
TOPOLOGY SENSITIVE ALGORITHMS FOR LARGE SCALE UNCAPACITATED
COVERING PROBLEM

Tarikul Alam Khan Sabbir
Bachelor of Science, Islamic University of Technology, 2006

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Tarikul Alam Khan Sabbir, 2011

TOPOLOGY SENSITIVE ALGORITHMS FOR LARGE SCALE UNCAPACITATED
COVERING PROBLEM

TARIKUL ALAM KHAN SABBIR

Approved:

Signature Date

Supervisor:

Co-Supervisor:

Committee Member:

External Examiner:

Chair, Thesis Examination Committee:

I dedicate this thesis to my parents.

iii

Abstract

Solving NP-hard facility location problems in wireless network planning is a common scenario.

In our research, we study the Covering problem, a well known facility location problem with ap-

plications in wireless network deployment. We focus on networks with a sparse structure. First,

we analyzed two heuristics of building Tree Decomposition based on vertex separator and perfect

elimination order. We extended the vertex separator heuristic to improve its time performance. Sec-

ond, we propose a dynamic programming algorithm based on the Tree Decomposition to solve the

Covering problem optimally on the network. We developed several heuristic techniques to speed

up the algorithm. Experiment results show that one variant of the dynamic programming algorithm

surpasses the performance of the state of the art mathematical optimization commercial software on

several occasions.

iv

Acknowledgments

At first, I would like to thank the Almighty for giving me the strength to finish my thesis. I am

forever grateful to my loving family. The continuous word of encouragement from my parents, my

brother and my sister-in-law always boosted my confidence and guided me through difficult times.

I would like to take this opportunity to thank all my friends and well-wishers near and abroad who

had faith in me even when I did not have faith in myself. I feel lucky to have befriended Chad, Chris,

Mecole and Ben, whom I met in Lethbridge. They always made me feel at home in a totally foreign

environment. I would also like to thank my fellow grad students Salimur Choudhury, Mohammad

Tauhidul Islam, Sangita Bhattacharjee, Kaisar Imam, Shah Mostafa Khaled, Mahmudul Hasan for

their continuous support.

I would like to express my deep gratitude for both of my Supervisors. I specially thank Dr. Daya

Gaur to give me the opportunity to be his student. His watchful supervision, admirable suggestions

and astute guidance throughout the period was essential to complete my thesis. I profoundly thank

Dr. Robert Benkoczi for being an outstanding mentor. Without his endless help and continuous

reassurance at the most difficult of times, this thesis wouldn’t have been a reality. I am indebted to

both of them for their unhindered support and the invaluable knowledge they shared with me.

I would like to thank my M.Sc. supervisory committee member Dr. Saurya Das for his constructive

suggestions. I would also like to thank my external Dr. Apurva Mudgal for his valuable suggestions

and comments. And I must thank Dr. Shahadat Hossain for his continuous advice and help.

I also would like to thank the School of Graduate Studies and the department of Math and Computer

Science. Thank you all for supporting me throughout the years and adding to my strength as I

continue on the road ahead.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Facility Location Covering Problem . 2
1.2 Motivation for Using Tree Decomposition . 3
1.3 Summary of Contributions . 6
1.4 Thesis Outline . 7

2 Background on Tree Decomposition 9
2.1 Definitions and Notations . 9

2.1.1 Nice Tree Decomposition . 10
2.2 Construction of a Tree Decomposition . 11
2.3 Minimum Separating Vertex Set Heuristic . 12

2.3.1 Minimum Separating Vertex sets and their Computation 12
2.3.2 MSVS Heuristic . 14
2.3.3 Random Separator Vertex set Heuristic (RSVS) 17

2.4 Clique Tree Heuristic . 18
2.4.1 Chordal Graph: Definitions and Characteristics 18
2.4.2 Minimum Degree Heuristic . 20
2.4.3 Clique Tree Algorithm . 21

3 Dynamic Programming Algorithm to Solve Covering Problem 26
3.1 Dynamic Programming Approach . 26

3.1.1 Cost function and other Definitions . 27
3.1.2 Leaf Node . 28
3.1.3 Introduce node . 29
3.1.4 Forget Node . 30
3.1.5 Join Node . 31
3.1.6 Running Time . 32
3.1.7 Proof of Correctness . 33

3.2 Heuristic Techniques . 35
3.2.1 Pruning Heuristic . 35

vi

3.2.2 Reductions of cost functions based on the Covering Neighborhood 36
3.2.3 Pruning Using Branch and Bound . 39

3.3 Hybrid and Parallel Algorithm . 43
3.3.1 A Hybrid algorithm with CPLEX and Dynamic Programming 43
3.3.2 A Parallel Algorithm for Solving Covering Problem 46

3.4 Implementation . 48
3.4.1 Dynamic Program . 48
3.4.2 Pruning Heuristic Module . 50
3.4.3 Branch and Bound Technique . 51
3.4.4 Hybrid Algorithm . 51
3.4.5 Parallel Algorithm . 52
3.4.6 Cost Table Reduction Technique . 54
3.4.7 Bounding the Assignment Function . 55
3.4.8 Balancing the Height of the Tree Decomposition 58
3.4.9 Using a Modified Dijkstra’s algorithm to Compute Shortest Path 60

4 Experiments 61
4.1 Tree Decomposition Experiments . 61

4.1.1 Data Sets . 62
4.1.2 Tree Decomposition Experiment Results 63

4.2 Covering Problem Algorithm Experiments . 65
4.2.1 Data Sets . 66
4.2.2 Experiment Results . 67

4.3 Analysis . 81

5 Conclusion 85

Bibliography 88

vii

List of Tables

4.1 Tree Decomposition Experiments on Random Dense Graphs 64
4.2 Tree Decomposition Experiments on Random Sparse Graphs 64
4.3 Runtime Comparison among CPLEX, Hybrid Program and Hybrid with BB(Branch

and Bound) for a Covering problem Instance where radius = 10, facility opening
cost = 15 and penalty = 20 . 68

4.4 Permutations comparison between Hybrid Program and Hybrid with BB(Branch
and Bound) for a Covering problem Instance where radius = 10, facility opening
cost = 15 and penalty = 20 . 70

4.5 Runtime Comparison among CPLEX, Hybrid Program and Hybrid with BB(Branch
and Bound) for a Covering problem Instance where radius = 20, facility opening
cost = 25 and penalty = 20 . 72

4.6 Number of Permutations comparison between Hybrid Program and Hybrid with
BB(Branch and Bound) for a Covering problem Instance where radius = 20, facility
opening cost = 25 and penalty = 20 . 73

4.7 Runtime Comparison among CPLEX, Hybrid Program and Hybrid with BB(Branch
and Bound) for a Covering problem Instance where radius = 30, facility opening
cost = 13 and penalty = 22 . 75

4.8 Number of Permutations comparison between Hybrid Program and Hybrid with
BB(Branch and Bound) for a Covering problem Instance where radius = 30, facility
opening cost = 13 and penalty = 22 . 76

4.9 Runtime Comparison among CPLEX, Hybrid Program and Hybrid with BB(Branch
and Bound) for a Covering problem Instance where radius = 40, facility opening
cost = 10 and penalty = 17 . 78

4.10 Number of Permutations comparison between Hybrid Program and Hybrid with
BB(Branch and Bound) for a Covering problem Instance where radius = 40, facility
opening cost = 10 and penalty = 17 . 79

viii

List of Figures

1.1 An Example of a Covering Problem in a Wireless sensor network 1
1.2 An Example of a Covering Problem in a Wireless sensor network 5

2.1 A graph and it’s tree decomposition . 10
2.2 Nice Tree Decomposition . 11
2.3 Transformation of a non directed graph to its auxiliary equivalent 13
2.4 Improvement step of a tree decomposition [16] 15
2.5 Construction of Tree Decomposition by MSVS 15
2.6 Step by Step execution of Clique Tree Heuristic 24

3.1 Different types of Nice Tree Decomposition nodes with their facility allocation . . 29
3.1.1 Leaf Node . 29
3.1.2 Introduce Node . 29
3.1.3 Forget Node . 29
3.1.4 Join Node . 29

3.2 Subtree GTi and G\GTi at node i . 34
3.3 Tree Decomposition with Bounds . 41
3.4 Solving a Tree Decomposition with the Hybrid Algorithm 44
3.5 Parent and child with common elements . 56
3.6 distances representation between clients and facilities 57
3.7 Balancing the Height of a Tree Decomposition . 59

4.1 Runtime Comparison among CPLEX, Hybrid and Hybrid_with_bb for client radius
= 10, facility opening cost =15 penalty =20 . 71

4.2 Permutation Comparison between Hybrid and Hybrid_with_bb for client radius =
10, facility opening cost =15 penalty =20 . 71

4.3 Runtime Comparison among CPLEX, Hybrid and Hybrid_with_bb for client radius
= 20, facility opening cost =25 penalty =20 . 74

4.4 Permutation Comparison between Hybrid and Hybrid_with_bb for client radius =
20, facility opening cost =25 penalty =20 . 74

4.5 Runtime Comparison among CPLEX, Hybrid and Hybrid_with_bb for client radius
= 30, facility opening cost =13 penalty =22 . 77

4.6 Permutation Comparison between Hybrid and Hybrid_with_bb for client radius =
30, facility opening cost =13 penalty =22 . 77

4.7 Runtime Comparison among CPLEX, Hybrid and Hybrid_with_bb for client radius
= 40, facility opening cost =10 penalty =17 . 80

4.8 Permutation Comparison between Hybrid and Hybrid_with_bb for client radius =
40, facility opening cost =10 penalty =17 . 80

4.9 Client Radius Vs Runtime data of the Hybrid program for the graph with 3330 nodes
with subproblem size 2000 . 82

4.10 Client Radius Vs Total number of permutations of Hybrid Program for the graph
with 3330 nodes with subproblem size 2000 . 83

ix

Chapter 1

Introduction

In Wireless Network Planning, many scenarios involves solving NP-hard problems like Dominat-

ing Set, Facility Location Covering problem or P-median problem. For example, in wireless sensor

networks, often router motes are needed to be placed to collect data from the data collection sensors

which is a Facility location Covering problem. The objective in this case is to minimize the total

number of routers(thus minimizing total cost) while maximizing the sensor Coverage. In Figure 1.1,

a superficial instance of a Covering problem in wireless sensor network is shown. In our research

we will solve ,the Facility Location Covering Problem using a graph theoretical concept called Tree

Decompositions.

Application Server Router Mote

Wireless Mote

Data Transfer

Data Transfer

Data Transfer

Data Transfer
Data Transfer

Data Relay

Data Relay

Figure 1.1: An Example of a Covering Problem in a Wireless sensor network

In their study of graph minors, Robertson and Seymour defined the graph structures path width [26],

treewidth [27], and branchwidth [25, 28] with their associated graph structures path decomposition,

1

tree decomposition and branch decomposition. These notions proved to be useful in many areas of

computational complexity theory. Many NP-hard graph problems can be solved in polynomial time

for graphs with pathwidth, treewidth or branchwidth bounded by a constant. In this thesis we will

employ a dynamic programming algorithm which uses the tree decomposition to solve the Facility

location Covering Problem.

In section 1.1 we will describe a formal definition of the Facility Location Covering Problem. In

Section 1.2, we will discuss the motivation behind using tree decomposition for our problem. In

section 1.3, we will provide a outline of our thesis.

1.1 Facility Location Covering Problem

Following we will describe the client constrained Covering problem as defined by Kolen and

Tamir [15].

Minimise ∑
n
j=1 c jy j +∑

m
i=1 bizi

subject to ∑
n
j=1 ai jy j + zi ≥ 1 , i = 1, ...m

y j ∈ {0,1} , j = 1....n

zi ∈ {0,1} , i = 1....m

(1.1)

Where, m and n are finite index sets and ai j is an |n| × |m| (0,1) matrix. Let, G = (V,E) be an

undirected network with node set v = {v1,v2 . . .vm} and edge set E. We define d(vi,v j) is the short-

est path distance between client vi and v j. We assume that at each node there exists exactly one

client. We refer to the client located at node vi as client i, i = 1,2, . . .m. If client i is not served by

any facility, then a non-negative penalty cost of bi is incurred. We assume that the set of potential

sites for the facilities is a subset of nodes of the network. Without loss of generality let this be v′ =

v1,v2, . . .vn, n ≤ m. The non negative setup cost of establishing a facility at v j is c j, j = 1,2, . . .n

(we will refer to a facility established at site v j as facility j, j = 1,2, . . .n). The client constrained

2

covering problem corresponds to the case where we have a region of attraction of radius ri for client

i and we set ai j = 1 if and only if d(vi,v j) ≤ ri, i = 1,2 . . .m, j = 1,2 . . .n, which means for every

facility opened at vertex i, i = 1,2 . . .m, every client j, j = 1,2 . . .n is either covered or uncovered,

in the later case a penalty is incurred.

We define the LP-relaxation of (1.1) by replacing the integrality constraints by the non negativity

constraints on the variables. The relaxation of (1.1) is given below-

Minimise ∑
n
j=1 c jy j +∑

m
i=1 bizi

subject to ∑
n
j=1 ai jy j + zi ≥ 1 , i = 1, ...m

0≤ y j ≤ 1 , j = 1....n

0≤ zi ≤ 1 , i = 1....m

(1.2)

In our research, we will model a CPLEX (a mathematical problem solver tool) instance according

to this linear program to solve subproblems of an input graph.

1.2 Motivation for Using Tree Decomposition

In many wireless networks, the graph representation of the flow of data has a decisive connectedness

that resembles a tree like pattern. The current methods for solving optimization problems such as

integer programming doesn’t take this property into account. In our research we wanted to exploit

this property. The idea of using tree decomposition is derived from the fact that many NP-hard

problems like Maximum-Weight Independent Set, Graph Coloring problem and Dominating Set

problem can be solved polynomially when the input is a tree (a restricted structure which has no

cycle). We can easily build a dynamic programming algorithm which exploits the fact that on a tree

the computation can be broken down into several subproblems with very limited interaction among

them (see figure 1.2). Once we decide whether or not to include a node in the dominating set, the

subproblems in each subtree becomes completely separated; we can solve each as though the others

did not exists [13].

3

We don’t encounter such a nice situation in general graphs (or in graphs derived from the wireless

networks), where there might not be a node that “breaks the communication” between subprob-

lems in the rest of the graphs. But in such cases we can recursively decompose the input graph

by removing small sets of nodes rather removing a single node to break the communication among

subproblems in the graph. This means that these graphs have a “tree like” pattern. By utilizing

this tree like structure, it is possible to design a dynamic programming algorithm to solve NP-hard

problems on general graphs. Not all wireless sensor networks have a tree like structure. In certain

applicatins, we conjecture that the treewidth of sensor net graphs is small. We will use such graphs

(graphs are randomly generated to mimic a network structure) to solve the Facility Location Cov-

ering problem using a dynamic programming algorithm that exploits the independent subproblem

structure of those graphs. But before that we need to decompose a graph into that structure which

discerns it’s tree like characteristics. This structure is called a tree decomposition.

To better understand the intuition behind the tree decomposition of a general graph, let us discuss

Figure 1.2. The graph G pictured in this figure is decomposable in a tree like way. If G is seen like

in the Figure 1.2(a), then its tree like structure might not appear immediately. In Figure 1.2(b), how-

ever, we see that G is actually composed of ten interlocking triangles; and seven of the ten triangles

have the property that if we delete them, then the remainder of G falls apart into disconnected pieces

that recursively have this interlocking-triangle structure. The other three triangles are attached at

the extremities, and deleting them is similar to deleting the leaves of a tree.

In Figure 1.2(a), it is apparent that G has many cycles, but in the Figure 1.2(b), it appears as though

it does not have any cycles when it is viewed as ten interlocking triangles. Based on this structure,

G inherits many of the nice decomposition properties of a tree.

In Figure 1.2(c) a tree representation of the graph is shown where each node corresponds to one of

the triangles of the graph in Figure 1.2(b). Two tree nodes are adjacent if the correspondent trian-

4

(a) (b) (c)

Parts(a) and (b) depict the same graph drawn in different ways.Part(b) emphasizes the way in which it is composed of ten interlocking
traingles. Part(c) illustrates schematically how these ten triangles ”fit together”. It also shows triangles containing a vertex forming
a subtree(black triangles).[Algorithm Design-Kleinberg, Tardos, 2006]

a

Triangle that
contains ver-
tex a

Figure 1.2: An Example of a Covering Problem in a Wireless sensor network

gles have common graph vertices. If we notice in Figure 1.2(c), the nodes in the tree that shares a

common vertex forms a connected subtree within the tree. For example, vertex a is shared by 3 tri-

angles in Figure 1.2(b). In the tree, they are represented by black triangles which forms a connected

subtree. So, we can say that graph G has been decomposed into a tree like pattern, and the final

output is called a tree decomposition of G [13]. If we compare between a tree (a graph without a

cycle) and tree decomposition the difference that is noticeable is that each node in a tree is a single

vertex, whereas in a tree decomposition every node is composed of a set of vertices of the input

graph. If we delete a single node in a tree then it separates the tree into more than one connected

subtree. Similarly in a tree decomposition, if we delete a node then it separates the entire graph

into more than one connected components, which as described earlier is one of the key reason for

using tree decomposition. The formal definition of a tree decomposition is discussed in Chapter 2,

section 2.1.

Another reason to use tree decomposition is the recent computational study results. Though at the

beginning, the application of tree decomposition has been considered for theoretical interest only,

over the years research studies have shown that Tree Decompositions can be applied in practical

purposes too. One of the first attempt is taken by Cook and Seymour [7]. They used branch decom-

5

positions to obtain close-to-optimal solutions of the traveling salesman problem. Path decomposi-

tions are used by Verweij [31] to solve lifting problems of cycle inequalities for the independent set

problem. Koster,Van Hoesel and Kolen [17, 19] used tree decompositions to obtain lower bounds

and optimal solutions for a special type frequency assignment problems. Currently one of the most

efficient algorithm for the inference calculation in probabilistic (or Bayesian) networks builds upon

a tree decomposition of a network’s moralized graph [12, 21]. These studies implies that dynamic

programming algorithm based on a path/tree/branch decomposition of the graph can be an alterna-

tive for integer programming techniques to solve hard optimization problems.

