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Abstract

In this thesis, we investigate three topics belonging to the probabilistic, classical and mod-

ern branches of analytic number theory.

Our first result concerns the probabilistic distribution of squares modulo a composite

number, and of tuples of reduced residues, in short intervals. We obtain variance upper

bounds generalizing those of Montgomery and Vaughan, as well as new lower bounds.

Our second work, joint with Nathan Ng, concerns the estimation of discrete mean values

of Dirichlet polynomials, where summation is over the zeros of an L-function attached to

an automorphic representation. Conditionally on strong bounds on autocorrelations of the

coefficients of L-functions, a corollary of our results is that the gaps between consecutive

zeros of the Riemann zeta function are infinitely often smaller than half of the average gap.

Our last work concerns the additive and quadratic divisor problem. We study shifted

convolution sums for the divisor function, Fourier coefficients of a cusp form and the rep-

resentation function of integers as sums of two squares. For convolution sums of a cer-

tain type, we improve several estimates available in the literature, by expanding the delta-

method of Duke, Friedlander and Iwaniec. Also by using a smooth variant of Dirichlet

hyperbola method, we improve the error term obtained by Duke, Friedlander and Iwaniec

in the quadratic divisor problem.
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Chapter 1

Introduction

This thesis consists of three main parts, which are related to the following branches of

number theory.

1. Probabilistic number theory.

2. Classical analytic number theory.

3. Modern analytic number theory.

Here we will give a brief introduction to each of these branches and I will mention how my

PhD thesis is connected to them.

1.1 Probabilistic number theory

Probabilistic number theory studies the probability distribution of arithmetic objects.

Frequently the object under consideration is a sequence or points on certain curve that has

arithmetic significance. Sequences such as prime numbers, Fourier coefficients of modular

forms, and Heegner points on a modular curves have been extensively studied. Before giv-

ing some examples we review some basic facts from probability.

We call the triple (Ω,F ,P ) a probability space when Ω is the set of possible outcomes,

F is a sigma-algebra on Ω and P is a measure on F such that P (Ω) = 1. A random vari-

able X is a measurable function defined on Ω. We now define the following probabilistic

objects.
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1.1. PROBABILISTIC

1. Expectation of X :

E(X ) :=
∫

Ω

X dP . (1.1)

2. Variance of X :

Var(X ) :=
∫

Ω

(X −E(X ))2dP . (1.2)

3. Distribution of a random variable: We say that fden(x) is the probability density func-

tion for the random variable X , and we identify the distribution of X with fden(x),

if

P (a≤ X ≤ b) =
∫ b

a
fden(x)dx. (1.3)

In studying a sequence one of the first questions that comes to mind concerns the average

of the sequence on an interval. More precisely, let f (n) be a sequence and [a,b] an interval.

Let

f [a,b] :=
∑a≤n≤b f (n)

b−a
(1.4)

denote the average of f on the interval [a,b]. For example if we set f (n) = 1P(n) to be the

characteristic function of the primes, then 1P[1,x] can be considered as the “probability” of a

random integer in the interval [1,x] being prime. Studying asymptotic estimates of 1P[1,x] was

one of the main problems that started classical analytic number theory. Gauss conjectured

that the “probability” of a random integer smaller than x being prime is (logx)−1. i.e.

1P[1,x] ∼
1

logx
. (1.5)

However he could not prove this result. The first major result toward a proof of Gauss’s

conjecture was obtained by Chebyshev. He proved that

0.92129
logx

< 1P[1,x] <
1.10555

logx
.
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1.1. PROBABILISTIC

Finally, the conjecture of Gauss was proved by Hadamard and de la Vallée-Poussin in 1896.

