic net. Note that since W

is non-degenerate, W (1) 6= 0. Then from Proposition 3.5.1 there is an elliptic curve

E/R given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x, and point P = (0, 0),
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where

a1 =
W (2) +W (2)5 − 2W (2)W (3)

W (2)2W (3)
,

a2 =
W (2)W (3)2 +W (4) +W (2)5 −W (2)W (3)

W (2)3W (3)
,

a3 = W (2), a4 = 1,

such that

Ψn(P ;E) = W ′(n) for all n ∈ Z.

Thus the sign of W (n) is given by

Sign[W (n)] = Sign[f(n)]Sign[Ψn(P ;E)]

= Sign[W (1)n
2

]Sign[Ψn(P ;E)],

where Sign[Ψn(P ;E) can be computed by using Theorem 4.1.4. Moreover, since for

any rank 1 elliptic net W, the value of W (1) is known, therefore we can easily calculate

the sign of any term in net W.

Procedure for elliptic net of rank 2.

Let W : Z2 −→ R be a non-singular, non-degenerate elliptic net. From Proposition

3.3.12 we know that for any non-degenerate elliptic net W : Z2 −→ R, there is a

quadratic form f(m,n) : Z2 −→ R given by

f(m,n) = W (1, 0)−m
2+mn W (0, 1)−n

2+mn W (1, 1)−mn

such that W = f(m,n)W ′, where W ′ is a normalized elliptic net. Observe that since

W is non- degenerate the termsW (1, 0),W (0, 1), andW (1, 1) are non-zero. Then from

Proposition 3.5.2 there is an elliptic curve E/R and a collection of points P = (P,Q)
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given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x,

where

a1 =
W (2, 0)−W (0, 2)

W (2, 1)−W (1, 2)
, a2 = 2W (2, 1)−W (1, 2),

a3 = W (2, 0), a4 = W (2, 1)[W (2, 1)−W (1, 2)],

and

P = (0, 0), Q = (W (1, 2)−W (2, 1), 0),

such that

Ψ(m,n)(P;E) = W ′(m,n) for all (m,n) ∈ Z2.

Thus the sign of W (m,n) is given by

Sign[W (m,n)] = Sign[f(m,n)]Sign[Ψ(m,n)(P;E)]

= Sign[W (1, 0)m
2+mn W (0, 1)n

2+mn W (1, 1)mn]Sign[Ψ(m,n)(P;E)],

where Sign[Ψ(m,n)(P;E)] can be computed by using Theorem 4.1.4. Moreover, Since

for any rank 2 elliptic net W, the value of W (1, 0),W (0, 1), and W (1, 1) are known,

therefore we can easily calculate the sign of any term in W.
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Chapter 5

Applications

In this chapter we give some applications of our theorems in Chapter 4. The first

application is related to the distribution of signs in an elliptic net, which will be

described in Section ?? We will show that the signs in elliptic net are uniformly

distributed. In Section 5.2 of this chapter we give the second application which is

regarding elliptic denominator sequences.

5.1 Distribution of Signs in an Elliptic Sequence

In 1960, I. Niven [6] introduced the concept of uniform distribution modulo m of

sequence of integers. We start with the following definition.

Definition 5.1.1. Let A = (an) be an infinite sequence of integers. For any integers

j and m ≥ 2 denote A(N, j,m) by the number of terms among a1, a2, . . . , aN such

that ai ≡ j (mod m). Then the sequence A is said to be uniformly distributed modulo

m if

lim
N→∞

1

N
A(N, j,m) =

1

m

for j = 0, 1, . . . ,m− 1.

A sequence (an) of integers is said to be uniformly distributed if (an) is uniformly

distributed modulo m for every m ≥ 2. We give some examples of sequences which

are uniformly distributed modulo m.

1. The sequence (an) = (n), n ∈ Z is uniformly distributed modulo m for every
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m ≥ 2.

2. An arithmetic progression {an + b | n = 1, 2, 3, . . .} is uniformly distributed

modulo m if and only if gcd(a,m) = 1.

We are interested in how the signs of an elliptic net of rank 1 are distributed. In

order to do this we need to define what we mean when we say the sequence of signs

is uniformly distributed.