1.3 Summary of Contributions

The primary goal of our research is to investigate whether the use of algorithms that exploits struc-

ture of sensor network graphs using tree decomposition are practical or not. We chose a fundamental

facility location problem (the Covering problem) that models sensor net deployment. Solving Cov-

ering problem with dynamic programming exists for trees but not for tree decompositions. We

conclude that dynamic programming on tree decomposition is expensive in terms of memory re-

quirement because of the fact that swapping occurs frequently between main memory and data

storage to compensate the lack of main memory. We propose several heuristics meant to reduce

the storage which are discussed in Chapter 3. We also propose an algorithm which uses the tree

decomposition partially by stopping the recursive step in dynamic programming before the reach-

ing the leaves of the decomposition. The bottom halve of the tree decomposition is solved by an

optimization software package called CPLEX.

The secondary goal of our research is to review the practicality of computing tree decomposition.

Two types of heuristics are used in practices. The first type is based on finding minimum separator

of a graph. The second type is based on a chordal graph characteristic called perfect elimination

order which is then used to find a clique tree from a graph. We implemented two heuristics based

on these two types. Another heuristic is developed based on the minimum separator heuristic which

6

randomly selects a separator instead of a minimum separator. After experiments (details in Chapter

4), we conclude that clique tree heuristic is the fastest producing good quality tree decomposition

while minimum separator heuristic produces better quality tree decomposition but really expensive

in terms of running time. The random separator heuristic performs well in terms of running time

with good quality tree decomposition compared to the minimum separator heuristic. As we discuss

in the Conclusion chapter, one of the ideas that is conceived from our research is to use a partial tree

decomposition rather than using an entire one. In this respect, the separator based heuristic should

be useful as the algorithms for the partial tree decomposition should decide on finding a balanced

separator as a root so that the components of the graph left without a tree decomposition will be

balanced in size.

1.4 Thesis Outline

Solving an optimization problem using tree decomposition of a graph of bounded treewidth is a two

step procedure:(i) computation of a (good) tree decomposition, and (ii) application of an algorithm

(dynamic programming) based on the tree decomposition. We divided the chapters of this thesis in

this respect.

In Chapter 2, we discuss about the formal definition of tree decomposition and the two heuristics to

compute a good (may be not optimal) tree decomposition of the input graph. Also nice tree decom-

position, another form of tree decomposition is discussed.

In Chapter 3, we discuss about the dynamic programming algorithm that solves the Covering prob-

lem on the tree decomposition (computed by the heuristics in Chapter 2) of a graph. We discuss

several techniques which helped us to prune the redundant cost functions in order to make the al-

gorithm more efficient. We also discuss a variant of this algorithm in which a part of the tree

decomposition is solved by CPLEX, an optimization software package, rather than the dynamic

program.

7

In Chapter 4, we discuss the empirical results and analysis of our algorithms. Several data tables

and graph comparisons are made to facilitate the scrutiny. In Chapter 5, we discuss the implications

of our research with future directions.

8

Chapter 2

Background on Tree Decomposition

In this chapter we will discuss the concept and definition of Tree Decomposition and it’s com-

putation. In section 2.1 we discuss the formal definition of Tree Decomposition and Nice Tree

Decomposition. As computing Tree Decomposition of a graph is NP-hard, we use heuristics with

good practical running time to compute the Tree Decomposition. In section 2.3 and section 2.4 we

described in detail the two heuristics, minimum separator heuristics and clique tree heuristics with

pseudo-code algorithm.

2.1 Definitions and Notations

We introduce the definitions and notations that will be used throughout this thesis. Let G = (V,E)

be an undirected graph with vertex set V and edge set E. Let n = |V | and m = |E|. The set of

adjacent vertices denoted by N(v) = {w ∈V : vw ∈ E}. Let δ(v) = |N(v)| be the degree of v. A set

of vertices Q ⊆ V is called a clique in G if there is an edge between every pair of distinct vertices

from Q. The cardinality |Q| of Q is the size of the clique [18].

Now, Let us formally define the tree decomposition of an input graph G.

Definition (Robertson and Seymour [27]). Let G = (V,E) be a graph. A tree decomposition of G

is a pair (T,χ), where T = (I,F) is a tree with node set I and edge set F, and χ = {Xi : i ∈ I} is a

family of subsets of V , one of each node of T , such that

(i)
⋃

i∈I Xi = V ,

(ii) for every edge vw ∈ E,there is an i ∈ I with v ∈ Xi and w ∈ Xi,and

(iii) for all i, j,k ∈ I, if j is on the path from i to k in T , then Xi∩Xk ⊆ X j.

The width of a tree decomposition is maxi∈I|Xi|−1. The treewidth of a graph G, denoted by tw(G),

is the minimum width over all possible tree decompositions of G.

9

b

a

d

c e

f

i

j

k

h

g

egh

def

fi cde

bcd

abc

ik ij

egh

def

fi cde

bcd

abc

ik ij

Figure (a) : An example graph Figure (b) : A tree decomposition of the graph

Figure 2.1: A graph and it’s tree decomposition

The third condition of the tree decomposition is equivalent to the condition that for all v ∈ V , the

set of nodes {i ∈ I : v ∈ Xi} is a connected subtree of T. Figure 2.1 shows a graph and it’s tree

decomposition [18].

2.1.1 Nice Tree Decomposition

A tree decomposition can be easily converted in a nice tree decomposition of the same width with a

linear size of T. The resulting tree is rooted and binary [5]. There are four kinds of nodes in a nice

tree decomposition -

• Leaf nodes i are leaves of T and have | Xi | = 1 .

• Introduce nodes i have one child j with Xi = X j ∪{v} for some vertex v∈V .

• Forget nodes i have one child j with Xi = X j-{v} for some vertex v∈V .

• Join nodes i have two children j with Xi = X j1 = X j2 .

In our algorithm we used a nice tree decomposition instead of a normal tree decomposition which

considerably eases the design of the algorithm which solves the covering problem. Details are

described in chapter 3. In figure 2.2 a nice tree decomposition of a normal tree decomposition (of a

graph from figure 2.1) is shown.

10

ij

egh

eg

def

def def

de

cde

cd

bcd

bc

abc

ab

a

ef

fi

fi fi

i

i

i

ik

k

e

f

egh

def

fi cde

bcd

abc

ik ij

Figure (a) : A tree decomposition of the graph

Figure (b) : Nice tree decomposition of the
graph

Figure 2.2: Nice Tree Decomposition

2.2 Construction of a Tree Decomposition

Finding a tree decomposition with optimal width is NP-hard [4]. In our research we used two

heuristics without any theoretical quality guarantee to compute tree decomposition of a graph which

approximates the treewidth close to optimality with a reasonable running time. The two heuristics

are

(i) Minimum Separating Vertex Set heuristic (MSVS)

(ii) Clique tree heuristic

The reason they are called heuristics because, these algorithms don’t have a solid theoretical guar-

antee but in practicality they performs well. Following, we describe these two heuristics in detail.

11

2.3 Minimum Separating Vertex Set Heuristic

This heuristic was developed in the context of solving frequency assignment problems with a tree

decomposition approach [16]. It is based on a characteristics of a tree decomposition. Every tree

decomposition can be transformed to a tree decomposition in which the vertex set associated to an

internal node separates the graph into at least two components, the vertices associated with the node

form a separating vertex set. The heuristic therefore searches for separating vertex sets. To find a

good tree decomposition, we in fact search for minimum separating vertex sets.

Before we describe the MSVS heuristic, we briefly describe how a separating vertex set of minimum

cardinality can be found in a graph.

2.3.1 Minimum Separating Vertex sets and their Computation

Definition (Minimum Separating Vertex set). An st-separating set of a graph G = (V,E) is a set

S⊆V \{s, t} with the property that any path from s to t passes through a vertex of S. The minimum

separating vertex set of G is given by the st-separating set S with minimum cardinality over all

combinations st /∈ E.

As described by Ahuja, Magnanti and Orlin [1], the st-separating set with minimum cardinality can

be found efficiently using Menger’s theorem.

Theorem 1 (Menger [22]). Given a graph G = (V,E) and two distinct non-adjacent vertices s, t ∈

V , the minimum number of vertices in an st-separating set is equal to the maximum number of

vertex-disjoint paths connecting s and t.

So, we have to calculate the maximum number of vertex-disjoint paths. This problem is solvable in

polynomial time by standard network flow techniques. First, G is transformed into a directed graph

D = (V,A) in which each edge vw is replaced by two arcs (v,w) and (w,v). Next, we construct an

auxiliary directed graph D′, with weights on the arcs, by

• replacing each vertex v by two vertices v′ and v′′,

12

• redirecting each arc with head v to v′, and introducing a weight of ∞,

• redirecting each arc with tail v to v′′, and introducing a weight of ∞, and

• adding an arc from v′ to v′′ with weight 1.

In the following Figure 2.3, such a transformation from a non directed Grid graph G to its auxiliary

directed equivalent D′ is shown.

a′

a′′

b′ c′b′

b′′ c′′

d′

a′g′

e′ f ′

h′ i′

d′′ e′′ f ′′

g′′ h′′ i′′

a′
ca b

d e f

g h i

Figure (a): Non Di-
rected Grid graph G

Figure (b): Auxiliary
directed Graph D′

Figure 2.3: Transformation of a non directed graph to its auxiliary equivalent

Figure(a) of 2.3 corresponds to a non directed Grid Graph G of nine vertices. Figure(b) of 2,3 cor-

responds to a auxiliary directed graph D′ after its construction from the non directed graph G as

instructed above. Here each vertex v in Figure(a) is replaced by two vertices v′ and v′′ in Figure(b).

Incoming edges ended at vertex v′ and outgoing edges originated at v′′. Each edge from v′ to v′′ has

weight 1. All the other edges have ∞ as their weight.

The minimum number of vertices in an st-separating set in G is equal to the minimum weight of an

s′′-t ′ cut in D′. So, if we calculate the minimum s′′-t ′ cut for every non-adjacent pair s, t ∈ V , we

obtain the minimum separating vertex set [16].

13

In the next section, we describe the MSVS heuristic algorithm that builds a tree decomposition by

finding the separator of the input graph.

2.3.2 MSVS Heuristic

The MSVS heuristic is an improvement heuristic. We start with the trivial tree decomposition in

which we have one node corresponding to the complete graph. During the process we have a tree

decomposition (T,χ), where I is the node set and F is the edge set of the tree T . We select the

node i ∈ I with |Xi| maximum. This node is replaced by m + 1 nodes i0, . . . , im with vertex sets

Xi0 , . . . ,Xim. The nodes i1, . . . , im are connected with i0. Each node k ∈ N(i) is connected to exactly

one node j ∈ {i0 . . . im}, such that all conditions of a tree decomposition are satisfied again.

The sets Xi0 , . . . ,Xim are defined as follows. We construct a graph H = (V (H),E(H)) where V (H)

consists of set Xi and E(H) consists of the induced subgraph GXi and
⋃

k∈N(i)C(Xi ∩Xk), which

denotes the additional edges, where C(X) denotes a complete graph on the vertices X . If H is a

complete graph, then Xi0 := Xi and m = 0, i.e. we do not change the tree decomposition. If H is

not a clique, then we calculate a minimum separating vertex set S ⊆ Xi. These actions corresponds

to line 1 and 4 of Algorithm 2.1 described later. Let Yi1 , . . . ,Yim be the vertex sets of the m ≥ 2

components of HV (H)\S. We define Xi0 := S, and Xi j :=Yi j ∪S for all j ∈ 1, . . . ,m which corresponds

to lines 9-13 of Algorithm 2.1. The set Xk has a non-empty intersection with at most one set Yi j ,

j = 1, . . . ,m: Let v,w ∈ Xi∩Xk, then {v,w} ∈C(Xi∩Xk)⊂ E(H), which implies that v and w cannot

be separated by S. So, either v,w ∈ S or v,w ∈ Yi j ∪ S for only one j ∈ {1, . . . ,m}. Therefore, we

connect each neighbor k ∈ N(i) with the node i j, j ∈ {1, . . . ,m} for which the intersection of Xk

and Yi is non-empty, or in case there is none the we connect with i0 (corresponds to lines 14-18 of

Algorithm 2.1). As a consequence, the new construction is a tree again (see Figure 2.3). In Figure

2.4 , a step by step construction of the tree decomposition is shown.

14

Xi

Xk, k ∈ N(i)

Xi

Xk, k ∈ N(i)

Xij , j = 1, . . . ,m

Figure 2.4: Improvement step of a tree decomposition [16]

In the new tree the conditions for a valid tree decomposition again hold. Since
⋃m

j=0 Xi j = (
⋃m

j=0Yi j)∪

S = Xi, condition(i) (from Section 2.1) is satisfied. To satisfy condition(ii) we have to prove that for

each edge {v,w} ∈ E(Xi) one of the new vertex sets Xi0 , . . . ,Xim contains both vertices. If v,w ∈ S,

then this is trivially true. Otherwise, suppose v ∈ Yi j for some j ∈ {1, . . . ,m}. If w ∈ Yik , k 6= j,then

S does not separate Yi j and Yik ; a contradiction. And thus, w ∈ Yi j ∪ S = Xi j . Condition(iii) states

that all nodes in the tree that contain the same vertex v must form a subtree. We only need to check

this for v ∈ Xi. If v ∈ S then v is contained in all new nodes and the condition is trivially satisfied.

Otherwise let v ∈ Yi j for some j ∈ {1, . . . ,m}. By construction, nodes k ∈ N(i) and i j are connected

if Xk and Yi j intersect. Hence, all nodes that contain v form a subtree again.

d

c

f

e

g

h

i

j

k

Separator
Heuristic

e

e

h g e

f

e

h g e

f i

f

i

j i k i

e

h g e

f i

f

i

j i k i

de

Intial tree decomposition
with only one node
containing the entire
vertex set.

c d e f j g i j k
Msvs = {e}
Connected
Comps =
[{h,g},{cdfikj}]

Form new nodes with
msvs as the root and the
connected components as
the children.

h g e

Choose the node with the
maximum cardinality
vertex set.

c d f i k j e

Msvs = {f}
Connected
Comps
= [{c,d,e},{i,j,k}]

c e d f

i k j f

Msvs = {i}
Connected
Comps
= [{f},{j},{k}]

c e d f

Msvs = {de}
Connected
Comps
= [{f},{c}]

f d e

c d e

Figure 2.5: Construction of Tree Decomposition by MSVS

15

Note that, if H is not a clique, then there exist vertices v,w ∈ Xi with {v,w} 6= E(H). Thus S =

Xi \ {v,w} separates H in two components; Yi1 = {v} and Yi2 = {w}. So, max{|Yi1 ∪ S|, |Yi2 ∪ S|} =

|Xi|−1 < |Xi|. As a consequence, the width of the tree decomposition may decrease [16].

The width of the resulting tree decomposition may not be optimal. However, as long as the separat-

ing vertex sets S form cliques in the original graph, the algorithm provides optimal result, since the

optimal tree decomposition will contain a node for every clique that separates the graph in multiple

components.

In the following, we describe a pseudo-code implementation of the heuristic.

Algorithm 2.1 MSVS Heuristic [18]
Require: Initial tree decomposition (T,χ)
Ensure: modified tree decomposition (T̄ , χ̄) with tw((T̄ , χ̄))≤ tw(T̄ , χ̄())

1: while ∃i ∈ I : |Xi| ≡ max j∈I|X j| and H = (Xi,E(H)) non-complete with E(H) =
⋃

k∈N(i)C(Xi∩
Xk)∪EG[Xi] do

2: Nold(i) := N(i) {store old neighbors of i}
3: F := F \{i j : j ∈ Nold(i)} {disconnect i from tree}

4: let S⊂ Xi be a minimum separating vertex set in H
5: Let q be the number of components of H[Xi \S]

6: n := |I| {current number of nodes}
7: I := I∪{n + 1, ,n + q} {construct q new nodes}
8: F := F ∪{i j : j = n + 1, ,n + q} {connect new nodes with i}
9: for p = 1 to q do

10: let Yp ⊂ Xi be the set of vertices in component p of H[Xi \S]
11: Xn + p := Yp∪S {define new vertex subsets}
12: end for
13: Xi := S
14: for j ∈ Nold(i) do
15: if ∃P ∈ {1, . . . ,q} with X j ∩Yp 6= φ then
16: F := F ∪{n + p, j} {reconnect old neighbors}
17: else
18: F := F ∪{i, j} {reconnect old neighbors}
19: end if
20: end for
21: end while

16

2.3.3 Random Separator Vertex set Heuristic (RSVS)

As described in Chapter 4, building tree decompositions using the minimum separator vertex set

heuristic (MSVS) is quite expensive. This is mainly because finding minimum separator of a graph

is time consuming. It is evident from line 4 of algorithm 2.1 that to build the tree decomposition

using this heuristic, the program needs to compute minimum separator of a subgraph a number of

times which leads to a high running time of the entire program.

In this aspect, we decided to find techniques through which this high running time can be reduced.

One such approach was to find a random separator of a set instead of a minimum separator. In this

method, instead of considering all non-adjacent vertex pairs of a graph, we consider only a handful

of non-adjacent vertex pair. The resultant separator may not be minimum but it greatly reduces run-

ning time as the algorithm now deals with only a few non-adjacent vertex pairs. We built another

algorithm which is similar to 2.1. The only change is in Line 4 where the new algorithm will find

a random separator instead of a minimum one. After experimenting on different graphs (details in

Chapter 4), we found the results encouraging. This RSVS heuristic takes much less time than the

MSVS approach and most of the time the quality of the tree decomposition is within an acceptable

range.

Though we did not use the RSVS heuristic to generate tree decompositions for our research, but it

has potential to be used in our future endeavors. As discussed in the section 1.3, we believe that this

modified version of the separator heuristic will contribute significantly in developing the algorithm

for partial tree decomposition where finding a balanced separator in quick time is crucial.

In the next section, we will begin describing the notations and definitions and later the algorithms

for Clique Tree Heuristic.

17

2.4 Clique Tree Heuristic

This heuristic is based on the characteristics of triangulated graph or chordal graph. In this tech-

nique we discern a clique tree from a triangulated graph. We used the technique (for finding clique

tree) developed by Habib, McConnell,Paul and Viennot [11]. They proposed an O(n+m) (n =

number of vertices, m = number of edges) algorithm to find a clique tree from a chordal graph given

an elimination scheme.

2.4.1 Chordal Graph: Definitions and Characteristics

The following definitions and descriptions are based upon the work by Habib, McConnell, Paul,

Viennot [11] and Koster, Bodlaender, Hoesel [18].

A graph is called Chordal if every cycle of length at least four contains a chord, that is, two non-

consecutive vertices on the cycle are adjacent. A chordal graph is also a perfect graph.