After finding an average of a sequence the next question that comes to mind concerns

how this sequence is distributed around the average. To study this we use the variance of

the sequence. Assume that we are looking at the distribution of f in the interval [1,x] and

consider the following sum:

1
x ∑

m≤x

(
∑

n∈[m,m+h]
f (n)− f [1,x]h

)2k
. (1.6)

Evaluating the above when k = 1 gives the variance of the distribution. When we speak

of the higher moments of the distribution of f we refer to the above with k > 1. Finding

an upper bound for the variance when f is the characteristic function of the primes would

prove the strong statement

∑
pn<x

(pn+1− pn)
2� x(logx)3+ε (1.7)

on average gaps between primes. However proving such a bound unconditionally seems

very deep and out of reach of current methods. This difficulty led Erdős to propose a

similar conjecture for the average gaps between the reduced residues. The set of reduced

residues modulo an integer q is

{1≤ n≤ q | (n,q) = 1}= {1 = a1 < .. . < aφ(n) = q−1}. (1.8)

We will denote the characteristic function of reduced residues modulo q with kq(n). Erdős

conjectured that
φ(q)

∑
i=1

(ai+1−ai)
2� q2/φ(q),

where φ(.) is the Euler totient function.

Erdős’ conjecture was settled by Montgomery and Vaughan, who gave an optimal estimate

3



1.1. PROBABILISTIC

for all moments of the distribution of reduced residues.

Theorem 1.1 (Montgomery and Vaughan [60]). Let k be a fixed natural number. Then

q−1

∑
n=0

(
h

∑
m=1

kq(n+m)−h
φ(q)

q

)k

� q(h
φ(q)

q
)k/2 +hφ(q).

In the author’s master’s thesis [3], motivated by prime s-tuples conjecture, we studied

the distribution of s-tuples of reduced residues. Let D = {h1,h2, · · · ,hs} and νp(D) be the

number of distinct elements in D mod p. We call D admissible if νp(D)< p for all primes

p. Before defining s-tuples of reduced residues we state the prime s-tuples conjecture.

Conjecture 1.2. There exist infinitely many numbers m such that for all h ∈D, m+h is a

prime number.

This conjecture is challenging and even the case s = 2 is unsolved at the moment.

Prime numbers m + hi for 1 ≤ i ≤ s are called a s-tuples of primes. Similarly, we call

a+ h1, . . . ,a+ hs an s-tuple of reduced residues if they are each coprime with q. In the

author’s master’s thesis, by obtaining an upper bound on the moments of the distribution of

s-tuples of reduced residues, we proved the analogue of Erdős’ conjecture for s-tuples of

reduced residues. However the upper bounds obtained on the moments of the distribution

of reduced residues were not optimal. In this thesis we will give an optimal upper bound.

Squares form another interesting sequence, which has been the subject of much study.

Obviously when we consider {s2} in Z the sequence is far from evenly distributed. How-

ever this changes when one reduces squares modulo an integer. A number s is called a

square modulo a prime p if it is a reduced residue of a square in Z. We call an integer a

square modulo a square free number q if it is a square modulo each prime factor of q. In this

thesis we will study the variance of the distribution of squares modulo a square free com-

posite number q. We will obtain bounds on the variance that are very close to the optimal

bound.

4



1.2. CLASSICAL

Theorem 1.3 (Aryan). Let h� 2ω(q) be a natural number and Xh(n) = #{s ∈ [n,n+ h] :

s is a � modulo q}, be a random variable. We have

Var(Xh)≤ E(Xh)
1+ε.

From this theorem we deduce the following result concerning consecutive squares mod-

ulo q.

Corollary 1.4. Let si be the squares modulo q in increasing order. Then

1
q ∑

si<q
(si+1− si)

2� 2ω(q)P(logq)∏
p|q

(
1+

1
√

p

)
.

We finish this part by stating a famous result about another interesting arithmetic se-

quence. Let ω(n) denote the number of prime divisors of n. The average of ω in the

interval [1,x] is about log logx. One of the celebrated results in probabilistic number theory,

due to Erdős and Kac, gives the distribution of ω.