Definition 5.1.2. We say that signs of a real sequence (an) is uniformly distributed

if the parity sequence (Parity(an)) is uniformly distributed modulo 2.

We will employ the following known theorem in our investigation.

Theorem 5.1.3. For any real number θ let A(θ) be the sequence of integers

bθc, b2θc, b3θc, . . . , bnθc, . . . .

Then the sequence A(θ) is uniformly distributed if and only if θ is irrational or θ = 1/k

for some non-zero integer k.

Proof. See [6, Theorem 3.1].

As a direct consequence of Theorems 4.1.4 and 5.1.3 we have the following result

on distribution of signs of real elliptic sequences.

Theorem 5.1.4. Let W : Z −→ R be an elliptic sequence. Then the sequence

(Sign[W (n)]), of signs of the terms of an elliptic sequence, is uniformly distributed.

Proof. From Theorem 4.1.4 the sign of the n-th term of an elliptic sequence is given
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by

Sign[W (n)] = (−1)bnβc

Sign[W (n)] =


(−1)bnβc+bn/2c if n is even,

(−1)bn/2c if n is odd.

We want to show that each of the sequences
(
(−1)bnβc

)
,
(
(−1)bnβc+bn/2c

)
n even

, and(
(−1)bn/2c

)
n odd

is uniformly distributed. In view of Definition 5.1.2 equivalently

we can show that the sequences (bnβc), (bnβc + bn/2c)n even, and (bn/2c)n odd are

uniformly distributed modulo 2. Since β is an irrational number therefore the fact that

the distribution of the sequence (bnβc) is uniform modulo 2 follows from Theorem

5.1.3.

The sequence (bnβc+ bn/2c)n even can be written as, with n = 2m,

(bnβc+ bn/2c)n even = (b2mβc+ bmc) = (bm(2β + 1)c),

which is uniformly distributed modulo 2 using Theorem 5.1.3. Finally the sequence

(bn/2c)n odd, for n = 2m+ 1, can be written as

(bn/2c)n odd = (bm+ 1/2c) = (m),

which is again uniformly distributed modulo 2. Hence for all the cases the sequence

of (Parity(an)) of terms of an elliptic sequence is uniformly distributed modulo 2.

We now move on to our second application of Theorem 4.1.4.

5.2 Connection With Denominator Net

In order to explain the second application we first introduce the concept of a

denominator net, for that we need the following proposition.
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Proposition 5.2.1. Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 with ai ∈ Z be

an elliptic curve defined over Q. Then any point P in E(Q) will be of the form

P =

(
AP
D2
P

,
BP

D3
P

)

where AP , BP , DP ∈ Z , DP > 0 and gcd(AP , DP ) = gcd(BP , DP ) = 1.

Proof. See [3, Proposition 7.3.1].

Let E/Q be an elliptic curve given by a Weierstrass equation with integer coef-

ficients. If P ∈ E(Q) is a non-torsion point (i.e., nP 6= O for any n) then we have

that

nP =

(
AnP
D2
nP

,
BnP

D3
nP

)
.

We call the sequence (DnP ) an elliptic denominator sequence associated to curve

E and the point P. It can be proved that (DnP ) is a divisibility sequence. Many

authors have extensively studied the sequence (DnP ). In fact, Shipsey [8] showed that

there is a way to assign signs (observe that DnP > 0 for all n) to (DnP ) so that it

becomes an elliptic divisibility sequence. More precisely, let E be an elliptic curve

given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x, ai ∈ Z (5.1)

with the condition that gcd(a3, a4) = 1. Let P = (0, 0) be a point of infinite order

in E(Q). Let (DnP ) be the associated elliptic denominator sequence. Let (Wn) be a

sequence defined by the rule given below

W1 = 1, W2 = a3, |Wn| = DnP for n ≥ 2.
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Suppose we assign signs to the terms of (Wn) as follows

Sign(Wn−2Wn) = −Sign(A(n−1)P ) for n ≥ 3.