Chordal graphs are characterized by the existence of perfect elimination ordering of their vertices,

which is defined as follows. A clique is a set of vertices inducing a complete subgraph. An ordering

x1, . . . ,xn of vertices is a perfect elimination ordering of a graph G = (V,E) if the neighborhood of

each vertex xi is a clique of the induced subgraph Gxi,...,xn . There exists an arrangement of maximal

cliques in an chordal graph such that the maximal cliques containing a given vertex always induces a

connected subtree. Our target is to find this clique tree which will also serve as a tree decomposition

of the graph. The following properties are described in detail in respect to the target.

Theorem 2 (Gavril [10]). A graph G = (V,E) is triangulated if and only if G can be constructed

as the intersection graph of subtrees of trees, i.e., there exists a tree T = (I,F) such that one can

associate a subtree Tv = (Iv,Fv) of T with each vertex v∈V , such that vw∈ E if and only if Iv∩ Iw 6=

φ.

To state this definition in a different way, a graph is triangulated if and only if there exists a tree

18

decomposition with the additional property that vw ∈ E if and only if Iv∩ Iw 6= Φ. This additional

property guarantees that the tree decomposition has minimal width. Let Xi := {v ∈ V : i ∈ Iv}.

Non-adjacent vertices are not in a common subset Xi. Hence, a maximum cardinality subset Xi

contains the vertices of a maximum cardinality clique C in G. Since it also holds that in any tree

decomposition (T,χ) and every maximum clique C, there exists a node i ∈ I with C ⊆ Xi, the tree

decomposition has minimum width. Moreover, it follows that the treewidth of a triangulated graph

equals the maximum clique number minus one, tw(G) = ω(G)-1.

Lemma 1. For every graph G = (V,E), there exists a triangulation of G, Ḡ = (V,E ∪Et), with

tw(G) = tw(Ḡ)

Proof. Let G be a general graph and (T,χ) a tree decomposition of minimum width. We construct

a graph Ḡ = (V, Ē) by the following rule: vw ∈ Ē if and only if v,w ∈ Xi for some i ∈ I. From

Theorem 2 it is clear that Ḡ is triangulated. From the second condition(from section 2.1) of a tree

decomposition, the edge set Ē can be divided into two parts E and Et . So, Ḡ is a triangulation

of G by the addition of the triangulation edges Et . Moreover, the treewidth of G and Ḡ is equal,

tw(G) = tw(Ḡ).

�

Corollary 1. Finding the treewidth of a graph G is equivalent to finding a triangulation Ḡ of G with

minimum clique size.

Since finding the treewidth of a graph is NP-hard, also finding a triangulation with minimal clique

number is an NP-hard problem. The maximal clique number (minus one) of any triangulation Ḡ of

a graph G provides an upper bound on the treewidth. Moreover, ω(Ḡ) can be computed in polyno-

mial time.

There exists several algorithm which can convert any graph into it’s triangulated (or chordal) equiv-

alent and also provides us the elimination order. We will use an algorithm called the Minimum

degree heuristic [2] to triangulate a graph and find it’s elimination order. Then given the elimination

scheme we will use the clique tree algorithm [11] to build a clique tree (also a tree decomposition)

19

of the triangulated graph. Since, the treewidth of a graph and it’s triangulated equivalent is the same,

the tree decomposition of the triangulated graph is also a valid tree decomposition of the original

graph.

2.4.2 Minimum Degree Heuristic

The Minimum degree algorithm(MD) is widely used as one of the heuristic for computing a triangu-

lation of a graph. The algorithm is based on the algorithm called Elimination Game(EG), developed

by S. Parter [24]. EG simulates Gaussian elimination on graphs by repeatedly choosing a vertex

and adding edges to make its neighborhood into a clique before removing it. The resulted graph is

always a triangulated graph. MD is observed [3] to produce triangulations which are often minimal

or close to minimal. The following definitions, notations are based on the work done by Berry,

Heggernes and Telle [2].

Given a graph G = (V,E), we denote n = |V | and m = |E|. For any subset S of V , G(S) denotes

the subgraph of G induced by S. We define H = G+ {e}+ {x} when H is obtained from G by

adding edge e and vertex x. For any vertex v of G, NG(v) denotes the neighborhood of v in G, and

NG[v] denotes the set NG(v)∪{v}. For a given set of vertices X ⊂V , NG(X) = ∪v∈X NG(v)\X and

NG[X] = ∪v∈X NG(v)∪X . A function α : V → {1,2, . . . ,n} is called a ordering of the vertices of

G = (V,E), and (G,α) will denote a graph G, the vertices of which are ordered according to α. We

will use α = (v1,v2, . . . ,vn), where α(vi) = i.

Algorithm 2.2 Elimination Game [2]
Require: A graph G = (V,E), and an ordering α of the vertices in G
Ensure: A triangulation G+

α of G
1: G1

α ← G
2: G+

α ← G
3: for k = 1 to n do
4: Let F be the set of edges necessary to saturate NGk

α
(vk) in Gk

α

5: Gk+1
α ← Gk

α + F − {vk}
6: G+

α ← G+
α + F

7: end for

20

In the algorithmic description of EG, Gk
α({vk, . . . ,vn} \NGk

α
[vk]) is the section graph at step k. For

any distinct i, j ∈ [k,n], edge viv j is present in Gk
α iff there is a path in G between vi and v j (the path

may have only one edge) all intermediate vertices of which are numbered < k (i.e. do not belong to

Gk
α). Similarly, the edges added during an execution of EG are well defined as viv j is an edge of G+

α

iff viv j is an edge of G or there is a path in G between vi and v j, all intermediate vertices of which

have a number which is strictly smaller than min{i, j}.

The Minimum Degree Heuristic is based on EG: it takes as input an unordered graph G, and com-

putes and ordering α along with the corresponding triangulation G+
α , by choosing at each step a

vertex of minimum degree in Gk
α and numbering it as vk.

In the next section we will describe the clique tree algorithm which utilizes the triangulated graph

and the elimination order computed by this MD heuristic.

2.4.3 Clique Tree Algorithm

While working with lexicographic breadth first search (Lex-BFS) and partition refinement Habib,

McConnell, Paul and Viennot [11] came up with a simple but efficient algorithm to find the maximal

cliques from a triangulated graph. The following definitions, notations, algorithms and proofs are

based on the narrative by the mentioned authors.

Before we describe the algorithm, we define below RN(x), the right neighborhood of x. Given a

graph G and an elimination order π, we define RN(x) to be the neighbors to the right of x, namely,

the set, {y : y ∈ N(x) and π(y) > π(x)}. G is triangulated if and only if there exists a perfect

elimination order [9]. An algorithm can be devised to recognize triangulated graphs. Given the

elimination order π, this algorithm checks whether this ordering is a perfect elimination ordering or

not. The algorithmic description is given below-

21

Algorithm 2.3 Chordality test [11]
Require: a graph G = (V,E), and a ordering π of vertices
Ensure: TRUE if π is a perfect elimination ordering

1: for each vertex x do
2: let RN(x) be its neighbors to the right
3: let parent(x) be the leftmost member of RN(x) in π

4: end for
5: Let T be the tree defined by the parent pointers
6: for each vertex x in T in postorder do
7: check that (RN(x)\ parent(x))⊆ RN(parent(x))
8: end for
9: if no check failed then

10: return TRUE
11: end if

For the correctness, note that if π is a perfect elimination ordering, then {x}∪RN(x) is a clique,

where x is its leftmost member and parent(x) is its next leftmost member. The check obviously

cannot fail. If it is not a perfect elimination ordering, then for some x, x∪RN(x) is not a clique.

Without loss of generality, let x be the rightmost vertex in π with this property. By our choice of x,

parent(x) fails to have as a neighbor some vertex to its right that is a neighbor of x, so the check fails.

In the second for loop of Algorithm 2.3 , it is checked whether (RN(x)\ parent(x))⊆RN(parent(x))

or not. If the order π is indeed a perfect elimination order then this condition is true. We will prove

this in the following. For each vertex x, RN(x) is a subset of the ancestors of x in T . This is true for

the root. Suppose it is true for any vertex at depth k, and assume that x is at depth k+1. The parent

of x is the earliest member of RN(x) in π. Since RN(x) is a clique, RN(x) \ parent(x) is a subset

of RN(parent(x)). By the inductive hypothesis, RN(x) \ parent(x) is a subset of the ancestors of

parent(x).

We will now describe the algorithm for finding the clique tree, that is, to arrange the maximal cliques

into a tree such that for each vertex, the subtree induced by the cliques that contain x are connected.

22

Algorithm 2.4 Clique Tree [11]
Require: G is a triangulated graph, and π is a perfect elimination ordering
Ensure: A clique tree τ of G

Let T be defined as in Algorithm 2.3
Let r be the root of T
for for each vertex x in T except the root, in preorder do

if (RN(x)\ parent(x) 6= RN(parent(x)) then
create a new clique C = {x}∪{RN(x)}
C(x)←C
parent(C)←C(parent(x))

else
C(parent(x))←C(parent(x))∪{x}
C(x)←C(parent(x))

end if
end for

It can be easily proven that for the same clique , the property (RN(x)\ parent(x) = RN(parent(x))

is true. Finally, we show that after each vertex is processed, the parent relation is a clique tree on

the subgraph induced by the set of processed vertices. To do this, we show that for an arbitrary pro-

cessed vertex y, the cliques containing y induce a connected subtree of this tree. As a base case, it is

true just after y is processed, since it is contained in only one clique of the tree. Suppose it is true just

before some subsequent vertex x is processed. If no new clique containing y is created, it continues

to be true. So assume that processing x creates a new clique C and y is contained in C. It suffices

to show that the parent of C is a pre-existing clique that contains y. For each processed vertex

z, C(z) contains {z}∪RN(z). In particular, C(parent(x)) contains {parent(x)∪RN(parent(x))}.

Since {parent(x)∪RN(parent(x))} contains RN(x), C(parent(x)) contains y. The parent of the

new clique is a pre-existing clique containing y. It follows that the tree is a clique tree or a tree

decomposition for G after all vertices are processed.

In Figure 2.4, a step by step construction of clique tree from an input graph is shown.

23

d

c

f

e

g

h

i

j

k

d

c

f

e

g

h

i

j

k

Elimination Order :k < j <
i < c < d < f < e < g < h

Min degree
Heuristic

h

Keep adding vertex x ∈ V , in the
same tree decomposition node if for x
and parent(x), RN(x) \ parent(x) =
RN(parent(x)). It means the vertices
inside the node are members of the same
clique.

h g e

f e d

d e ci f

j i i k

End Result

x RN(x)
—– ———
k {i}
j {i}
i {f}
c {d,e}
d {f,e}
f {e}
e {g,h}
g {h}
h { }

x RN(x)
—– ———
k {i}
j {i}
i {f}
c {d,e}
d {f,e}
f {e}
e {g,h}
g {h}
h { }

Vertices and their Right
Neighbourhood

h

g

e

f

i

k j

d

c

Tree defined by the parent
pointers (x and parent(x)
). Traverse this tree in Pre-
order (root-¿left-¿right)

h g h g e

h g e

f e

For vertices that are not in the same clique (in this case, for f ,
RN(x) \ parent(x) 6= RN(parent(x))) , build a new node with
the vertex set = {x} ∪ {RN(x)} (in this case the new node
vertex set = {f}∪ {e}). The for the next vertex check whether
it belongs to the newly formed clique or not. If it is, then add
in the same node like before (d is added in the new node).

h g e

f e d

Figure 2.6: Step by Step execution of Clique Tree Heuristic

24

We have implemented both heuristics and experiments show (chapter 4) that clique tree heuristic is

much faster than the minimum separator heuristic. Based on the results we decided to use the clique

tree heuristic to compute the tree decomposition on which we will apply our dynamic programming

algorithm. Details are described in the next chapter.

25

Chapter 3

Dynamic Programming Algorithm to Solve Covering Problem

Algorithms for covering problem on trees already exists [14]. In our research we extend dynamic

programming on tree decompositions to build an algorithm to solve covering problem optimally on

general graphs where the complexity is exponential in treewidth. In this chapter we describe the

algorithm and various heuristic techniques to speed up the algorithm.

In section 3.1 we discuss a bottom up dynamic programming algorithm with its cost function defi-

nition. Then we describe the cost functions of four types of nodes of a special tree decomposition

called nice tree decomposition. In section 3.2 we discuss techniques that reduce the number of

entries in the cost tables in the dynamic program and speed up the running time. In section 3.3 we

discuss a parallel algorithm which solves subproblems on different machines and a hybrid algorithm

based on the dynamic programming algorithm where part of the tree decomposition is solved by an

optimization software package called CPLEX. In the next section (3.4), we discuss brief implemen-

tation details of the algorithms and some implementation tricks which helped reduce the total run

time.

3.1 Dynamic Programming Approach

As described in section 1.1, in a client constrained covering problem given n clients in a graph

where each client has a radius r, the objective is to open facilities to cover these clients at a mini-

mized cost. The two types of cost incurred here are the facility opening cost and the penalty cost

for uncovered clients. Any arrangement of client facility allocation will yield a solution value. The

optimal solution will have the lowest cost value.

Before we describe the dynamic program to solve the Covering problem, we discuss the notations

and definitions required for the algorithm.

26

3.1.1 Cost function and other Definitions

Given a input graph G = (V,E) and it’s tree decomposition is a pair (T,χ), (where T = (I,F) is

a tree with node set I and edge set F , and χ = {Xi : i ∈ I} is a family of subsets of V), for each

tree decomposition node i, let us define Xi as the set {x1 . . .xk} of graph vertices corresponding to

the node. We define Ti, a subtree rooted at node i and GTi , a subgraph induced by the union of the

vertices included in the nodes of Ti. Also , let n = |V | and m = |E| throughout the following sections.

Definition (Assignment Function). Let f be a function , f : Xi→ V , that maps every vertex in Xi

to a vertex of the graph. For a vertex x ∈ Xi, f (x) is the opened facility that is closest to x. This

function will define a restricted covering problem on the subgraph induced by GTi . We also denote

the entire facility allocation for a node Xi, by fXi .

We say that a client x ∈ Xi, is covered by a facility f (x), if the shortest path distance between x and

f (x), defined as d(x, f (x)) is less than or equal to the client radius r. When a facility f (x) is opened,

then an opening cost c f (x) is incurred. Likewise, when a client, x ∈ Xi, is not covered by any opened

facility, then a penalty cost bx is incurred. The following cost function definition is similar to those

defined by Arie Tamir in his study of P-median problem on trees [29].

Definition (Recursive Cost Function). We define the cost function as Φ(Xi, f (x)), that denotes the

cost value for the covering sub-problem defined on the subgraph GTi with the constraint that f (x) is

the closest open facility to x, for all x ∈ Xi. The cost value for this function is equal to the sum of the

opening cost of the facilities opened inside or outside the subgraph GTi and the sum of the penalties

paid for any uncovered client in the subgraph GTi . The optimal value of the sub-problem defined

on the subgraph GTi can be found by taking the minimum cost functions over all possible allocation

functions f (x).

As we are employing a nice tree decomposition, there are only four types of nodes present in the

tree decomposition. In the following subsections, for each types of node, a set of recursive cost

functions are defined. As this is a leaves to root dynamic program, the solution propagates from

leaves to root. Each node has a cost table associated with it which contains a cost function entry for

27

every possible facility configuration to serve the client set contained in the node. After the program

ends, the root contains the optimal solution.

3.1.2 Leaf Node

Let i, where i ∈ I be a leaf node. According to the nice tree decomposition properties, Xi contains a

single vertex x, that is, Xi = {x}. Two cases are possible for this type of node.

Case 1 If the single vertex x is covered by a facility f (x) then the facility opening cost will be

added to the cost function. So, for d(x, f (x)) ≤ r, the recursive cost function for leaf node becomes

Φ({x}, f (x)) = c f (x)

Case 2 If the client x is not covered by the assigned facility f (x) then a penalty must be paid and

as such a penalty cost is added to the cost function. The cost function becomes

Φ({x}, f (x)) = c f (x)+bx

Except leaf node, every other node’s cost functions depends on its child node’s cost function. For

a parent node i and its child node j, Let us define another assignment function g, g : X j ⇒ V , that

maps every vertex in X j to a vertex of the graph. It is similar to the assignment function f . Given

the assignment functions f and g for the parent node i and child node j, Let G f be the set of facility

allocations functions at the child node X j that have the same image as functions f on the set Xi∩X j.

Formally,

G f = {g : X j→V | g(x) = f(x) for all x ∈ Xi}

The following figure shows four pieces of the nice tree decomposition from figure 2.4, where each

piece describes a different nice tree decomposition node. It also shows the relation between facility

assignment functions f and g at the parent and child node.

28

k

Leaf Node Vertex Set
Xi = {k}
facility allocation-
f(k) = u, u ∈ V

Xi

ik

3.1.1: Leaf Node

de

Xi = {def}
Introduce vertex
= {f}
facility allocation-
f(d) = g(d)
f(e) = g(e)
f(f) = w, w ∈ V

Child Yj

def

Parent Xi

Yj = {de}
facility
allocation-
g(d) = u, u ∈ V
g(e) = v, v ∈ V

3.1.2: Introduce Node

def

Xi = {e}
Forgotten vertices
= {df}
facility allocation-
f(e) = g(e)

e

Parent Xi

Yj = {def}
facility
allocation-
g(d) = u, u ∈ V
g(e) = v, v ∈ V
g(f) = w, w ∈ V

Child Yj

3.1.3: Forget Node

def

Parent Xi

def

defY1 Y2

f de

Y1 =Y2= {def}
facility allocation for -
gY1 = gY2

-
g(d) = u, u ∈ V
g(e) = v, v ∈ V
g(f) = w, w ∈ Vf

Xi = {def}
facility
allocation-
fXi

= gY1 = gY2

3.1.4: Join Node

Figure 3.1: Different types of Nice Tree Decomposition nodes with their facility allocation

3.1.3 Introduce node

Let i, where i∈ I, be an introduce node. According to the definition of Introduce Nodes, if the child

node is j, where j ∈ I and X j = (x2 . . .xk), then Xi = X j ∪{x1}, where x1 is the extra or introduced

vertex in node i. The facility serving x1 is f (x1), which can be any vertex in the graph, including x1.

The other vertices (x2 . . .xk) are serviced by the facility set { f (x2) . . . f (xk)} whose costs are already

computed at the child node j. Two cases are possible based on the criteria whether f (x1) is already

29

opened or about to be opened.