Theorem 1.5 (Erdős-Kac). For any positive integer n and any real number a,b we have

lim
x−→∞

1
x

∣∣∣∣{1≤ n≤ x | a≤ ω(n)− log logn√
log logn

≤ b
}∣∣∣∣= 1√

2π

∫ b

a
e−x2/2dx. (1.9)

1.2 Classical Analytic Number Theory

Classical analytic number theory started by Euler, Dirichlet and Riemann. Consider the

Riemann zeta function defined for ℜ(s)> 1 by

ζ(s) =
∞

∑
n=1

1
ns . (1.10)

The zeta function has an Euler product

ζ(s) = ∏
p

(
1− 1

ps

)−1
, (1.11)

5



1.2. CLASSICAL

on ℜ(s) > 1 and an analytic continuation to the whole complex plane with a simple pole

of residue 1 at s = 1. Using the Euler product of the zeta function, Euler showed that

there exist infinitely many prime numbers. Riemann, in his only paper in Number Theory,

showed that there exists a close connection between the zeros of the zeta function and the

distribution of prime numbers. In fact from his work one can show that to prove (1.5) it is

enough to show that ζ(s) 6= 0 for ℜ(s) = 1. One of the important parts of his paper was the

functional equation he found for the zeta function.

Functional Equation for the Riemann zeta function. Let Γ(s) denote the Gamma func-

tion. Then

ζ(s) = 2s
π

s−1 sin
(πs

2
)
Γ(1− s)ζ(1− s). (1.12)

Note that the above functional equation says that ζ(s) = 0 when s is equal to a negative even

integer. These zeros are known as the trivial zeros of the Riemann zeta function. Also, the

functional equation shows a symmetry between the values of the zeta function with respect

to the line ℜ(s) = 1/2. Perhaps this was one of the reasons Riemann made a conjecture

about the location of the zeros of the zeta function.

The Riemann hypothesis. All the non-trivial zeros of the Riemann zeta function are lo-

cated on the line

ℜ(s) = 1
2 .

The Riemann hypothesis is known as the most famous unsolved problem in mathematics.

The connection with the distribution of prime numbers comes from the Riemann’s Explicit

Formula. Let

Λ(n) =


log p if n = pk,

0 otherwise.

6



1.2. CLASSICAL

We have that

ψ(x) := ∑
n≤x

Λ(n) = x+ ∑
ζ(ρ)=0

xρ

ρ
+O(1). (1.13)

Now if we assume the Riemann hypothesis we have that all the zeros of ζ are of the form

1/2+ itρ, and therefore we can get

ψ(x) = x+O(x1/2+ε). (1.14)

Note that the prime number theorem, (1.5), is equivalent to a much weaker estimate:

ψ(x) = x+o(x). (1.15)

Although Riemann did not prove the prime number theorem, his paper had a profound im-

pact on number theory. Another important contribution to this field was made by Dirichlet.

He proved that there exist infinitely many prime numbers in an arithmetic progression(i.e.

of the form an+ b where (a,b) = 1). Dirichlet’s method was based on the properties of

Dirichlet L-functions. Let χ(.) be a completely multiplicative function from Z/qZ to C.

We define the Dirichlet L-function associated to χ for ℜ(s)> 1 by

L(s,χ) :=
∞

∑
n=1

χ(n)
ns . (1.16)

The main ingredient of his proof was the assertion L(1,χ) 6= 0. After Dirichlet, a major

development came with the proof of the prime number theorem by Hadamard and de la

Vallée-Poussin. They showed that ζ(s) 6= 0 for ℜ(s) = 1. To this day there have been only

minor improvements of their result, which shows that improving the error term in the prime

number theorem is a very hard problem.

Another major development was made by Montgomery while he was working on the

distribution of the zeros of the Riemann zeta function. Let γi denote the zeros of the Rie-

7



1.2. CLASSICAL

mann zeta function on the critical line. Montgomery’s work suggest that, assuming the Rie-

mann hypothesis, the distribution of the zeros of the zeta function has a certain statistical

property. It has been pointed out to him by physicist Freeman Dyson that the distribution

he found is the same as the pair correlation distribution for the eigenvalues of a random

Hermitian matrix.

Conjecture 1.6 (Montgomery’s Pair Correlation Conjecture). For a fixed interval (a,b) we

have

lim
T→∞

∣∣{(γ,γ′)| logT
2π

(γ− γ′) ∈ (a,b)}
∣∣

T
2π

logT
=

∫ b

a

(
1− sin(πu)

πu

)
du (1.17)

where γ,γ′ denote the imaginary parts of the zeros of the zeta function on the critical line.