Then in [8, Section 4.4] Shipsey showed that (Wn) will be an elliptic divisibility

sequence. We observe that the condition on E that gcd(a3, a4) = 1 is equivalent to

that P = (0, 0) reduces to a non-singular point modulo any prime `. She also showed

that if a curve is not of the form (5.1) then it is always possible to transform a given

curve into a curve of the form (5.1) (see [8, Chapter 5]).

The concept of elliptic denominator sequence has been generalized to higher ranks,

the so called elliptic denominator net. If P = (P1, P2, . . . , Pn) is an n-tuple of linear

independent points in E(Q). Then for v = (v1, v2, . . . , vn) ∈ Zn we can write

v ·P = v1P1 + v2P2 + · · ·+ vnPn =

(
Av·P

D2
v·P

,
Bv·P

D3
v·P

)
.

Then (Dv·P ) is called the elliptic denominator net associated to an elliptic curve E

and a collection of points P. There is a relation between elliptic denominator net

(Dv·P ) and the values of the v-th net polynomial Ψv(P;E). In order to explain this

relation we will consider a scale equivalent net Ψ̂v(P;E) which is defined by relation

Ψ̂v(P;E) = Fv(P)Ψv(P;E) for all v ∈ Zn, (5.2)

where F (P) : Zn −→ Q∗ is the quadratic form given by

Fv(P) =
∏

1≤i≤j≤n

A
vivj
ij , (5.3)

with

Aii = Dei·P = DPi
, and Aij =

DPi+Pj

DPi
DPj

for i 6= j.
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Then we know form Proposition 3.3.10 that Ψ̂v(P;E) will be an elliptic net, which is

scale equivalent to Ψv(P;E). Furthermore, note that

Ψ̂ei(P;E) = Fei(P)Ψei(P;E) = Aii = Dei·P

and

Ψ̂ei+ej(P;E) = Fei+ej(P)Ψei+ej(P;E) = AiiAijAjj = DPi+Pj
= D(ei+ej)·P.

In [2], the following proposition is proved.

Proposition 5.2.2 (Akbary-Bleaney-Yazdani). Let E be an elliptic curve defined

over Q given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Z.

Let P = (P1, P2, . . . , Pn) be an n-tuple of linear independent points in E(Q) so that

each Pi (mod `) is non-singular for every prime `. Then we have

Dv·P = |Ψ̂v(P;E)| (5.4)

for all v ∈ Zn.

Proof. See [2, Proposition 1.7].

Here as a consequence of Theorem 4.1.4 and above proposition we describe how

one can assign signs to a denominator net to obtain an elliptic net.

Proposition 5.2.3. Let E be an elliptic curve defined over Q under the assumptions

of Proposition 5.2.2. Define a map W (v) : Zn −→ Q as

W (v) = (−1)Parity[Ψv(P;E)]Dv·P , (5.5)
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where Ψ(P;E) is the elliptic net associated to E and a collection of points P. Then

W (v) is an elliptic net.

Proof. First of all observe that since all the terms of a denominator net is positive

hence the quadratic form given by (5.3) is also positive. Therefore from (5.2) it follows

that

Parity[Ψv(P;E)] = Parity[Ψ̂v(P;E)], (5.6)

Now define a map W (v) : Zn −→ Q such that

|W (v)| = Dv·P for all v ∈ Zn,

and assign the sign to W (v) by

Sign[W (v)] = (−1)Parity[Ψv(P;E)],

where the Parity[Ψv(P;E)] is given in Theorem 4.1.4. Thus define

W (v) = (−1)Parity[Ψv(P;E)]Dv·P . (5.7)

Observe that using (5.4) and (5.6) we can rewrite (5.7) as follows

W (v) = (−1)Parity[Ψ̂v(P;E)]|Ψ̂v(P;E)|

= Sign[Ψ̂v(P;E)]|Ψ̂v(P;E)|

= Ψ̂v(P;E)

which is an elliptic net by (5.2). Hence W (v) is an elliptic net. This completes the

proof of this theorem.

Remark 5.2.4. For rank one elliptic net the above proposition gives an alternative
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method different from Shipsey’s in generating elliptic sequences out of elliptic denom-

inator sequences.
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