Case 1 The facility f (x1) is not already opened, which means f (x1) /∈ {g(x2) . . .g(xk)}. Suppose

x1 is covered by f (x1), thus d(x1, f (x1)) ≤ r. The value of the cost function is the addition of

the opening cost of facility f (x1) and the cost of the subproblem (with the facility configuration

{g(x2) . . .g(xk)} defined on the subgraph G(TX j). The cost function becomes

Φ(Xi,(f)) = Φ(X j,(g))+ c f (x1)

If x1 is not covered by f (x1) that is d(x1, f (x1))> r, then a penalty cost must be paid. The cost

function becomes

Φ(Xi,(f)) = Φ(X j,(g))+ c f (x1)+bx1

Case 2 The facility f (x1) is already opened at the child node X j which is covering x1, which

means, f (x1) ∈ {g(x2) . . .g(xk)} and d(x1, f (x1)) ≤ r, the cost function for node Xi is the same as

the cost for it’s child X j as the facility f (x1) has already been opened at the child node. The cost

function becomes

Φ(Xi,(f)) = Φ(X j,(g))

Again, if x1 is not covered by f (x1) that is d(x1 , f (x1)) > r, then a penalty cost must be paid. The

cost function becomes

Φ(Xi,(f)) = Φ(X j,(g))+bx1

3.1.4 Forget Node

Let i, where i ∈ I, be a Forget node. According to the definition of Forget Nodes , if the child node

is j and X j = {x1, . . . ,xk} then Xi = X j \{x1}, where x1 is the forget vertex in Node i.

30

Given the facility allocation f : Xi⇒V for forget node i and g : X j⇒V for the forget node’s child j,

computing the cost function at i requires to find the minimum cost function from child node j over

all cost functions {Φ(X j,g) : g ∈ G f }. The cost function for forget node becomes -

Φ(Xi,(f)) = min{Φ(X j,(g)) : g ∈ G f }

3.1.5 Join Node

Let i, where i∈ I, be a Join node. if node i has t children, j1, j2 . . . jt , then according to the definition

of Join Nodes, the nodes i, j1, j2, . . ., jt have the same vertex set, that is Xi = X j1 = X j2 = . . . = X jt

= (x1 . . .xk). Because of this reason, the facility allocation for join node i and for all it’s children,

j1, j2 . . . jt will be the same, that is fXi = gX j1
= gX j2

= . . . = gX jt
. The cost function value at node i will

be equal to the sum of the cost values of the subproblem defined on the subgraphs GTj1
,GTj2

. . .GTjt
.

As all the children has the same vertex set and the same f , the covering cost which includes opening

costs and penalties for client vertices in set Xi = X j1 = X j2 = . . . = X jt , will be repeated in the final

cost value. So, the repeated cost is deducted t−1 times, where t is the number of children for a Join

node. The recursive cost function becomes

Φ(Xi,(f)) = Φ((X j1 ,(g))+Φ((X j2 ,(g))+ . . .+Φ((X jt ,(g))

−
t−1

∑
1
{∑

x∈Xi

κ(x, f)}

Here, κ(x, f) is a function which computes the covering cost for a pair (x, f (x)), where x ∈ Xi and

f (x) ∈ fXi = { f (x1) . . . f (xk)}, the facility assignment vector for node i and also for it’s children j1,

j2, . . ., jt . The function κ(x, f) can be defined as

κ(x, f) = ∑
x∈X

ρ(x, f (x))+ ∑
y∈ f (X)

Cy

31

Where ρ(x, f (x)) can also be defined as a function

ρ(x, f (x)) =

 0, if d(x, f (x))≤ rx

bx, if d(x, f (x))> rx.

This function computes the penalty cost for a pair (x, f (x)).

3.1.6 Running Time

For each tree decomposition node the cardinality of the vertex set is at most k+ 1, where k is the

treewidth. For a tree node i, the number of possible cost functions is nk+1, where n is the number of

vertices of the original graph. In the worst case, to compute for a parent node i, we need to generate

nk+1 possible cost functions Φ(X j, f) at the child node j, one for each nk+1 assignment function

f , as defined in Section 3.1.1. Each of the cost function entry can be accessed in a constant time

from the cost table. If we look into the cost function equation from the earlier sections then we can

determine a upper bound on the running time for processing cost functions for different types of

nodes. In case of join node, if it has t number children then to process each cost function, we need

to access t number of cost function, one for each child. So, the running time for a join node cost

function is bounded by t. For forget node, to process a cost function, we need to access at most n

number of cost functions from the child node, where n is the number of vertices in the input graph.

So, the running time to process a forget node cost function is bounded by n. For introduce and leaf

node, it takes constant time to each of their cost functions. So, the running time to process a single

cost function is no more than n. As there are nk+1 number of possible cost functions per node, for a

single node the running time is bounded by nk+2. In a tree decomposition there can be at most O(n)

number of tree nodes. So, in the worst case the total running time is nk+3. However, with amortized

analysis we can improve this running time a bit. For join and forget node, it is described earlier

that their running time is bounded by t and n. These bounds directly depends on the usage of cost

function of their children. In case of a child of a join node, it is evident that each cost function of the

child node is used once at the join node. So, in total each cost function generated at a child of join

32

node is used twice, once at the node that it is generated and next it is used at the join node. Same

holds true for introduce and forget node’s child as well. So, we can say that the usage for each cost

function generated any node is no more than 2. Now, let us reanalyze the running time. For each

node, the total number of operations for the generated cost functions is 2nk+1. Again, as there are

O(n) number of nodes, the total number of operations becomes 2nk+2. In this term , the previous

bounds t and n disappears as they are replaced by a constant. Using the big-oh notation, the running

time becomes O(nk+2).

3.1.7 Proof of Correctness

The dynamic program that we discussed earlier has a optimal substructure. Let us define the follow-

ing notations for the proof. Given an input graph G = (V,E) and it’s tree decomposition (T,χ), let

OPT be the set of all possible solutions to the Covering problem on this graph. Let YOPT be one of

the optimal solution from the set OPT which comprises a list of open facilities and the optimal cost

value. Let fYOPT , fYOPT ⊆ YOPT be the set of facilities that covers GTi when we restrict the optimal

solution YOPT to the subproblem GTi . The restricted solution will only contain the opened facilities

from YOPT that cover clients in the subgraph under consideration. The cost value computation for

the restricted solution remains the same, that is the sum of opening cost and the sum of penalties

for the uncovered clients. For any node i and it’s client set Xi, let GTi be the subgraph defined by the

subtree Ti rooted at node i. We will prove the following-

Theorem 3. Given an optimal solution YOPT , for any node i, let C(YOPT Xi) be the cost value pro-

duced by the solution provided by YOPT if it is restricted to the subproblem GTi . Then the cost

function Φ(Xi,(fYOPT)) at node i will have the cost value C(YOPT Xi) and will be optimal to the sub-

problem defined by GTi with respect to the entire problem.

Proof.

In figure 3.2 an arbitrary node i with client set Xi of a tree decomposition is shown. For simplicity

33

Xi

G \GTi

GTi
i

Figure 3.2: Subtree GTi and G\GTi at node i

the subtree Ti of node i and the rest of tree T \Ti is depicted as a subgraph GTi and (G \GTi) de-

fined by them. Now, Let us restrict the solution YOPT to the subproblem defined by the subgraph GTi .

When we restrict YOPT to the subproblem defined by GTi , we define the restricted solution as YOPT GTi
,

the cost value as C(YOPT Xi) and the facility allocation given by the restricted solution as fYOPT . For

all cost functions at node i defined by Φ(Xi,(f)), one of the cost functions will have the same facil-

ity configuration as the fYOPT . We define this cost function as Φ(Xi,(fYOPT)). We claim that the cost

value generated by the cost function Φ(Xi,(fYOPT)) is equivalent C(YOPT Xi), that is this cost function

is optimal for set Xi, as well as for the subproblem defined by GTi .

We will use the proof by contradiction to prove our claim. As described earlier, the optimal solution

defined by the cost function Φ(Xi,(fYOPT)). Some other solution in GTi that produces a subopti-

mal cost value at node i may yield a better result than fYOPT by covering more clients in subgraph

(G\GTi) thus reducing the overall cost. This means that at least one facility p from GTi not in the set

fYOPT covers at least one client z from (G\GTi). The shortest path between p and z must go through

one of the clients in Xi as according to the definition of tree decomposition, Xi is a separator that

connects GTi and (G\GTi). Again, by definition, the facilities in fYOPT are closest to the clients in Xi

as fYOPT is optimal for node i. So, any other facility configuration other than fYOPT cannot have more

covered clients in (G \GTi). So, fYOPT is optimal for node i as well as for the subproblem GTi and

34

will eventually form the optimal solution YOPT in the end.

It is proven that the optimal solution to the whole problem contains within it the optimal solution

solution to the subproblem.

�

3.2 Heuristic Techniques

The brute force dynamic programming approach which is discussed in the earlier section solves the

Covering problem optimally but its running time is exponential when the treewidth is unbounded.

As shown by our experiments on series parallel graphs1 of small size. The experiment results

showed a high running time because of the high memory consumption of the algorithm. More de-

tails on the experiments are further discussed in the next chapter.

To counter this problem, we developed some heuristic techniques which greatly reduced the number

of entries in the cost table. We describe these techniques below.

3.2.1 Pruning Heuristic

In the brute force approach, suppose for a tree node i, Xi contains p number of vertices. As men-

tioned earlier in Section 3.1.6, p can be at most k+ 1, where k is the treewidth. Now, for a given

client set Xi = {x1,x2 . . .xp}, the facility allocation is fXi = { f (x1), f (x2) . . . f (xp)}. The number of

cost functions is equal to the number of possible facility assignment functions over set Xi. Com-

puting the cost functions reduces to enumerating the permutations with repetitions of choosing p

elements from n. The number of such permutations are np. Thus each cost table has np entries

which is very high in practice. In order to compute whether a client is being covered by a facility

or not, the dynamic program computes all pair shortest path distances of the input graph G. The

1treewidth not more than 2

35

heuristic utilizes this already computed information.

According to the definition of assignment function f , defined in Section 3.1.1, for a vertex x ∈ Xi,

f (x) is the opened facility that is closest to x. For a valid cost function, the client-facility map-

ping obeys this relation. Our heuristic checks whether every possible facility configuration abide by

the definition of assignment function f or not. For a given facility configuration fXi , the heuristic

checks whether there exits a client pair (xa,xb) ∈ Xi for which d(xa, f (xb)) < d(xa, f (xa)), where

f (xa), f (xb) ∈ fXi and a 6= b. Then it simply discards that facility configuration and moves on to

process the next. Thus for each node it checks for np possible facility configuration, where p is at

most k+1, mentioned in Section 3.1.6 and discards the entry of the cost function into the cost table

when the facility configuration for that cost function violates the definition of f .

Through this technique, a great number of invalid entries are discarded and the size of the cost table

reduces significantly. We ran a series of experiment which confirms this claim. The experiment

results will be further discussed in detail in the next chapter. In the next section, we will discuss

another heuristic technique that will reduce the number of cost functions at a node based on the

Covering neighborhood of the node that remains at a proximity of the Covering radius.

3.2.2 Reductions of cost functions based on the Covering Neighborhood

Given a facility allocation and a client set, if for a client the closest facility is situated outside the

covering radius, then no other facility will cover that client unless the client itself becomes a facility.

So, for a client a potential facility to serve that client would be one of the members of it’s covering

neighborhood. The covering neighborhood for client x can be defined as below-

CN(x) = {v: d(x,v) < Rx, Rx = Covering Radius of client x }

Similarly, for any node i, the covering neighborhood for the node would be the union of covering

neighborhood of the clients in Xi. Covering neighborhood of a node i can be defined as-

36

CN(i) = {∪k∈size(Xi) CN(xk)}

For every facility that is situated outside the clients covering radius, a penalty is paid for the uncov-

ered client. We can represent the set of the facility situated outside the covering radius of the client

by a symbol ε. Then for any node i, we modify the set CN(i) by adding the ε symbol in to the set-

CN(i) = {{ε} ∪CN(i) }

For any node i, if we restrict the facility configuration permutation to the modified set CN(i), then

the final permutation set will encapsulate all the necessary scenarios that will likely to produce the

optimal solution. The number of permutations is directly related to the client’s covering radius. The

bigger the covering radius, the larger is the set of permutations.

In this context, to reflect the changes on the number of facility configurations, we need to modify

the assignment function. For any node i, instead of f : Xi → V , the assignment function will be

redefined as f : Xi→CN(i).

We also need to modify the cost functions for different types of nice tree decomposition nodes to

capture the inclusion of ε symbol.

Leaf Node

Continuing from the section 3.1.2, we need to add another case for the Leaf Node cost function

definition.

Case 3 When f (x) = ε, then only a penalty cost need to be paid as f (x) represents the set of

facilities situated outside the client’s covering radius. The cost function definition becomes-

Φ({x},ε) = bx

37

Introduce Node

Continuing from section 3.1.3, we need to add another case for the introduce node, where we set

f (x1) = ε to represent the set of facility situated outside the covering radius of the client.

Case 3 If f (x1) = ε, then we are considering that x1 is uncovered. So, only a penalty cost will

occur in this case (without opening any facility).

Φ(Xi,(ε)) = Φ(X j,(g))+bx1

Forget Node

As we we only need to find the minimum cost function from the child node, we don’t need to modify

the cost function definition in this case.

Join Node

In case of join node, we also don’t need to modify the cost function definition. We only need to

modify the κ(x, f) function which computes the covering cost for a pair (x, f (x)). This function is

used to compute the repetition cost for the join node’s children. The modified definition is given

below-

κ(x, f) = ∑
x∈X

ρ(x, f (x))+ ∑
y∈ f (X)

φ(y)

Only the second part of the function κ(x, f) is modified where φ(y) is another function which can

be defined as-

φ(y) =

 Cy, if y is a facility covering x

0, if y = ε

By using this technique , the number of cost functions per cost table can be greatly reduced if the

client covering radius is small. In practice this technique in coalition with the heuristic improves

38

the running time significantly.

3.2.3 Pruning Using Branch and Bound

The Branch and Bound technique is a well known method for solving various optimization prob-

lems, especially in discrete and combinatorial optimization. This method was first proposed by A.

H. Land and A. G. Doig [20]. This approach is based on the principle that the feasible solution

space can be partitioned into smaller subsets of solutions. Then each of these subsets can be evalu-

ated until the best possible solution is found. This technique is often affiliated with the non integer

solution where the integer constraints are relaxed to get a solution.

Considering the maximization problems (in our context) suppose the goal is to find the maximiza-

tion of a function f (x) of variables (x1 . . .xn) over a region of feasible solution,S. The first step

of the Branch and Bound procedure is splitting or branching, where given S (the feasible solution

space), this procedure will generate two or more subproblems S1, S2 from S generally by adding

new constraints. A subproblem hence corresponds to a subspace of the original solution space. This

recursive process defines a search tree. The solution of a problem is described as a search through a

search tree, in which the root node corresponds to the original problem to be solved, and other nodes

corresponds to subproblem which satisfy the same constraints as the root and additionally a number

of others. The next step in the Branch and Bound technique is called the bounding process where

to each node in the tree a bounding function associates a real number called bound for the node.

For leaves the bound equals the value of the corresponding solution, whereas for internal nodes the

value is a lower bound for the value of any solution in the subspace corresponding to the node.

In order for the Branch and Bound technique to work, a feasible solution to the entire problem

needs to be computed beforehand. For any integer program, a feasible solution can be produced by

relaxing it’s integral constraints and solve the linear program. In other cases, the feasible solution

can be produced by some advanced heuristic. This value will be used as the current best solution

39

and will be called the incumbent. In each iteration of a Branch and Bound algorithm, a node is

selected for exploration from the pool of unexplored nodes. Two or more children of the node are

constructed through the addition of constraints to the subproblem of the node. In this way the sub-

space is divided into smaller subspaces. For each of these the bound for the node is calculated. In

case the bound is the value of an optimal solution, the value is compared to the incumbent, and the

best solution and its value are kept. If the bound is no better than the incumbent, the subproblem is

discarded or pruned, since no feasible solution of the subproblem can be better than the incumbent.

In case no feasible solutions to the subproblem exits, the subproblem is also discarded. Otherwise

that subproblem node is added to pool of unexplored nodes.

We will apply a modified version of this Branch and Bound Technique to prune the redundant cost

functions in our algorithm. A similar branch and bound approach was used in the study of protein

chain lattice fitting problem by Thomas Dallas as part of his M.Sc thesis [30]. As we discussed

earlier, Branch and Bound Techniques has two steps, Splitting or Branching and Bounding. As

we used a Tree Decomposition, we do not have to use the Branching step as the subproblems are

already defined by the Tree Decomposition nodes. The general steps for our Branch and Bound

Technique are-

• Find a feasible solution (an upper Bound) of the problem.

• Compute a lower bound for each cost function for every node of the Tree Decomposition.

• Compare the lower bound and the upper bound. If the lower bound > upper bound, then

discard the cost function.

In Figure 3.3, a symbolic representation of a Tree Decomposition is shown. The root node of the

Tree Decomposition and another arbitrary node i at the middle is present in this figure. The node

vertex set Xi of node i contains two vertices x1 and x2. The subtree rooted at node i is Ti. The sub-

problem defined by the subtree between the root node and node i is denoted by Gs. Vertices a1, a2

and a3 is are part of Gs. The subproblem defined by the subtree at the root node denotes the entire

40

Root

i
x1 x2

a1
a2

a3

C

S

F

Ti

Xi

Gs

Figure 3.3: Tree Decomposition with Bounds

input graph G.

We chose CPLEX, a software tool designed to solve integer programming problems (more on sec-

tion 3.3.1), to compute the feasible solution F for the problem. CPLEX solves the relaxed version

of the Covering Problem as described in section 1.1. This solution value F will provide an upper

bound for the Covering problem on the input graph.

As discussed earlier, for each Tree Decomposition, if the treewidth is k, then there can be nk+1 cost

functions in the worst case. For each such cost function, we will compute a lower bound for the

whole problem. For example, in Figure 3.3 at node i , there can be n2 number of cost functions,

as |Xi| = 2. Each such cost function will produce a cost value C (through dynamic programming

computation) that represents the solution value of the Covering problem restricted to the subtree Ti

rooted at i. To compute the lower bound, we need to have a feasible solution S of Covering Problem

on the subproblem defined by Gs. Once S is computed, for each cost function (with cost value C)

41

at node i, the lower bound will be, S + C. Because S represents the feasible solution for Gs and C

represents the cost value for the subgraph GTi and Gs +GTi = G. If for this specific cost function the

lower bound > upper bound, then the cost function is discarded, as it will never produce an optimal

solution.