By the zero counting function we know that the zeta function has about T logT/2π zeros

in the critical strip with imaginary part between 0 and T. This tells us that the average gap

between the zeros of the zeta function is about 2π/ logT. Montgomery’s Pair Correlation

Conjecture implies that we can find infinitely many tuples of zeros (γ,γ′) such that |γ−γ′|<

c2π/ logT, for every c > 0. From his work on the pair correlation Montgomery was able to

deduce that c < 0.68. Many authors improved 0.68 to a number slightly bigger than 0.51.

It seems very challenging to prove unconditionally that one can take c < 0.5. In this thesis

by assuming conjectures on the shifted convolution sums of Liouville’s function, we show

that c < 0.4999.

Theorem 1.7 (Aryan and Ng). Assume the Riemann hypothesis, and Chowla’s conjectures

((3.33) and (3.34)) on the shifted convolution sums of the Liouville’s function. Then there

exist infinitely many tuples (1
2 + iγ, 1

2 + iγ′) of zeros of the Riemann zeta function with

|γ− γ
′|< 0.4999

2π

logT
.

To explain our work let us first state Montgomery and Vaughan’s mean value theorem

for Dirichlet polynomials

8



1.3. MODERN

Theorem 1.8 ( Montgomery and Vaughan). Let {a(n)} and {b(n)} be two sequences of

complex numbers. For any real number T > 0, we have

∫ T

0

(
∞

∑
n=1

a(n)n−it
)(

∞

∑
n=1

b(n)nit
)

dt (1.18)

=
∞

∑
n=1

a(n)b(n)+O
(( ∞

∑
n=1

na(n)
)1

2
( ∞

∑
n=1

nb(n)
)1

2
))

.

Note that if {a(n)} and {b(n)} are supported on an interval of length o(T ) then (1.18)

become an asymptotic. Goldston and Gonek [28] considered this theorem for Dirichlet

polynomials of arbitrary length. Their work shows that when support of {a(n)} and {b(n)}

are in intervals with length larger than T then it is crucial to consider the shifted convolution

sums of a(n) and b(n). In other words to get a result in this case we need an estimate on

∑
n<x

a(n)b(n+h).

In our work we considered a discrete version of the above theorem. More precisely we

studied

∑
L(ρ)=0

ω(ρ)A(ρ)B(1−ρ) (1.19)

where L(s) is an L-function, ω(s) is an entire weight and

A(s) =
∞

∑
n≤N

a(n)n−s and B(s) =
∞

∑
n≤M

b(n)n−s.

We derived a formula for (1.19) in terms of shifted convolution sums involving a(n), b(n),

and ΛL(n), where ΛL(n) is defined by

L′

L
(s) =−

∞

∑
n=1

ΛL(n)
ns .

For the application to the small gaps between the zeros of the Riemann zeta function we

used the choice a(n) = b(n) = λ(n), where λ(n) is Liouville’s function.

9



1.3. MODERN

1.3 Modern Analytic Number Theory

If we consider the Euler product of the Riemann zeta function or Dirichlet L-functions,

ζ(s) = ∏
p

(
1− 1

ps

)−1
,

L(s,χ) = ∏
p

(
1− χ(p)

ps

)−1
,

we observe a similarity between them. Note that each Euler factor is a degree one poly-

nomial in terms of p−s. A question arises regarding L-functions whose Euler products in-

volves higher degree polynomials. This is a place where we enter the boundaries of modern

analytic number theory. As an example consider Ramanujan’s ∆ function:

∆(z) = q
∞

∏
n=1

(1−qn)24 =
∞

∑
n=1

τ(n)qn, q = e2πiz. (1.20)

The L-function associated to ∆ for ℜ(s)> 13/2 is

∞

∑
n=1

τ(n)
ns ,

and it has the Euler product

∏
p

(
1− τ(p)p−s + pk−1−2s)−1

. (1.21)

The function ∆(z) is a holomorphic cusp form of weight 12 and level 1. Cusp forms are

special types of modular forms.