We use CPLEX like before, to solve the relaxation of the Covering problem restricted on the sub-

graph Gs to compute S. But In order to compute the correct lower bound, we need to remove the

overlapping cost that may be included in C, the cost function value for any cost function at node i.

In Figure 3.3, at node i with Xi = (x1,x2), suppose a generated cost function permutation is (b1,b2).

That is the at b1 and b2 facilities are opened and they are serving (or paying the penalty if the clients

are uncovered) the clients x1,x2. These facilities b1, b2 may very well cover clients that are outside

the subgraph GTi . Suppose a1, a2 and a3 are such clients, who are part of the subgraph Gs but cov-

ered by the facilities b1 and b2. For this cost function (b1,b2), the solution value C of the Covering

problem restricted at GTi , will include the clients a1, a2 and a3. While computing S, if these clients

a1, a2 and a3 are still part of the problem model defined by the subgraph Gs, then the solution may

open facilities in any one these clients, which will be an extra cost as all these clients are already

covered by the solution C. So, to remove such overlapping extra cost from S, for any node i, we will

compute the set of clients that are outside the subtree Ti covered by the node vertex set Xi. Because

the vertices in a node vertex set are undoubtedly the closest vertex to the clients present outside the

subtree defined by that node (described in 3.1.7). So, the clients that are uncovered by the node

vertex set Xi are also uncovered by any of the vertices inside Ti. Hence, for any vertices (facilities)

present in the cost function permutation, the set of covered clients (by those facilities), will be a sub-

set of the set of clients covered by the node vertex set. Removal of the set of covered clients(covered

by the node vertex set) from the subgraph Gs while computing S, the produced lower bound will not

be as tight as it could have been if the set of clients were covered by the facilities present in the cost

function permutation. But in that case we have to compute S for each cost function at node i. In our

way, we need to compute S only once per node.

42

The Branch and Bound technique prunes more cost functions than the pruning heuristic in most

cases. But the computation of the bounds for each node is costly. More is discussed on the imple-

mentation section of this chapter.

3.3 Hybrid and Parallel Algorithm

We incorporated all the techniques with the dynamic programming algorithm described in the ear-

lier section and wrote a program to run experiments. It performed really well comparing with the

program with no heuristic techniques. We then used CPLEX, a software tool developed by IBM to

check the correctness of our program. But we found that CPLEX is very efficient when it solves the

Covering problem on the same data set and is much quicker than our algorithm. To reduce the differ-

ence between the running times, we then designed a Hybrid algorithm and a Parallel programming

algorithm which uses the CPLEX and CONDOR GRID to facilitate the execution of the algorithm.

We will discuss these algorithms in the following sections.

3.3.1 A Hybrid algorithm with CPLEX and Dynamic Programming

IBM ILOG CPLEX Optimization Studio (often informally referred to simply as CPLEX) is an op-

timization software package developed by IBM. The IBM ILOG CPLEX Optimizer solves integer

programming problems, very large linear programming problems using either primal or dual vari-

ants of the simplex method or the barrier interior point method, convex quadratic programming

problems, and convex quadratically constrained problems.

We used CPLEX mainly to check the correctness of our algorithm. But we found out that for our

data set (more discussed in 4.2.1) CPLEX runs very fast. We incorporated all the techniques (heuris-

tics and implementation techniques) in our algorithm, it did improve the running time considerably

from last time, but still it’s quite slow when compared to CPLEX. We then decided to incorporate

the services of the CPLEX module in our algorithm, thus developing a Hybrid algorithm which has

43

both dynamic programming and CPLEX.

The reason the dynamic program is slow is because for each Tree Decomposition node it has to

process a large number of cost functions in case of large graphs. The idea is to use CPLEX to solve

a bottom chunk of the Tree Decomposition so that the dynamic program does not have to get stuck

with a huge number of cost functions. The size of the chunk or subproblem will be supplied as

command line parameter to the algorithm.

In Figure 3.4 the solution steps of a symbolic Tree Decomposition by the Hybrid algorithm is shown.

The intuition behind this design is that, if the dynamic program has less number of nodes to work

with then this hybrid algorithm will be faster than CPLEX in case of large graph instances.

root

Subproblems solved
by CPLEX module

i j

a b c d

Subprolem sizes at
node a, b, c, d is
≤ Supplied Param-
eter

Dynamic Programming re-
sumes at Node i and j
as the subproblem sizes at
these nodes are > Supplied
Parameter

Figure 3.4: Solving a Tree Decomposition with the Hybrid Algorithm

44

The CPLEX part of this algorithm has two steps-

• Node selection

• Subproblem Solution

In the Node selection step, the nodes with the desired subproblem size is selected to be solved by

CPLEX. As mentioned earlier, this subproblem size is controlled by a parameter called target sub-

problem size. Given a target subproblem size, the program traverses the Tree Decomposition the

same way (bottom up traversal) it traverses for the dynamic programming algorithm. It also keeps

track of the subproblem size defined by the subtree rooted at the node it is visiting. While traversing

on a branch the most recent node that has a subproblem size less than or equal to target subproblem

size is selected for CPLEX. In Figure 3.6, on the leftmost branch, node a is the last node or the

most recent node that has a subproblem size less than or equal to target subproblem size. The parent

node i (the next node visited by the traversal module) has a subproblem size greater than the target

subproblem size. So, only node a is selected to be processed by the CPLEX module, not node i.

Similarly, node b, c and d is selected to be processed by the CPLEX module.

The next step is the solution of the Subproblem defined by the subtree rooted at the selected node.

Though CPLEX can solve the subproblem optimally in a short time, a cost table with cost function

values still needs to be generated because without it the dynamic program cannot resume it’s op-

eration at the upper level nodes. In this respect, initially the CPLEX instance is modeled after the

Covering Problem integer program (as described in 1.1) defined by the subproblem at the selected

node. Then for every cost function, variables and constraints are deleted from the CPLEX instance

for the set of clients that are already covered by the facilities in the cost function. CPLEX then

solves the downsized integer program. The cost function value will include the opening (or penalty)

costs of the facilities present in the cost function and the cost value produced by CPLEX which

denotes the subproblem solution value at that node. Thus at the end the selected node will have a

cost table with cost function values that are produced by CPLEX.

45

This is a simple enough algorithm, but in practice we had the most success with this algorithm. The

experiment results and evaluation are described in detail in chapter 4.

3.3.2 A Parallel Algorithm for Solving Covering Problem

One of the unique properties of Tree Decomposition is it’s ability to divide a problem into smaller

independent subproblems. At each Tree Decomposition node an independent subproblem can be

defined by the set of vertices in the subtree rooted at that node. The simplest parallelism that can

be introduced in this respect is to solve each of these subproblems on a separate machine and then

consolidate the result at the root node to get the solution. As the problems are independent, the

allocated machines does not need to interact with each other. They solve the assigned problem and

report the solution back to the source. Our algorithm uses the same idea. The execution of our al-

gorithm depends heavily on the CONDOR GRID installed in our CS network which ensures a high

performance in terms of job scheduling, efficient utilization of available resources.

Condor is a open source high-throughput software framework for distributed parallelization of com-

putationally intensive task. As an HTC (High-throughput computing) system Condor is very robust

and reliable when running a task using many computing resources. This high throughput computing

also ensures an efficient execution of a task over a long time with relatively small overhead. Condor

accepts an implementation of an algorithm (a program) as a "job" and assigns this job to a remote

machine for execution from it’s pool of available machines. It allows a user to submit multiple

jobs at the same time. Condor offers a huge advantage by efficiently using the idle machines in a

network. Condor handles the submission and scheduling of jobs, connection to remote machines,

remote system calls and reporting the output back to source machine where the job was submitted.

Our algorithm utilizes these services of Condor to parallelize the solution of subproblems.

This algorithm follows from the Hybrid algorithm discussed earlier. In Hybrid algorithm, we solved

a chunk of subproblems using CPLEX then the rest of the Tree Decomposition nodes are processed

46

by the Dynamic program. We will follow the same idea but instead of solving the subproblems with

CPLEX in one machine, each of the subproblems will be solved in a separate machine. The output

results are reported back to the source and the source machine will then start the dynamic program

on the rest of the Tree Decomposition as it has the subproblems solutions available from the remote

machines. So, basically there are three steps for this algorithm-

• Subproblem writing

• Subproblem Solving

• Accumulation of the solutions

In the subproblem writing step, the subproblems that are to be solved by CPLEX are written in

text files. The next step, the subproblem solving step submits each subproblem file as a job to the

Condor Grid. The Condor then assigns a suitable machine from it’s pool of available machines to

solve the subproblem. The remote machines solves the problem and writes the solution information

into a file. After the source machine has all the solution files, the Accumulation of the solutions

step begins where the algorithm resumes the dynamic program for the Tree Decomposition nodes

for whom the subproblem sizes are greater than the target subproblem size (as described in 3.3.1).

The implementation details are discussed in the implementation section of this chapter.

When compared to the Hybrid Algorithm, the running time for this technique is almost similar to

that of the Hybrid. This is because CPLEX is very fast to solve Covering problem even on a large

instance on a single machine. Though we hoped that dividing the workload among several machines

would outweigh solving the Covering problem by CPLEX on a single machine however in reality the

performance improvement was negligible overall. For this reason we used the Hybrid Algorithm for

further experimentation. But we conjecture that this parallel algorithm will be effective for problems

with larger integrality gap that are difficult to solve by CPLEX.

47

3.4 Implementation

As mentioned earlier in chapter 2 , for implementation we used Python 2.7 as a programming lan-

guage. In the following sections, we will discuss the major data structures of the dynamic program

and then we will briefly describe the steps our program follows to compute the optimal solution. In

the later sections we will discuss several techniques that are used to accelerate the program.

3.4.1 Dynamic Program

Data Structures In order to represent each node in the tree decomposition, we wrote a class

Node_with_ table with different data attributes. As every node is associated with a cost table, we

simply added the cost table as a data attribute in the class. Each cost table is a dictionary, a hash

table type data structure of Python. For a tree decomposition node i and its vertex set Xi, this dictio-

nary contains the entries where the key is the facility allocation f and the value is the cost function

Φ(Xi, f). We used a two dimensional list, an array type data structure of Python, to represent the

pair shortest path weight matrix generated by the Floyd Warshall algorithm.

Brief Description First, our dynamic program traverses the tree bottom up recursively. Starting

from the root node, the recursive function traverses the child list and appends the child nodes into

a stack. Then, the function keeps calling itself with the top node of the stack as the root for the

next iteration. If it reached a target node (leaf node, or a node whose children has already been tra-

versed), it deletes that node from the stack and the function returns. Whenever each of the recursive

call is terminated, that means either a leaf node or a node (top node of the stack) whose children

has already been traversed is reached at that point. So, through the recursive call terminations, the

module keeps moving upward through the tree decomposition towards the root.

Now, before the function return statement, the program invokes another module that generates one

or more nice tree decomposition nodes till it reaches up to the parent node. If the target node i is a

48

original tree decomposition leaf node with the cardinality of the vertex set greater than 1, then this

module generates a nice tree decomposition leaf node j with a single vertex chosen randomly from

the original leaf node’s vertex set. Then, it treats the original tree decomposition leaf node just as

a regular introduce node where the introduce vertex set is = {Xi \X j}, where i is the original tree

decomposition leaf node and j is the newly generated nice tree decomposition leaf node.

If the target node i is a node whose child j has been traversed, then the module generates a nice tree

decomposition forget node where the forgotten vertices are = {X j \Xi}. Then the module treats the

already present node i as an introduce node, where the introduce vertex set is = {Xi \X j}. Whenever

the module generates a nice tree decomposition nodes (or treat like one), invokes the module for

processing that specific node. For example, if the node is a introduce node, the program will invoke

the process_introduce_node module. Then the node processing module invokes the permutation

module to enumerate all possible facility allocation functions for the client set in the node. Then,

for each facility allocation function, it computes the cost value according to the cost function defi-

nitions of that node. After computing the cost value, it inserts the cost entry in the cost table, where

it stores the facility allocation function as a key and the cost value as value in the dictionary.

As the traversal module is working its way upwards and reaches the root, the root node’s cost table

then has all possible solutions for the Covering problem. We take the solution with minimum cost

value. The solution is partial in the sense that only the value of the optimal objective is known, and

the facility allocation function for the vertices of the root node is known. However, the information

about facilities covering the other vertices of the graph needs to be recovered from the cost functions

at tree decomposition nodes below the root.

In this respect, the program keeps another table called cost_backtrack_table(a dictionary) for each

node. While computing each possible cost function for a client set in a node, the program accesses

the child node’s cost function for that specific facility allocation. This cost_backtrack_table stores

the child node’s cost function keyed by the current node’s cost function for each possible facility

49

allocation at a node. We developed a solution backtrack module where given an optimal solution at

the root (contains cost value and cost function for the root node), it recursively accesses the node’s

cost_backtrack_table, uses the solution cost function as the key and finds the child node’s cost func-

tion which was used to compute current node’s cost function. The module keeps adding the facility

allocation found from the child node’s cost function in a list. It keeps calling itself until it reaches a

leaf node. At the end it returns with the opened facility list it has discovered from the nodes below

the root.

But this approach to recover the full solution proved really costly as each cost_backtrack_table

occupies a considerable amount of memory which leads to a memory exhaustion. To counter this

problem we found a simple yet efficient way to discover the solution. At each cost table against a

cost function the program will store a pair of values where the first value is the cost function value

and second value is a list of integer which denotes the indices (of the vertex set of the input graph)

of all opened facilities for that cost function. At a leaf node this set of opened facilities will contain

only one vertex (leaf node vertex). At a parent node, the set of opened facilities indices will contain

the set union of the facilities that are opened by the cost function and set of opened facilities from

the child node for that respective cost function. In this way at the root the optimal solution cost

tuple will contain all the facilities that are opened for this solution branch. We just have to retrieve

the facilities from the vertex set by the integer indices.

3.4.2 Pruning Heuristic Module

Given a client set and it’s assigned permuted facility set, for each client this module checks the

distances between the client and each facility in the permuted facility set. If it finds a facility that

is closer to the client than the already assigned one, then the module discards the current facility

allocation function, and as a result, no cost function will be computed for it.

50

3.4.3 Branch and Bound Technique

There is a preprocessing step for executing the dynamic programming algorithm equipped with the

Branch and Bound Technique. We need to compute a upper bound (feasible solution) of the entire

problem defined the input graph and a lower bound for every cost function generated at each node.

We used the CPLEX module to compute both bounds. Though CPLEX is very fast to compute

the bounds, given a large graph instance the cumulative time to compute these bounds are quite

high. So, for a faster execution of our program, we precomputed these bounds (solving relaxation

of subproblems) for each node and write them into a file using a sorted list. Whenever the program

is processing a introduce node or a join node (because only for these nodes we include the pruning

by Branch and Bound, for leaf and forget node this technique does not apply) rather than computing

the relaxation of the subproblem defined by the subtree in between the given node and the root, it

reads the corresponding solution value from the file. It resumes normal execution after that.

In case of a introduce or a join node, after computing the lower bound for the cost function by

adding the cost function objective value with the retrieved subproblem (defined by the Tree Decom-

position without the subtree rooted at the given node) solution value, the program checks whether

the lower bound is greater than the upper bound (feasible solution). If greater then the cost function

is discarded or pruned else the program inserts the cost function into the cost table with it’s solution

value.

3.4.4 Hybrid Algorithm

To implement the Hybrid Algorithm we developed two new modules-

• modified traversal module

• a subproblem solver module with CPLEX

We introduced a new parameter called target subproblem size. This parameter is used for the selec-

tion of nodes for which the subproblems defined by their subtree will be solved by CPLEX. If the

51

subproblem size of a node is less than or equal to the target subproblem size, then the subproblem

will be solved by CPLEX, else it will be solved by the dynamic program.

We modified the traversal module described in 3.4.1 to support the algorithm requirement. As it tra-

verses the tree recursively using a bottom up approach, it also keeps track of the size of the subtree

at each node. Because this is a bottom up traversal, if the first node that has a subtree (subproblem)

whose size is greater than the target subproblem size (described in 3.2.3), then it’s child must be

the last node whose subtree (subproblem) size is less than or equal to target subproblem size. To

solve the subproblem defined by the subtree rooted at this selected node, it calls a subproblem solver

module with CPLEX. For nodes that has the subtree size is greater than the target subtree size, the

program resumes the dynamic programming operation as discussed in 3.4.1

We used the CPLEX 12.1 PYTHON API to implement the subproblem solver module. Given the

subproblem definition, this module fills up a CPLEX instance with necessary variable and con-

straints to imitate the integer program for Covering problem restricted to this subproblem. For each

cost function permutation, a set of clients that are covered by the facilities opened by the cost func-

tion is computed. The variables and constraints corresponding to those covered clients are deleted

from the CPLEX model. Then this reduced model is solved optimally by CPLEX. The cost func-

tion value contains this curtailed subproblem solution value and the facility opening cost (or penalty)

from the facilities present in the cost function. At the end of this module, the cost table is returned.

3.4.5 Parallel Algorithm

To implement the parallel programming algorithm, we developed three separate programs-

• Subproblem Writer

• Subproblem Solver

• Accumulator

52

The program structure for the Subproblem Writer is similar to that of Hybrid Algorithm program.

It traverses the tree using the modified traversal algorithm described earlier. It uses the target sub-

problem size parameter the same way Hybrid algorithm does to select the subproblems to be solved

by CPLEX module. Once the subproblems are selected, it writes their definition in text files. Then

for each subproblem files it generates a MakeFlow rule which is then added into a Makeflow script.

MakeFlow is a workflow engine for executing large complex workflows on clusters, clouds and

grids. It accepts a specification of a large amount of work to be performed, and can be made to

submit these jobs to some already installed grid system. As we have a CONDOR GRID installed

in our system, the MakeFlow tool is used to generate specifications for a series of jobs and the sub-

mission of the Makeflow script (script_name.makeflow) to Condor. Each MakeFlow rule specifies a

target file, a set of source files needed to create it and a command that generates the target file from

the source files. In our case, in each rule, the target file is a cost table associated with the current

subproblem, the set of source files are all the external python modules imported to run the program

and the command is python runtime command which instructs the python interpreter to execute the

Subproblem Solver program with the given subproblem file name. At the end, this program will

generate a MakeFlow script called "Coverage.makeflow" which will have a rule for each subprob-

lem that are to be solved by CPLEX.

When this Coverage.makeflow script is submitted to Condor grid, for each rule the program Sub-

problem Solver is called with a subproblem file name. This program reads the subproblem defini-

tions from the subproblem file (given the subproblem file name) and calls the subproblem solver

module with CPLEX (as described in 3.4.4) to solve the subproblem. This program returns the cost

table containing the cost function values associated with this subproblem. Once the cost table is

returned by this program, Condor automatically returns this cost table back to the source machine,

where it is stored in a text file.

The Accumulator program is activated once all the necessary subproblem cost tables are returned

by Condor. Because once the cost tables are available, this program can start the dynamic program

53

for those nodes that has subtree (subproblem) size is greater than the target subproblem size. It then

follows the dynamic program and finds the solution from the root.

In practice the brute force approach is slow even for small graphs. During Implementation we

developed some tricks and techniques to speed up the algorithm. In the following sections, we will

discuss these techniques.

3.4.6 Cost Table Reduction Technique

The brute force approach has proven to be very expensive as it has a very high storage space (mem-

ory) requirements. This is mainly because of the exponential size of the cost tables associated with

each tree decomposition node. Whilst the pruning heuristic reduces a significant number of entries

from the tables, for larger graphs the memory overhead for these cost tables are still high. In this

respect we developed a technique which requires only a few number of cost tables for the entire

dynamic program.

As mentioned earlier in Section 3.4.1, the bottom up traversal module keeps traversing a node’s

children recursively until it reaches a leaf node or a node whose children has already been visited.

Then it moves upward through recursive call terminations. So depending on the child list of a node,

the module moves from branch to branch of the tree decomposition. In this technique, rather than

keeping a separate cost table for each node, we keep a pair of cost tables (parent_node_cost_table

and child_node_cost_table) for a child node to parent node transition. As described in Section 3.4.1

, there can be more than one nice tree decomposition nodes in a child to parent transition. So, we

reuse this pair of cost table for each child-parent pair. Once a node is being processed, initially

it’s cost function entries are store in the parent_node_cost_table. After the node is processed, it

empties the cost table parent_node_cost_table after it has been copied into child_node_cost_table

as now the processed node becomes a child while it’s parent node is being processed. At the end of

the transition (for the final child-parent pair), the module keeps the parent_node’s_cost_table into

54

a cost_tables dictionary. It empties the child_node’s_cost_table as it is no longer required. Then

the traversal module moves onto a new node. If the new node is a leaf node, then the program

executes the steps described earlier for the transition from the leaf node to introduce node. After the

transition is finished, it keeps the cost table of the parent node (in this case the introduce node) into

to the cost_tables dictionary. If the node is any other node except a leaf node, then the node’s child

has already been processed and it’s cost table must be stored in the cost_tables dictionary. It copies

that specific cost table into the child_node’s_cost_table and then deletes it from the cost_tables dic-

tionary. At this point the parent_node’s_cost_table is blank. The module repeats the same steps

including reusing these two cost tables for this new transition.

3.4.7 Bounding the Assignment Function

As we have described in section 3.2.2, for a node i, the modified assignment function f , f : Xi→

CN(i) , where CN(i) is the covering neighborhood of node i, now enumerates all vertices of the set

CN(i), thus reducing a great number of redundant cost functions. Even then, it is possible to have

may cost functions that are generated through the process described in 3.2.2 only to be discarded

by the pruning heuristic. In this technique, we will discard some of those cost functions before they

are generated by the assignment function f .

This technique follows from the Pruning Heuristic described in Section 3.2.1 which checks the dis-

tances between the clients and the facilities (assigned by the f function) and discards the facility

configuration if the facility assigned to a client is not closest to it. Using the triangle inequality we

can extend this distance checking technique to assign a upper and lower bound on the assignment

function f . This way, vertices that are outside the upper and lower bound will not be visited while

processing an introduce node.

In the nice tree decomposition, the client set at the child node is a subset of the parent node. As we

55

are using a bottom up dynamic program, when the program processes the parent node, the subset

which is equal to the child node’s client set is already assigned some facilities whose cost function

entries can be found on the child node’s cost table. Currently while generating the facility configu-

rations (by the assignment function f), the program generates all possible configurations and then

applies the Pruning Heuristic to get rid of the invalid configurations. In this technique we will use

the already allocated clients to apply bounds on the non-allocated clients.

x1, x2

x1
j

i

Figure 3.5: Parent and child with common elements

We will describe the bounding technique in the context of figure 3.6 where a parent node and a child

node is shown, where the parent node i is an introduce node and the child node j is a leaf node. The

client set of node j is X j = {x1} and the client set of node i is Xi = {x1,x2}. So the common element

between node i and node j is x1. The dynamic program will process the leaf node before the parent

node and will assign a facility for every valid permutations. Let f (x1) represent the facility assigned

to x1.

While processing the parent node i, we will use the allocation of client x1 to apply a upper and lower

bound on the assignment function f for client x2. In the below figure, a symbolic representation

of the distances between clients {x1,x2} and their assigned facilities { f (x1), f (x2)}. here f (x2)

represents the set of potential facilities for client x2.

56

x2 x1

f(x1)f(x2)

Figure 3.6: distances representation between clients and facilities

The client x1 is already served by f (x1). The upper bound that will be applied to f (x2) follows

directly from the Pruning technique. The distance d(x2, f (x2)) must be smaller than the distance

d(x2, f (x1)). Otherwise x2 can be served by f (x1). So the upper bound on f (x2) can be defined as-

d(x2, f (x2))≤ d(x2, f (x1))

Now, using the triangle inequality , we can derive the following relation from the triangle formed

by x2,x1 and f (x2) from the figure 3.6-

d(x2, f (x2))+d(x2,x1)≥ d(f (x2),x1)

Again, in order to become a valid configuration the distance d(f (x2),x1) must be greater than the

distance d(x1, f (x1)). So, we can rewrite the previous relation and define the lower bound on f (x2)

as below -

d(x2, f (x2))+d(x2,x1) ≥ d(x1, f (x1)),

d(x2, f (x2)) ≥ d(x1, f (x1))−d(x2,x1)

So facility assignment function f (x2) will permute from the set of vertices for which the distance

between them and the client x2 falls between the upper and lower bound. The rest of the vertices

will be discarded.

57

These bounds can be extended for client sets with any number of clients. For example, for any node

k, if the client set is Xk = {x1,x2,x3}, the fixed facility allocation for x2 and x3 is f (x2) and f (x3),

then the upper bound on f (x1), the potential facility for x1 is -

d(x1, f (x1))≤ mine>1d(x1, f (xe))

Similarly using the same triangle inequality technique described above the lower bound on f (x1)

is,

d(x1, f (x1))≥ maxe>1{d(xe, f (xe))−d(xe,x1)}

Earlier, for a tree node i where Xi contains p number of vertices, the program used to generate

np number of facility configurations where n denotes the number of vertices in the graph. Now

with this bounding technique the program is generating lp entries for some number l ≤ n , which

depends on the upper and lower bound at that node. The program still uses the pruning technique

to validate the permutations, as both these bounds are loose bounds. In practice, the combination of

these techniques produces a much better result than before.

3.4.8 Balancing the Height of the Tree Decomposition

The Tree Decompositions produced by the Tree Decomposition heuristics are not height balanced.

As a result sometimes the root of the Tree Decomposition can be located in the longest branch of the

Tree Decomposition. As we described in 3.4.3, in a branch the number of cost tables is depended

on the height of that branch from leaf to root. The longer is the height, the more number of cost

tables are kept in the memory. As there can be numerous branches spawned from the root node, we

can’t chose an arbitrary root because it might reduce the length or height of a particular branch but

might increase the height of some other branch spawned from it.

One way to find such a root is to find the center of a Tree Decomposition and set it as root. For a

58

center a of a Tree Decomposition, the following relation holds-

minx∈I maxy∈I d(x,y)

Where d(x,y) is shortest distance between x and y, and I is the node set of the Tree Decomposition.

There is a simple algorithm for finding the center of a tree proposed by Murdasov [23]. We followed

the same idea in case of a Tree Decomposition. The steps of our algorithm is given below-

• Select an arbitrary leaf node i from the Tree Decomposition.

• Find the most remote node from i using a depth first search. Suppose the remote node is j.

• Find a node p that is furthest from j using a depth first search (this operation will yield the

diameter of the Tree Decomposition).

• The node t for which the equality

d(j, t) = d(t, p)

holds is the center of the Tree Decomposition. Make this node t as the new root.

egh

def

fi cde

bcd

abc

ik ij

find the center and set it as
root

egh

def

fi

cde

bcd

abc

ik ij

Figure 3.7: Balancing the Height of a Tree Decomposition

A Tree Decomposition of a graph drawn in Figure 2.1 is shown in the left hand side. In the right

hand side, another Tree Decomposition of the same graph is shown with it’s center as the new root.

59

In practice this technique reduced the number of cost tables that are kept in the memory at a given

time.

3.4.9 Using a Modified Dijkstra’s algorithm to Compute Shortest Path

As discussed in 3.4.1, the shortest path matrix (a two dimensional list) is computed with the Floyd-

Warshall algorithm which has a complexity O(n3). For large graph instances, the computation for

the shortest path matrix using this algorithm is very costly in terms of running time. We decided to

run modified version of dijkstra’s algorithm (complexity O(n2)) for every vertex of the graph to fill

the shortest path matrix.

The modification follows from the improvement discussed in 3.2.2 where the set of potential facili-

ties for a client is restricted to the covering neighborhood of that client. We stopped the execution of

the dijkstra’s algorithm when the current distance estimate between the source vertex and any other

vertex is greater than the client radius. So, for a client, only the shortest path between the facilities

inside the client radius and the client are computed through this modification. Also, to make it faster

we used a min heap as a data structure for the queue in the algorithm.

Using this modified dijkstra’s algorithm helped us as it reduced the total running time greatly com-

pared to the Floyd-Warshall algorithm. It does not have any effect on the dynamic program as the

dynamic program run time is computed by subtracting the total running time from the shortest path

running time. But it made the execution of the program really fast.

In the next Chapter we will present the empirical data of several experiments for Tree Decomposi-

tion computation and for solving the Covering problem using our algorithms. We will analyze the

data and will discuss the findings of our research.

60

Chapter 4

Experiments

In this chapter we present the experimental results of the algorithms to solve the standard Covering

problem. In this research, we used only randomly generated graphs for our experiments because

it is expensive to gather and interpret the wireless network data and generate graph representation

from them. We plan to use the real time wireless data for experiments in future. In section 4.1, we

discuss the experiment results of the construction of Tree Decomposition by the heuristics described

in Chapter 2. In the next section (4.2), we will present the experiment results of three algorithms

which solves the standard Covering problem. In section 4.3, we analyze the results and find infer-

ence from the evaluation.

All the algorithms are implemented using Python 2.7. We used Python because it is easy to program

and very quick to implement any algorithm in it. All the experiments presented in this chapter were

conducted on 3.00 GHz Pentium(R) 4, 64 bit processor with 1 GB RAM in the Linux CentOs

environment.

4.1 Tree Decomposition Experiments

For Tree Decomposition experiments, we will use the following three algorithms that are described

in Chapter 2 -

• Minimum Separator Vertex Set Heuristic (MSVS)

• Clique Tree Heuristic (CLQT)

• Random Separator Vertex Set Heuristic (RSVS)

61

4.1.1 Data Sets

For these experiments, we used unit disk graphs to randomly generate dense graphs and series

parallel graphs to randomly generate sparse graphs. The procedure for generating these graphs are

discussed below.

Unit Disk Graph In geometric graph theory, a unit disk graph is an intersection graph of a set

of unit circles in the Euclidean plane; each vertex corresponds to a circle, and an edge is placed

between two vertices when the corresponding circles intersect [6]. The steps for generating random

unit disk graph is given below-

• We specified the total number of vertices (|V |) of the graph.

• For each vertex we randomly generate a (x,y) co-ordinate and assign it to that vertex.

• For every pair of vertex we compute the Euclidean distance d between them, and then check

whether d < T , where T is the threshold value that we defined earlier. If d < T , then we insert

an edge between the vertices if not then we move to the next pair of vertices.

Series Parallel Graph In graph theory, a series parallel graph is a graph of two distinguished

vertices called source (s) and sink (t) which denotes two terminals (end points) of the graph and

formed recursively using two composition(series composition or parallel composition) operation. A

two terminal series parallel graph G with terminals s and t can be produced by a sequence of the

following operations:

1. Create a new graph, consisting of a single edge directed from s to t.

2. Given two two-terminal series parallel graphs X and Y , with terminals sX , tX , sY , and tY , form

a new graph G = P(X ,Y) by identifying s = sX = sY and t = tX = tY . This is known as the

parallel composition of X and Y .

3. Given two two-terminal series parallel graphs X and Y , with terminals sX , tX , sY , and tY , form

a new graph G = S(X ,Y) by identifying s = sX , tX = sY , and t = tY . This is known as the series

62

composition of X and Y .

This definition and the steps of composition follows from the work of David Eppstein [8] in his

study of recognition of series parallel graphs.

Series-parallel graphs are a useful class of graphs. They are fairly simple to generate and allows

easy proofs for many results. In particular, series-parallel graphs are a fertile testing ground for

various conjectures. Also one of the main reason to use series parallel graphs in our experiments

is that the treewidth for this class of graph is no more than 2, which proved to be an excellent test

ground for our algorithms. Because it is expensive to run algorithms on a tree decomposition of

higher treewidth.

Below we discuss the steps of generating random series-parallel graphs:

• We generate a series of random even number upto a given limit.

• For each even number e we generate a two-terminal series-parallel subgraph where the num-

ber e will define the number of nodes of the subgraph. In order to generate it, we will create

a graph with two vertices and only one edge connecting them. We recursively add this graph

to itself using either a series connection or a parallel connection until the the number e is

reached. We do this using a coin toss procedure. We generate a random number r, between

0 and 1. If r > 0.5 , then we add the edge using series connection and if r<=0.5, we add the

edge in parallel connection.

• After all the series-parallel subgraph/components are generated, we connect them either through

series connection or parallel connection using the same coin toss procedure described earlier.

4.1.2 Tree Decomposition Experiment Results

In this section we present the experimental data of computing Tree Decomposition by the three

algorithm mentioned above. Table 4.1 contains the empirical data of experiments done on the

randomly generated dense graphs (unit disk graphs) and Table 4.2 contains data of experiments

63

done on randomly generated sparse graphs (series parallel graphs). The first and second column

of the tables denotes the number of nodes and edges of the graph. The third, fourth and fifth

column represents the average running time (in sec) of the algorithms Clique Tree Heuristic(CLQT),

Minimum Separator Vertex Set Heuristic (MSVS), Random Separator Vertex Set Heuristic (RSVS).

The sixth, seventh and eighth column of the tables represent the treewidth data of algorithm CLQT,

MSVS and RSVS.

Table 4.1: Tree Decomposition Experiments on Random Dense Graphs

Vertices Edges Runtime (Sec) TreeWidth

CLQT MSVS RSVS CLQT MSVS RSVS

50 396 0.085 32.34 5.56 10 10 10
75 836 0.272 546.65 75.66 15 14 15
100 1450 0.61 2519.72 329.82 19 18 18
150 3562 2.66 27826 3545 41 42 42
200 2416 6.44 35973 7026 25 23 23
250 2770 7.98 88416 10900 30 24 24

Table 4.2: Tree Decomposition Experiments on Random Sparse Graphs

Vertices Edges Runtime (Sec) TreeWidth

CLQT MSVS RSVS CLQT MSVS RSVS

171 192 0.288 2081.24 155.823 2 2 3
264 303 1.018 4523.07 254.51 2 2 3
359 418 2.569 21134.39 703.47 4 2 3
435 495 4.491 61220.85 910.44 3 2 3
532 614 8.45 116251.83 7437.11 4 2 3
612 699 12.77 47030.16 1088.74 2 2 3

It is evident after observing the data in the above tables that the Clique Tree Heuristic(CLQT) is sig-

nificantly faster than the other two algorithms. The Minimum Separator Vertex set heuristic(MSVS)

has the largest running time. This is because finding a minimum separator is really expensive. The

Random Separator Heuristic(RSVS) fares better in terms of running time than MSVS. Because In

RSVS, instead of finding separator for every pair of vertices, we randomly select a few pairs of

vertices and then find the minimal separator for each of those selected pairs.

64

Though the CLQT has the least running time, the quality of the Tree Decomposition(Treewidth) is

not minimal all the time. MSVS algorithm has the ability to produce the best (among these three

algorithm) quality Tree Decomposition almost at every run. RSVS algorithm is produces a decent

quality Tree Decomposition, some times even better than CLQT algorithm. After evaluating these

results, we decided to chose CLQT for our primary algorithm to generate Tree Decomposition for

our dynamic program. Though sometimes the Treewidth is not minimal in the Tree Decomposition

produced by CLQT, but after a few runs of CLQT on the same graph, eventually we were able to

get the desired Tree Decomposition with the desired Treewidth (in case of series parallel graphs,

the desired treewidth is 2).

4.2 Covering Problem Algorithm Experiments

We followed the trial and error approach while developing the dynamic program algorithm to solve

the Covering Problem. At the initial phase of the program (where at each node the program was

generating nk+1 cost functions) even for a 200 node graph, the program took more than a week to

solve the problem. This is mainly because of the generation of huge amount of cost functions that

filled up the memory very quickly. So we started developing techniques that reduced the number

of cost functions. These includes the pruning heuristic, bounding the assignment functions, branch

and bound technique and several implementation tricks as discussed in Chapter 3. We employed all

of them into a single program and then began experiment with larger graphs. This time it solved the

problem much quicker than the initial program. We used CPLEX to solve the problem on the same

graphs to ensure the correctness of our program. But we found out that CPLEX solves this problem

on the same graphs very quickly. At that point we decided to incorporate the power of CPLEX in our

program and developed a Hybrid algorithm which employs dynamic program as well as CPLEX.

With CPLEX we solved subproblems defined by the bottom part of the Tree Decomposition. We

defined the size of the subproblems that will be solved by CPLEX, the rest of the Tree nodes are

solved by the Dynamic program. We developed this Hybrid algorithm with the intuition that, once

65

CPLEX solves the subproblems defined by the bottom parts (larger parts) of the Tree Decompo-

sition, then for the rest of the tree nodes the dynamic Program will outweigh CPLEX which will

result a total runtime that will beat CPLEX.