Definition 1.9 (Modular form of weight k and level 1). Let

SL(2,Z) =
{ a b

c d

 ∣∣ a,b,c,d ∈ Z, ad−bc = 1
}

10



1.3. MODERN

A modular form of weight k and level 1 is a complex valued function defined on the upper

half plane H= {z ∈ C : Im(z)> 0} that satisfies the following.

1- f is a holomorphic function on the upper half plane.

2- For any z ∈H and all matrices in SL(2,Z), we have

f
(

az+b
cz+d

)
= (cz+d)k f (z). (1.22)

3- f is holomorphic at the cusp at ∞.

Studying modular forms is very important in mathematics. For example they played im-

portant role in proving Fermat’s last theorem. They also, among many other applications,

are used in proving the equidistribution of certain points on modular curves.

Let

Γ0(q) =
{ a b

c d

 ∈ SL(2,Z)
∣∣ c≡ 0 mod q

}

and

Γ(q) =
{ a b

c d

 ∈ SL(2,Z)
∣∣ c≡ b≡ 0, a≡ d ≡ 1 mod q

}
.

These are known as congruence subgroups. Now if we have a modular form that satisfies

the functional equation (1.22) for all matrices in Γ(q) or Γ0(q) then we call it a modular

form of level q and a weight k. By using the functional equation we obtain

f (z) = f (z+1),

this tells us that f is a periodic function and therefore we can write a Fourier expansion for

11



1.3. MODERN

f as

f (z) =
∞

∑
n=0

a(n)n(k−1)/2e(nz). (1.23)

If a(0) = 0 then we call f a cusp form. Using the Fourier coefficients a(n) we form the

L-function associated to f :

L(s, f ) =
∞

∑
n=0

a(n)
ns . (1.24)

For many applications like bounding contour integrals and equidistribution problems it

turns out that it is crucial to have estimates for the size of L-functions attached to mod-

ular/cusp forms inside the critical strip, and on the critical line. These L-functions satisfy

functional equations, which implies an upper bound in the critical strip the so-called con-

vexity bound,

L(s, f )� (k2|s2|q)
1
4+ε.

It turns out that for many applications it suffices to replace the exponent 1/4 by any smaller

number. Such an estimate is called a subconvex bound. A method invented by Duke,

Friedlander and Iwaniec has been used frequently in such problems. Their idea was to

average over a family of L-functions, t hen by using an amplifier highlight the contribution

of the L-functions under consideration. One of the main ingredients of their work was an

estimation of a smooth version of

∑
am−bn=h

m,n<X

d(m)d(n), (1.25)

where d(n) is the divisor function. They estimated (1.25) with an error term of order

O((abX)3/4). Note that we can consider sums of the type (1.25) with replacing d(n) with

Fourier coefficients of modular/cusp form. This is known as shifted convolution sums prob-

lem and it has many important applications such as proving the quantum unique ergodicity

conjecture for Hecke-Maass forms on SL2(Z)\H, a holomorphic analog of the quantum

unique ergodicity conjecture and equidistribution of Heegner points.

12



1.3. MODERN

In the last part of this thesis we improve this error term in the case b = 1. We also consider

similar sums with a = b = 1 and d(n) replaced by some other arithmetic sequences. There

are two main ingredients in our proof.

1- We use the Voronoi type estimation of the following sum

∞

∑
n=1

d(n)e
(nd

q

)
. (1.26)

The Voronoi type summation formulas extract a main term from the above sum and gives

an error term involving Bessel functions and the multiplicative inverses of d in Z/qZ. This

estimate will help us to bring the Kloosterman sums into the picture.

2- We use the Kuznetsov formula to average the Kloosterman sums

S(m,n;q) = ∑
1≤x<q
(x,q)=1

e
(mx+nx

q

)
(1.27)

with respect the parameter q. The celebrated Weil bound implies that

S(m,n;q)≤ d(q)
√

gcd(m,n,q)
√

q,

however on average over q it is expected that

S(m,n;q)� qε.