For our experiments, We ran the following three algorithms on the random graphs-

• CPLEX

• Hybrid Program (Hybrid)

• Hybrid Program with Branch and Bound (Hybrid_with_bb)

The Hybrid Program (Hybrid) and Hybrid Program with Branch and Bound (Hybrid_with_bb) are

two versions of the same program. The first one (Hybrid) contains all the techniques and the im-

plementation tricks discussed in Chapter 3 except the Branch and Bound technique. The later one

(Hybrid_with_bb) contains the all the techniques including the Branch and Bound. The reason we

developed these two versions of the program is to show the performance difference between the

program without branch and bound and the program that employed the branch and bound. We used

CPLEX to solve the same graphs to ensure correctness and also for the runtime comparison among

these three algorithms.

4.2.1 Data Sets

In our experiments, we decided to use the randomly generated series-parallel graphs (as described

in section 4.1.1). It is expensive in terms of running time to run our algorithm on a Tree Decom-

position with high Treewidth. As a series-parallel graph can have treewidth at most two, it ensures

a quick solution time by our algorithms. Also it loosely mimics (by sparsity and connectivity) a

wireless network environment.

Though our initial target was to evaluate the performance of our algorithms on sparse graphs (so

that they can be employed later on wireless networks to solve the covering problem), we tried to run

66

our algorithms on dense graphs as well. But our algorithms are not feasible for Tree Decomposition

with high treewidth. So for this thesis we kept our focus on running algorithms on series-parallel

graphs.

4.2.2 Experiment Results

In the following, we present the empirical data for four Covering Problem instance on different

series-parallel graphs. We designed four Covering problem instances for our experiment. The

parameters for the instances of the Covering Problem is given below-

• 1st Instance : client radius = 10, facility opening cost = 15 and penalty = 20.

• 2nd Instance : client radius = 20, facility opening cost = 25 and penalty = 20.

• 3rd Instance : client radius = 30, facility opening cost = 13 and penalty = 22.

• 4th Instance : client radius = 40, facility opening cost = 10 and penalty = 17.

In these instances the client radius sets up a covering range for the clients. This covering range

determines an average size of the neighborhood set of a vertex. We started with a small radius in

the first instance then gradually increased it in the other instances to check the performance of our

algorithms with a large neighborhood set. As for the different facility opening cost and penalty,

we at first ran experiments with several random opening and penalty cost on smaller graphs. From

those experiments we chose four sets of opening and penalty costs to be included in our instances.

Table 4.3 contains runtime data for solving the 1st instance described above by CPLEX, Hybrid and

Hybrid_with_bb on six series-parallel graphs of treewidth 2. The first four columns contains the

graph data (number of vertices |V | and number of edges |E|) and Tree Decomposition data (num-

ber of Tree Decomposition Nodes |N| and number of Tree Decomposition Edges |E|). The fifth

column Runtime for CPLEX(s) includes the average runtime (in seconds) data for CPLEX on each

graphs. This runtime data is computed after subtracting the runtime to compute the shortest path

67

Table 4.3: Runtime Comparison among CPLEX, Hybrid Program and Hybrid with BB(Branch and
Bound) for a Covering problem Instance where radius = 10, facility opening cost = 15 and penalty
= 20

Graph Tree D
Runtime

for CPLEX(s)
Subprob

Size
Num of Dyn

node
Runtime

for Hybrid(s)
Runtime for

Hybrid with BB(s)

|V| | |E| | |N| | |E| |

516 582 514 513 0.421

75 70 9.986 8.983
150 33 4.90 4.55
200 13 2.651 2.531
250 4 1.74 1.679
300 1 1.006 0.979

1149 1323 1146 1145 0.864

200 226 36.794 32.449
400 104 19.68 17.44
600 3 3.042 3.183
700 1 2.377 2.299

2004 2283 2002 2001 1.901

500 206 46.18 37.5
800 108 26.53 21.915
1000 52 14.451 11.852
1200 4 3.357 2.984
1500 1 2.655 2.637

3330 3810 3328 3327 4.657

1000 397 129.44 99.904
1200 281 92.741 72.192
1500 112 40.605 32.373
2000 1 4.796 4.561

5254 6008 5252 5251 14.138

2000 376 241.095 183.878
2500 76 65.44 52.513
2800 1 14.16 12.854
3000 1 14.38 12.878

8752 10004 8749 8748 38.657

2500 264 387.061 316.055
3500 199 320.551 272.002
5000 199 322.156 271.796
6500 1 35.192 35.995

matrix from the total running time. The sixth column Subproblem Size contains the sizes of various

subproblems. Each subproblem size indicates a number which defines the size of the subproblems

that are to be solved by CPLEX in the Hybrid and Hybrid_with_bb algorithm. For each graphs

we experimented with different sizes. The seventh column Num of Dyn Node contains the data of

number of Tree Decomposition nodes processed by the dynamic program while running the Hybrid

and Hybrid_with_bb program. The eighth and ninth column Runtime for Hybrid(s) and Runtime

for Hybrid_with_bb(s) contains the average runtime(in seconds) for the algorithms Hybrid and Hy-

brid_with_bb. These runtimes are computed after subtracting the runtime to compute the shortest

path matrix from the total running time. Table 4.5, 4.7, 4.9 contains similar data for 2nd , 3rd and 4th

instances.

68

Table 4.4 contains the permutation data for solving the 1st instance of the Covering Problem for the

algorithm Hybrid and Hybrid_with_bb. The first four columns contains the graph data (number of

vertices |V | and number of edges |E|) and Tree Decomposition data (number of Tree Decomposi-

tion Nodes |N| and number of Tree Decomposition Edges |E|). The fifth column Subproblem Size

contains the same data of the column Subproblem Size in Table 4.3. The sixth, seventh and eighth

column are the subcolumns of Perm data for Hybrid gathers the permutation data for the Hybrid

algorithm. The sixth column Total Perm indicates the total number of permutations (cost functions)

generated for that specific subproblem size. The seventh column After Pruning denotes the number

of permutations or cost functions processed by the algorithm that is the number of permutations

that are not pruned. The eighth column Total pruned perm is the number of permutations pruned

by the pruning Heuristic in the Hybrid algorithm. Columns nine to thirteen are the subcolumns of

Perm data for Hybrid_bb which describes the permutation data for the algorithm Hybrid_with_bb.

The ninth and tenth column Total Perm and After pruning contains similar data as in for the Hybrid

program. The eleventh column Pruned by Pruning Heuristic contains the number of permutations

pruned by the pruning heuristic alone. The next column Pruned by BB contains the number of per-

mutations pruned by the Branch and Bound technique. The Total pruned perm column contains the

sum of the earlier two columns. Table 4.6, 4.8 and 4.10 contains similar data for 2nd , 3rd and 4th

instances of the Covering Problem.

Figure 4.1 shows the runtime comparison among CPLEX, Hybrid and Hybrid_with_bb. In case

of Hybrid and Hybrid_with_bb, for each graph we took the best case running time among all the

experiments for different subproblem sizes and plotted them against the number of vertices. The

best case for Hybrid and Hybrid_with_bb algorithm always occurs when the dynamic program part

needs to solve only one Tree Decomposition node (the root). Figure 4.3, 4.5 and 4.7 shows similar

comparisons for different instances (2nd , 3rd and 4th) of the Covering problem. Each curves in these

graphs are polynomial in nature as for series parallel graph the runtime O(nk+2) becomes polyno-

mial as k (treewidth) is no more than 2.

69

Figure 4.2 shows the number of permutations comparison between Hybrid and Hybrid_with_bb.

For each graph we took the sum of the Total pruned perm for that graph and plotted these number

against the number of vertices. Figure 4.4, 4.6, 4.8 shows similar permutations comparison between

Hybrid and Hybrid_with_bb for other instances(2nd , 3rd and 4th) of the Covering Problem.

In the following, the rest of the data tables along with their comparison graphs are shown sequen-

tially. We will discuss the evaluation of these data in the analysis section.

Table 4.4: Permutations comparison between Hybrid Program and Hybrid with BB(Branch and
Bound) for a Covering problem Instance where radius = 10, facility opening cost = 15 and penalty
= 20

Graph Tree D Subprob
Size

Perm data for Hybrid Perm data for Hybrid_BB

|V| | |E| | |N| | |E| |
Total
perm |

After
pruning |

Total
pruned
perm

|
Total
perm |

After
pruning |

Pruned
by

Pruning
Heuristic

|
Pruned

by
BB

|
Total

pruned
perm

516 582 514 513

75 3774 3705 69 1688 763 41 884 925
150 1715 1694 21 751 308 10 433 443
200 766 753 13 352 139 8 205 213
250 394 390 4 193 76 0 117 117
300 99 95 4 64 20 0 44 44

1149 1323 1146 1145

200 11529 11154 375 5263 2397 158 2708 2866
400 5976 5719 257 2794 1285 112 1397 1509
600 442 305 137 265 139 7 119 126
700 236 226 10 153 90 10 53 63

2004 2283 2002 2001

500 8392 8210 182 3624 1459 82 2083 2165
800 4697 4577 120 2006 813 57 1136 1193
1000 2456 2381 75 1039 438 28 573 601
1200 825 200 200 0 68 21 47 47
1500 56 56 0 29 9 0 20 20

3330 3810 3328 3327

1000 17346 16948 398 7668 3323 136 4209 4345
1200 12012 11751 261 5313 2292 109 2912 3021
1500 4728 4630 98 2079 917 38 1124 1162
2000 48 48 0 25 6 0 19 19

5254 6008 5252 5251

2000 16352 15999 353 7160 2954 143 4063 4206
2500 3528 3431 97 1509 603 37 869 906
2800 80 80 0 37 11 0 26 26
3000 96 96 0 37 11 0 26 26

8752 10004 8749 8748

2500 11698 11464 234 5196 2237 143 2816 2959
3500 8540 8377 163 3790 1619 97 2074 2171
5000 8558 8395 163 3790 1619 97 2074 2171
6500 75 75 0 47 15 0 32 32

70

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
u
n

ti
m

e
(i
n

 S
e
c
)

Vertices

CPLEX
Hybrid

Hybrid_with_bb

Figure 4.1: Runtime Comparison among CPLEX, Hybrid and Hybrid_with_bb for client radius =
10, facility opening cost =15 penalty =20

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
o
ta

l
P

ru
n
n
e
d
 P

e
rm

u
ta

ti
o
n
s

Vertices

Hybrid
Hybrid_with_bb

Figure 4.2: Permutation Comparison between Hybrid and Hybrid_with_bb for client radius = 10,
facility opening cost =15 penalty =20

71

Table 4.5: Runtime Comparison among CPLEX, Hybrid Program and Hybrid with BB(Branch and
Bound) for a Covering problem Instance where radius = 20, facility opening cost = 25 and penalty
= 20

Graph Tree D
Runtime

for CPLEX(s)
Subprob

Size
Num of Dyn

node
Runtime

for Hybrid(s)
Runtime for

Hybrid with BB(s)

|V| | |E| | |N| | |E| |

516 582 514 513 0.427

75 70 15.337 14.247
150 33 7.061 6.737
200 13 3.873 3.815
250 4 2.85 2.689
300 1 1.405 1.465

1149 1323 1146 1145 0.862

200 226 55.95 52.491
400 104 53.265 48.393
600 3 6.138 4.595
700 1 3.854 3.102

2004 2283 2002 2001 1.932

500 206 57.785 50.731
800 108 35.211 31.027
1000 52 19.35 17.306
1200 4 4.087 3.891
1500 1 3.25 3.01

3330 3810 3328 3327 4.707

1000 397 183.601 155.026
1200 281 131.72 110.917
1500 112 54.611 45.2
2000 1 5.109 5.526

5254 6008 5252 5251 12.757

2000 376 271.307 221.443
2500 76 72.2 58.791
2800 1 12.4 11.533
3000 1 12.474 11.631

8752 10004 8749 8748 39.761

2500 264 492.921 416.445
3500 199 382.823 331.911
5000 199 380.48 343.832
6500 1 35.92 38.6

72

Table 4.6: Number of Permutations comparison between Hybrid Program and Hybrid with
BB(Branch and Bound) for a Covering problem Instance where radius = 20, facility opening cost =
25 and penalty = 20

Graph Tree D Subprob
Size

Perm data for Hybrid(s) Perm data for Hybrid_BB(s)

|V| | |E| | |N| | |E| |
Total
perm |

After
pruning |

Total
pruned
perm

|
Total
perm |

After
pruning |

Pruned
by

Pruning
Heuristic

|
Pruned

by
BB

|
Total

pruned
perm

516 582 514 513

75 6914 6529 385 4247 2944 307 996 1303
150 2843 2742 101 1683 1103 82 498 580
200 1287 1254 33 781 491 29 261 290
250 650 635 15 362 204 7 151 158
300 145 135 10 109 40 7 62 69

1149 1323 1146 1145

200 19508 18386 1122 11387 7569 840 2978 3818
400 11377 10574 803 6756 4591 620 1545 2165
600 1146 1060 86 473 323 52 98 150
700 469 415 54 207 105 42 60 102

2004 2283 2002 2001

500 14196 13468 728 8177 5157 561 2459 3020
800 8781 8246 535 5065 3254 401 1410 1811
1000 4914 4576 338 2913 1947 265 701 966
1200 471 437 34 275 185 13 77 90
1500 151 133 18 98 45 12 41 53

3330 3810 3328 3327

1000 31885 29971 1914 18791 12632 1412 4747 6159
1200 22241 20913 1328 13003 8688 971 3344 4315
1500 8285 7752 533 4414 2746 369 1299 1668
2000 48 48 0 80 34 12 34 46

5254 6008 5252 5251

2000 25133 23934 1199 14173 8895 887 4391 5278
2500 5748 5371 377 2932 1698 246 988 1234
2800 105 105 0 44 11 0 33 33
3000 105 105 0 44 11 0 33 33

8752 10004 8749 8748

2500 20108 19255 853 11294 7451 691 3152 3843
3500 14575 13995 580 8171 5267 474 2430 2904
5000 14553 13973 580 8171 5267 474 2430 2904
6500 107 107 0 86 52 0 34 34

73

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
u

n
ti
m

e
 (

in
 S

e
c
)

Vertices

CPLEX
Hybrid

Hybrid_with_bb

Figure 4.3: Runtime Comparison among CPLEX, Hybrid and Hybrid_with_bb for client radius =
20, facility opening cost =25 penalty =20

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
o
ta

l
P

ru
n
n
e
d
 P

e
rm

u
ta

ti
o
n
s

Vertices

Hybrid
Hybrid_with_bb

Figure 4.4: Permutation Comparison between Hybrid and Hybrid_with_bb for client radius = 20,
facility opening cost =25 penalty =20

74

Table 4.7: Runtime Comparison among CPLEX, Hybrid Program and Hybrid with BB(Branch and
Bound) for a Covering problem Instance where radius = 30, facility opening cost = 13 and penalty
= 22

Graph Tree D
Runtime

for CPLEX(s)
Subprob

Size
Num of Dyn

node
Runtime

for Hybrid(s)
Runtime for

Hybrid with BB(s)

|V| | |E| | |N| | |E| |

516 582 514 513 0.437

75 70 22.715 21.337
150 33 11.14 10.624
200 13 6.51 6.28
250 4 4.03 4.356
300 1 1.98 2.212

1149 1323 1146 1145 0.879

200 226 81.361 72.045
400 104 45.356 40.223
600 3 9.828 9.203
700 1 7.18 6.958

2004 2283 2002 2001 1.967

500 206 92.521 77.875
800 108 52.585 46.851
1000 52 33.286 28.551
1200 4 5.74 5.318
1500 1 3.822 3.645

3330 3810 3328 3327 4.704

1000 397 304.47 291.832
1200 281 214.729 163.003
1500 112 90.18 71.13
2000 1 7.925 8.164

5254 6008 5252 5251 13.109

2000 376 410.311 310.747
2500 76 104.99 83.929
2800 1 16.497 15.239
3000 1 16.177 15.24

8752 10004 8749 8748 39.761

2500 264 684.553 522.308
3500 199 511.696 410.243
5000 199 512.005 409.463
6500 1 36.431 42.556

75

Table 4.8: Number of Permutations comparison between Hybrid Program and Hybrid with
BB(Branch and Bound) for a Covering problem Instance where radius = 30, facility opening cost =
13 and penalty = 22

Graph Tree D Subprob
Size

Perm data for Hybrid(s) Perm data for Hybrid_BB(s)

|V| | |E| | |N| | |E| |
Total
perm |

After
pruning |

Total
pruned
perm

|
Total
perm |

After
pruning |

Pruned
by

Pruning
Heuristic

|
Pruned

by
BB

|
Total

pruned
perm

516 582 514 513

75 12310 11322 988 7064 4651 645 1768 2413
150 5194 4832 362 3001 1866 228 907 1135
200 2271 2075 197 1466 886 144 436 580
250 888 830 58 771 424 91 256 347
300 225 207 18 230 85 27 118 145

1149 1323 1146 1145

200 31882 29136 2746 15960 8931 1613 5416 7029
400 18626 16766 1860 9058 4991 1142 2925 4067
600 1996 1765 231 1024 452 192 380 572
700 1240 1087 153 690 257 147 286 433

2004 2283 2002 2001

500 25207 23270 1937 12986 7464 1096 4426 5522
800 14627 13442 1185 7664 4469 706 2489 3195
1000 8652 7918 734 4695 2871 453 1371 1824
1200 693 659 34 359 202 23 134 157
1500 252 238 14 129 57 14 58 72

3330 3810 3328 3327

1000 53180 48787 4393 27044 15818 2532 8694 11226
1200 37710 34513 3197 19074 11239 1817 6018 7835
1500 15437 13867 1570 7817 4587 868 2362 3230
2000 119 101 18 127 72 10 45 55

5254 6008 5252 5251

2000 40025 37175 2850 20582 11640 1645 7297 8942
2500 8903 8189 714 4638 2584 477 1577 2054
2800 140 140 0 61 16 0 45 30
3000 125 125 0 61 16 0 45 45

8752 10004 8749 8748

2500 35325 32849 2476 18381 10995 1465 5921 7386
3500 24613 23022 1591 12770 7561 944 4265 5209
5000 24613 23022 1591 12770 7561 944 4265 5209
6500 105 103 2 107 31 0 76 76

76

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
u

n
ti
m

e
 (

in
 S

e
c
)

Vertices

CPLEX
Hybrid

Hybrid_with_bb

Figure 4.5: Runtime Comparison among CPLEX, Hybrid and Hybrid_with_bb for client radius =
30, facility opening cost =13 penalty =22

 0

 5000

 10000

 15000

 20000

 25000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
o
ta

l
P

ru
n
n
e
d
 P

e
rm

u
ta

ti
o
n
s

Vertices

Hybrid
Hybrid_with_bb

Figure 4.6: Permutation Comparison between Hybrid and Hybrid_with_bb for client radius = 30,
facility opening cost =13 penalty =22

77

Table 4.9: Runtime Comparison among CPLEX, Hybrid Program and Hybrid with BB(Branch and
Bound) for a Covering problem Instance where radius = 40, facility opening cost = 10 and penalty
= 17

Graph Tree D
Runtime

for CPLEX(s)
Subprob

Size
Num of Dyn

node
Runtime

for Hybrid(s)
Runtime for

Hybrid with BB(s)

|V| | |E| | |N| | |E| |

516 582 514 513 0.396

75 70 30.931 29.052
150 33 15.61 14.852
200 13 10.002 9.571
250 4 5.795 5.621
300 1 3.11 3.092

1149 1323 1146 1145 1.188

200 226 108.034 94.75
400 104 59.59 55.343
600 3 11.868 10.659
700 1 6.015 5.23

2004 2283 2002 2001 2.277

500 206 125.629 127.295
800 108 74.792 76.894
1000 52 45.022 45.241
1200 4 9.706 9.467
1500 1 6.543 5.911

3330 3810 3328 3327 5.074

1000 397 1571.985 1309.398
1200 281 312.235 290.64
1500 112 139.917 116.194
2000 1 10.444 9.641

5254 6008 5252 5251 13.551

2000 376 612.082 653.461
2500 76 155.037 153.788
2800 1 22.436 20.924
3000 1 19.062 23.162

8752 10004 8749 8748 38.332

2500 264 968.473 758.696
3500 199 717.482 557.497
5000 199 721.238 561.460
6500 1 51.854 56.268

78

Table 4.10: Number of Permutations comparison between Hybrid Program and Hybrid with
BB(Branch and Bound) for a Covering problem Instance where radius = 40, facility opening cost =
10 and penalty = 17

Graph Tree D Subprob
Size

Perm data for Hybrid(s) Perm data for Hybrid_BB(s)

|V| | |E| | |N| | |E| |
Total
perm |

After
pruning |

Total
pruned
perm

|
Total
perm |

After
pruning |

Pruned
by

Pruning
Heuristic

|
Pruned

by
BB

|
Total

pruned
perm

516 582 514 513

75 20314 18202 2112 11456 7631 1341 2484 3825
150 8741 7957 784 5142 3274 493 1375 1868
200 4224 3790 434 2474 1472 271 731 1002
250 1647 1506 141 758 374 54 330 384
300 333 290 43 243 94 18 131 149

1149 1323 1146 1145

200 49702 44250 5452 27655 17572 3447 6636 10083
400 28581 25096 3485 16446 10690 2321 3435 5756
600 1986 1734 252 1166 778 191 197 388
700 735 890 145 369 185 107 77 184

2004 2283 2002 2001

500 41955 37726 4229 41978 37734 4226 18 4244
800 23073 20785 2288 23073 20778 2288 7 2295
1000 13333 11864 1469 13333 11857 1469 7 1476
1200 1025 941 84 1125 1028 94 3 97
1500 368 332 36 452 403 46 3 49

3330 3810 3328 3327

1000 92888 83256 9631 47405 28933 5727 12745 18472
1200 67861 60592 7269 35123 21814 4353 8956 13309
1500 29563 25920 3643 15451 9336 2132 3983 6115
2000 212 174 38 119 50 12 57 69

5254 6008 5252 5251

2000 69591 62546 7045 69090 61791 6909 390 7299
2500 16053 14260 1793 15773 13994 1678 101 1779
2800 125 125 0 155 155 0 0 0
3000 110 110 0 155 155 0 0 0

8752 10004 8749 8748

2500 61936 56419 5517 30109 18083 3239 8787 12026
3500 42456 39892 2564 21768 13535 2195 6038 8233
5000 43456 39892 3564 21708 13535 2195 6038 8233
6500 360 349 11 235 49 8 178 186

79

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
u

n
ti
m

e
 (

in
 S

e
c
)

Vertices

CPLEX
Hybrid

Hybrid_with_bb

Figure 4.7: Runtime Comparison among CPLEX, Hybrid and Hybrid_with_bb for client radius =
40, facility opening cost =10 penalty =17

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
o
ta

l
P

ru
n
n
e
d
 P

e
rm

u
ta

ti
o
n
s

Vertices

Hybrid
Hybrid_with_bb

Figure 4.8: Permutation Comparison between Hybrid and Hybrid_with_bb for client radius = 40,
facility opening cost =10 penalty =17

80

4.3 Analysis

In this section we will analyze the results described in the earlier data tables. In the following, we

will discuss our findings after observing the data.

• As described in Chapter 3, if the treewidth of the Tree Decomposition is k, then for each

Tree Decomposition node, there will be nk+1 number of cost functions (permutations). Dur-

ing the initial phase of the development, our algorithm used to generate and store a huge

number of cost functions (before pruning) in accordance with the theoretical estimation nk+1

to solve a Covering Problem instance. After employing the techniques discussed in sec-

tion 3.2.2 (Reduction of cost functions based on Covering Neighborhood) and in section 3.4.7

(Bounding the Assignment Function), we were able to decrease greatly the number of gen-

erated cost functions (permutations) even before pruning. For example, for a series-parallel

graph (treewidth k = 2) of 516 nodes and 582 edges, according to our theoretical estima-

tion, in the worst case, for a single node, the number of cost functions generated can be 5163

= 137388096. In table 4.3 and 4.4, for the same graph of 516 nodes and 582 edges, for a

subproblem size of 75 (where the number of nodes processed by the dynamic program is

70) the total number of permutations generated by the Hybrid program is 3774 (for a Cover-

ing Problem instance where client radius = 10, facility opening cost = 15 and penalty = 20)

which indicates a considerable amount of decrease in the generation of permutations (before

pruning). For all the other experiments, the techniques discussed in section 3.2.2 and 3.4.7

greatly reduces the total number of cost functions or permutations(before pruning).

• After scrutinizing the table, we found a relation between the runtime of the programs (both

Hybrid and Hybrid_with_bb) and the total number of generated permutations (before prun-

ing) to the client radius. As the client radius increases, so as the total number of generated

permutations (as well as the total number of processed permutations) which leads to a longer

runtime. This is because as the client radius increases, so as the Covering Neighborhood of

a Tree Decomposition node (described in section 3.2.2). As the cost function generator for

81

each node depends on the size of the Covering Neighborhood of that node, the larger the set

of the Covering Neighborhood, the larger is the number of total permutations. As an exam-

ple, In Figure 4.9, we plotted the data for the series-parallel graph with 3330 nodes and 3810

edges with different client radius (10,20,30,40) against the Hybrid runtime for subproblem

size 2000 (from Table 4.1, 4.3, 4.5, 4.7). In Figure 4.10, we plotted the permutation data for

subproblem size 1000 of the graph with nodes 3330 and edges 3810 (from Table 4.2, 4.4, 4.6,

4.8). In both the Figures, it is clear that the runtime and the number of permutations for this

graph(with their respective size) increases with the client radius. This trend follow for both

Hybrid and Hybrid_with_bb program with different graphs with different subproblem sizes.

 4

 5

 6

 7

 8

 9

 10

 11

 10 15 20 25 30 35 40

H
y
b
ri
d

 R
u
n

ti
m

e
 (

fo
r

s
u
b
p
ro

b
le

m
 s

iz
e
 2

0
0
0
)

Client Radius

Hybrid

Figure 4.9: Client Radius Vs Runtime data of the Hybrid program for the graph with 3330 nodes
with subproblem size 2000

82

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 10 15 20 25 30 35 40

T
o
ta

l
n

u
m

b
e
r

o
f

P
e
rm

u
ta

ti
o

n
s
 (

fo
r

s
u
b

p
ro

b
le

m
 s

iz
e
 1

0
0

0
)

Client Radius

Hybrid

Figure 4.10: Client Radius Vs Total number of permutations of Hybrid Program for the graph with
3330 nodes with subproblem size 2000

• In case of smaller graphs (graphs with nodes 516, 1149, 2004, 3330) if we compare the

running time between CPLEX, Hybrid and Hybrid_with_bb, then CPLEX beats both the

program comfortably for all the Covering Problem Instances. But on larger graphs (graphs

with nodes 5254, 8752) with smaller client radius (10,20) either Hybrid or Hybrid_with_bb

beats CPLEX in terms of running time. This occurs whenever the subproblem size reaches the

amount for which the dynamic program part of Hybrid and Hybrid_with_bb needs to process

only one Tree Decomposition node (the root of the Tree Decomposition). This confirms

that dynamic programming is very expensive when applied to an entire problem space (with

respect to Covering Problem), but can be effective if it can be restricted to a subset of the

problem space given that the rest was solved by a quick heuristic algorithm. This also leads

us to the notion of partial Tree Decomposition and other future research interests which will

be discussed in the conclusion chapter.

83

• After studying the number of total pruned permutation for the Hybrid and Hybrid_with_bb

program, it is apparent that the program Hybrid_with_bb (equipped with the branch and

bound technique) is pruning the generated permutations far more than the Hybrid program

with branch and bound technique being the main contributor. The reason the branch and

bound technique is so successful than the pruning heuristic is for series-parallel graphs the

integrality gap between the integer and relaxed version of the Covering Problem is very small

(≈ 0). So, the bounds generated by solving the relaxed subproblems in Hybrid_with_bb is

very tight. As a result more number of cost functions are pruned by the branch and bound

technique. Also, we noticed that the total number of generated permutations differs between

the programs Hybrid and Hybrid_with_bb. This is because of the process that we used to

mimic Nice Tree Decomposition. For example, given a original Tree Decomposition leaf

node l with the size of the vertex set more than one, we pick a random vertex and make it the

vertex set for the newly constructed Nice Tree Decomposition leaf node l′. Then we com-

pute the set minus between the vertex set of l and l′ and add them to the vertex set of l′ to

generate the vertex set of a newly constructed Introduce Node. This means while executing

Hybrid and Hybrid_with_bb, the vertex ordering of the Nice Tree Decomposition nodes does

not match. This leads to compute different bounds (as described in 3.4.7) for Hybrid and

Hybrid_with_bb for the same node. As a result of these different bounds, the total number of

permutations generated by Hybrid and Hybrid_with_bb for the same node will differ.

In this Chapter, we have presented the empirical data of the Tree Decomposition experiments and

the Covering Problem experiments. We have compared the performance of different algorithms and

mentioned our findings after evaluating the data. In the Conclusion chapter, we will talk about the

implication of our research with future directions.

84

Chapter 5

Conclusion

In this thesis, we developed a dynamic programming algorithm to solve standard Covering Problem

on a Tree Decomposition of a graph with the intuition that the unique properties of a Tree Decom-

position would facilitate the design of the dynamic program. We developed a bottom up dynamic

programming framework which utilizes the Tree Decomposition to build the solution. But for this

approach to work, the the program needs to generate nk+1 (k = Treewidth) number of cost functions

for each Tree Decomposition node. This leads to a shortage of memory to solve the Covering prob-

lem even on a small graph below 100 nodes.

To counter this problem, we developed few techniques that are added on top of the framework.

These techniques considerably reduces the number of cost function per node. Though after em-

ploying this technique we solved the memory problem to an extent (the program was able to solve

series-parallel graphs with thousands of nodes and edges considerably quickly), but this dynamic

programming algorithm proved to be expensive when compared to other tools like CPLEX for solv-

ing the Covering Problem. CPLEX takes far less time than our dynamic program to solve Covering

Problem on series-parallel graphs.

We then worked on several ideas to even out this difference of running time. One idea we imple-

mented was to use the CONDOR grid (a high throughput system) to develop a parallel algorithm

to solve the Covering Problem where each computer will solve a different subproblem and report

back the solution back to the parent. But for Covering Problem, this technique was proved to be

infeasible because CPLEX was already solving the Covering Problem very fast on series-parallel

graphs. The experiment results from the parallel program didn’t show any significant improvement.

But we believe that this parallel algorithm will be useful for other more difficult facility location

problems.

85

In our next idea, we decided to incorporate the power of CPLEX in our dynamic programming

framework. We call this algorithm the Hybrid algorithm. The CPLEX module was used to solve all

the subproblems (of a certain size) at the bottom part of the Tree Decomposition. After experiment-

ing we got some success in this approach. When the client radius is small and the graph instance is

quite large, then the Hybrid algorithm beats the CPLEX but not by a large margin. We experimented

with two different versions of the Hybrid algorithm, one equipped with the branch and bound tech-

nique (Hybrid_with_bb) and the other version (Hybrid) without the branch and bound technique.

Hybrid_with_bb fares better than Hybrid in smaller graphs but performs similarly in cases of large

graphs. But almost in every case Hybrid_with_bb version prunes more cost functions than the Hy-

brid version. as the branch and bound technique is very useful on series-parallel graphs (integrality

gap ≈ = 0). But the preprocessing step for the Hybrid_with_bb is expensive in terms of running

time as the bounds for each Tree Decomposition node are pre-computed and saved in a file.

In cases where the Hybrid version beats CPLEX, the number of node processed by the dynamic

programming technique is always one (the root of the Tree Decomposition). This shows that the

dynamic program is indeed expensive if it solves the greater part of the Tree Decomposition but can

be effective if it can be restricted to solve a few number of nodes (in our case the root). Though it

beats CPLEX marginally but given the fact that on series-parallel graphs CPLEX is very effective,

this is a success none the less. Moreover this finding will also guide us to our future endeavors.

As solving only the root of Tree Decomposition using Dynamic programming gives the Hybrid

program the edge over CPLEX, it is evident that we don’t require a full Tree Decomposition of a

graph. Instead a partial Tree Decomposition which will contain a few nodes with equally balanced

subproblem size would do the trick. This partial Tree Decomposition will involve finding a small

separator for the input graph where the divided components will be balanced. In this respect, we

can try to find a centroid or a geometric center of a tree decomposition and make it a separator.

Then the divided components will be balanced in size because they are equally distanced from the

center. This separator will work as a root of this construct. We can involve CPLEX or other methods

86

to build solution of the subproblems defined by the components. In this way, after finding a small

separator, we can even handle graphs with larger Treewidth.

Our future plan will include finding and developing efficient methods for finding small size separator

of a graph. We plan to use our current algorithm to solve covering problem on real world wireless

network data to check it’s effectiveness. We can also extend our algorithm for P-median problem (a

facility location problem similar to Covering problem) if the experiments are successful. Also we

would like to apply the parallel programming algorithm on much harder facility location problems

for which we believe the technique will be quite effective.

87

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory algorithms and applica-
tions. 1993.

[2] Anne Berry, Pinar Heggernes, and GeneviÃĺve Simonet. The minimum degree heuristic and
the minimal triangulation process. In Workshop on Graph-Theoretic Concepts in Computer
Science, pages 58–70, 2003.

[3] Jean R.S. Blair, Pinar Heggernes, and Jan Arne Telle. A practical algorithm for making filled
graphs minimal. Theoretical Computer Science, 250(1-2):125 – 141, 2001.

[4] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23, 1993.

[5] Hans L. Bodlaender. Treewidth: Algorithmoc techniques and results. pages 19–36, 1997.

[6] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990.

[7] William Cook and Paul D. Seymour. Tour merging via branch-decomposition. INFORMS
Journal on Computing, 15(3):233–248, 2003.

[8] David Eppstein. Parallel recognition of series-parallel graphs. Inf. Comput., 98:41–55, May
1992.

[9] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. 1965.

[10] F. Gavril. The intersection graphs of subtrees in tree are exactly the chordal graphs. Combi-
natorica, 1974.

[11] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-bfs and partition
refinement, with applications to transitive orientation, interval graph recognition and consecu-
tive ones testing. Theor. Comput. Sci., 234:59–84, March 2000.

[12] Finn V. Jensen, Steffen L. Lauritzen, and Kristian G. Olesen. Bayesian updating in causal
probabilistic networks by local computations. Computational Statistics Quarterly, 4:269–282,
1990.

[13] Jon Kleinberg and Eva Tardos. Algorithm Design.

[14] Antoon Kolen. Solving covering problems and the uncapacitated plant location problem on
trees. European Journal of Operational Research, 12(3):266 – 278, 1983.

[15] Antoon Kolen and Arie Tamir. Covering problems. Discrete location theory, 263-304 (1990).,
1990.

[16] A. M. C. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis, Maastricht
University, 1999.

[17] A.M.C.A. Koster, van Hoesel, S.P.M., and A.W.J. Kolen. Solving frequency assignment prob-
lems via tree-decomposition. Research Memoranda 036, Maastricht University, 1999.

88

[18] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. Van Hoesel. Treewidth: Computa-
tional experiments. Electronic Notes in Discrete Mathematics, 8:54–57, 2001.

[19] Arie M.C.A. Koster, Stan P.M. van Hoesel, and Antoon W.J. Kolen. Lower bounds for mini-
mum interference frequency assignment probems. Open access publications from maastricht
university, Maastricht University, 2000.

[20] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):pp. 497–520, 1960.

[21] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society.
Series B (Methodological), 50(2):pp. 157–224, 1988.

[22] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10, 1927.

[23] A. B. Murdasov. A simple algorithm for finding the center of a tree. Cybernetics and Systems
Analysis, 12:157–158, 1976. 10.1007/BF01070358.

[24] S. Parter. The use of linear graphs in gauss elimination. Siam Review, 3, 1961.

[25] Neil Robertson and P. D. Seymour. Graph minors: X. obstructions to tree-decomposition. J.
Comb. Theory Ser. B, 52:153–190, June 1991.

[26] Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory,
Ser. B, 35:39–61, 1983.

[27] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. J.
Algorithms, 7:309–322, 1986.

[28] Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. J. Comb.
Theory, Ser. B, 63:65–110, 1995.

[29] Arie Tamir. An o(pn2) algorithm for the p-median and related problems on tree graphs. Oper-
ations Research Letters, 19(2):59 – 64, 1996.

[30] Dallas Thomas. Algorithms & experiments for the protein chain lattice fitting problem. 2006.

[31] Abraham Michiel Verweij. Selected Applications of Integer Programming: A Computational
Study. PhD thesis, Utrecht University, Utrecht, The Netherlands, 2000.

89