Kuznetsov’s formula proves this for the smooth averaging over q and improves significantly

what one obtains by Weil’s bound for non-smooth averaging. By using these tools we

proved the following

Theorem 1.10 (Aryan). Let f be a smooth function supported on [X ,2X ]× [X ,2X ] satisfy-

13
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ing
∂i+ j

∂xi∂y j f (x,y)� 1
X i+ j . (1.28)

For h� X1−ε, We have

∑
am−n=h

d(m)d(n) f (am,n) = Main term( f ,a,1)+O(X1/2+θ+ε), (1.29)

where θ comes from the Ramanujan-Petersson conjecture and the current best bound is

θ≤ 7/64, due to Kim and Sarnak [49].

Note that the Main term has approximately order of magnitude X/a.

The above is one of the beautiful applications of modular forms in a problem that originated

in classical analytic number theory.

14



Chapter 2

Distribution of squares modulo a
composite number

2.1 Introduction

In this chapter we are mainly concerned with the distribution of subsets of integers that

are not additively structured, though we will also prove results for sets that are additively

structured. We begin by studying squares, which is the model example of a non-additively

structured set. We continue with more complicated non-additively structured sets. The final

part will be the study of the higher central moments of s-tuples of reduced residues. The

content of this chapter appeared in International Mathematics Research Notices [4].

The distribution of squares modulo q

For q square-free, we call an integer s a square modulo q when s is a square modulo

p for all primes p dividing q. Note that we count 0 as a square. Several authors have

studied the distribution of spacings between squares modulo q. For q prime, a theorem

of Davenport [15] shows that the probability of two consecutive squares modulo q being

spaced h units apart is asymptotically 2−h as q tends to infinity. For q square-free, Kurlberg

and Rudnick [53] have shown that the distribution of spacings between squares approaches

a Poisson distribution as ω(q) tends to infinity, where ω(q) is the number of distinct prime

divisors of q.

Theorem 2.1 (Kurlberg and Rudnick). Let � be the symbol that denotes the word square

15



2.1. INTRODUCTION

and

s =
q

#{x : x is � modulo q}
,

and let I be an interval in R that does not contain zero. Then

#{(x1,x2) : x1− x2 ∈ sI : x1,x2 are � mod q}
#{x : x is a � modulo q}

= |I|+O
( 1

s1−ε

)
. (2.1)

Note that s is the mean spacing in the set of squares modulo q and the “probability” of a

random integer being a square modulo q is 1/s, which approximately is 1/2ω(q). The results

we prove in this chapter are, more or less, in the spirit of papers written by Montgomery

and Vaughan [60] and Hooley [40, 41, 42]. These articles answer Erdős’ question in [23]

regarding the gaps between consecutive reduced residues. The reduced residues modulo q

are the integers ai, 1 = a1 < a2 < .. . < aφ(q) < q, that are relatively prime to q. Erdős [23]

proposed the following conjecture for the second moment of the gap between consecutive

reduced residues: For λ = 2 we have

Vλ(q) =
φ(q)

∑
i=1

(ai+1−ai)
λ� qP1−λ, (2.2)

where P = φ(q)/q is the “probability” that a randomly chosen integer is relatively prime to

q. Hooley [40] showed that (2.2) holds for all 0 < λ < 2. For λ = 2, Hausman and Shapiro

[33] gave a weaker bound than (2.2). Finally, Montgomery and Vaughan [60] succeeded

in proving the conjecture, showing that (2.2) holds for all λ > 0. The key ingredient in the

proof of the results of [40] and [33] is the variance of the random variable

Rh(n) = #{m ∈ [n,n+h] : m is a reduced residue modulo q}.

In [60] variance and also higher central moments of Rh were studied. Motivated by the

above results, we consider the variance of the following random variable. Let n be an

16



2.1. INTRODUCTION

integer chosen uniformly at random in {1,2, . . . ,q}, and define Xh by

Xh(n) = #{s ∈ [n,n+h] : s is a � modulo q}.

Theorem 2.2. Let q be a square-free number and P = φ(q)/q. Then as an upper bound we

have
1
q

q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

≤ h
2ω(q)P ∏

p|q

(
1+

1
√

p

)
, (2.3)

and as a lower bound we have

h
4ω(q)P ∑

r>h2

r|q

∏
p|r

(
1− 3
√

p

)
� 1

q

q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

. (2.4)

Moreover, if the prime divisors of q are all congruent to 3 modulo 4 then we have the

sharper bound
1
q

q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

≤ h
2ω(q)P2

. (2.5)

Remark 2.3. Note that in (2.3), ∏p|q(1+ p−1/2)� 2
√

ω(q) which is much smaller than

2ω(q) for large ω(q). For the mean of Xh, we have E(Xh) =
h

2ω(q)P
and therefore the left hand

side of (2.3) is equal to the variance of Xh, which we denote by Var(Xh). Consequently,

Theorem 2.2 implies the following upper bound:

Var(Xh)≤∏
p|q

(
1+

1
√

p

)
·E(Xh),

whereas the trivial upper bound is

Var(Xh)≤ E(Xh)
2.

Remark 2.4. Theorem 2.12 yields non trivial bound when h≥ 2ω(q)P. This is the case that

17



2.1. INTRODUCTION

there is a possibility of cancellation in

h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

.

Remark 2.5. Let N be the set of quadratic non-residues modulo a prime p. The reason

for the better bound (2.5) is that, when p ≡ 3 mod 4, the size of the Fourier coefficient

∑n∈N e(n/p) of N, is smaller than when p≡ 1 mod 4.

In 1936 Cramer [14], assuming the Riemann hypothesis (RH), showed the following

result concerning the average gap between consecutive primes:

∑
pn<x

(pn+1− pn)
2� x(logx)3+ε. (2.6)

This bound was the inspiration of Erdős’ conjecture (2.2). Using Theorem 2.2, we prove an

analogous result for gaps between squares.

Corollary 2.6. Let si be the squares modulo q in increasing order. Then

1
q ∑

si<q
(si+1− si)

2� 2ω(q)P(logq)∏
p|q

(
1+

1
√

p

)
. (2.7)

Remark 2.7. It seems plausible that the factor ∏p|q(1+ p−1/2) can be removed from the

right hand side of (2.7). Also, it seems difficult to estimate the higher moments in Corollary

0.1. Indeed, in the simple case where q equals a prime number p, a good estimation of the

higher moments would imply that the gap between two consecutive quadratic residues is

less than po(1). Note that the best known bound obtained by Burgess [9] is p1/4+o(1).

An important property of the squares that we use in the proof of Theorem 2.2 is the follow-

ing: For a 6= 0 modulo p we have

∣∣∣∣ ∑
s is � mod p

e
(sa

p

)∣∣∣∣�√p. (2.8)
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2.1. INTRODUCTION

In the language of Fourier Analysis, this property means that all of the non-trivial Fourier

coefficients of the set of squares have square root cancellation. In the context of this chapter

we denote the property of having small Fourier coefficient as being “non-additively struc-

tured”. In the next section we generalize Theorem 2.2 for all the sets that are not additively

structured. We also use similar ideas to study a problem related to additive combinatorics

which is known as the inverse conjecture for the large sieve.

Relation with the inverse conjecture for the large sieve

In this section we consider the inverse conjecture for the large sieve. We also intro-

duce the notions of “additively structured” and “non-additively structured” sets and study

the distribution of these sets. Based on these ideas we formulate a refined version of the

inverse conjecture. Roughly speaking, we say that a subset of Z/pZ is not additively struc-

tured if all of its non-trivial Fourier coefficients have square root cancellation. On the other

hand, being additively structured means there exist at least one large Fourier coefficient.

Having a large Fourier coefficient is equivalent to saying that the set has many quadruples

(x1,x2,x3,x4) such that x1 + x2 = x3 + x4, which explains the reason for choosing the “ad-

ditive structure” terminology.

Let A be a finite set of integers with the property that the reduced set A (mod p) occu-

pies at most (p+ 1)/2 residue classes modulo p for every prime p|q. In other words, for

p|q and Ωp ⊆ Z/pZ with |Ωp| = (p−1)/2, A is obtained by sieving [1,X ] by all the con-

gruence classes in Ωp. The inverse problem for the large sieve is concerned with the size of

A (see [38]). In the case where q is equal to the product of all primes less than
√

X , using

the large sieve inequality one can show that |A| �
√

X . The following is the formulation of

the conjecture by Green [30].

Conjecture 2.8 (Inverse conjecture for the large sieve). For every prime number p<
√

X ,

let Ωp ⊆ Z/pZ with |Ωp|= (p−1)/2. Let A⊆ {1,2, . . . ,X} be the set obtained by sieving
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2.1. INTRODUCTION

out the residue classes in Ωp for p < X . Then |A| � Xε unless A is contained in the set of

values of a quadratic polynomial f (n) = an2 +bn+ c, with the possible exception of a set

of size Xε.

Remark 2.9. This has been stated informally in the literature as follows. If the size of A

is not too small then A should possesses an “algebraic” structure. The problem with this

statement is that a formal definition for possessing an “algebraic” structure has not been

given. Although it seems that any set with “algebraic” structure is not additively structured,

the reverse may not be true.

Here our aim is to look at this problem from the distributional aspect. We consider

A to be a subset of an interval larger than the interval [1,X ]. We fix A to be a subset of

{1,2, . . . , q}. This set shall be defined by sieving out congruence classes in Ωp for all p|q,

|Ωp|= (p−1)/2. Next we let n be an integer picked uniformly at random in {1,2, . . . , q},

and define the random variable Yh by

Yh(n) = |[n,n+h]∩A|. (2.9)

Since |Ωp|= (p−1)/2, the Chinese Remainder Theorem implies that

|A|= ∏
p|q

( p+1
2

)
.

Question: How is A distributed modulo q?

We will prove a result which shows that if for all p|q, Ωp is not additively structured,

then A is well distributed. In the other direction we show some partial results in the case

that Ωp is additively structured. The latter result indicates that A is far from being well

distributed. To make the notion of being well distributed more clear in the context of this

chapter, let A ⊆ [1,q] and define Prob(x ∈ A) = |A|/q. We say that A is well distributed if

any interval of length h inside [1,q], contains h |A|q (1+o(1)) elements of A.
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2.1. INTRODUCTION

Now we introduce the notion of a set that is “not additively structured”. We describe this

using the example of squares. In this case Ωp is the set of non-quadratic residues modulo p.

In other words in order to end up with squares after sieving, we need to sieve out integers

congruent to non-quadratic residues modulo each prime p|q. Inspired by the property of

squares mentioned in the Equation (2.8), we have the following definition.

Definition 2.10 (Not additively structured). For p a prime number we say that Ωp ⊆

Z/pZ is not additively structured if for all a 6= 0 modulo p,

∣∣∣ ∑
x∈Ωp

e
(ax

p

)∣∣∣< cp
√

p, (2.10)

where cp depends on p and satisfies cp� log p.

We will give two examples of sets that are not additively structured.

Example 1. By using the following theorem of Weil we can show that the image of a poly-

nomial P is not additively structured under the following condition: For every y ∈ Im(P)

the equation P(x) = y (mod p) has the same number of solutions, with the exception of a

subset E of the image with |E | � √p.

Theorem 2.11 (Weil). Let P ∈ Z[X ] be a polynomial of degree d > 1. Let p be a prime

such that gcd(d, p) = 1. Then we have

∣∣∣ ∑
x(mod p)

e
(P(x)

p

)∣∣∣< (d−1)
√

p. (2.11)

Example 2. Another example of a set that is not additively structured is

ΩK,p := {x+ y : 1≤ x,y≤ p−1 and xy≡ 1 mod p}. (2.12)

This can be shown by using the Weil bound [68] on Kloosterman sums. The size of ΩK,p is
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2.1. INTRODUCTION

(p+ 1)/2. One open problem regarding this asks about existence of small residue classes

with small reciprocal. More precisely let

Mp := min
x 6=0 mod p

{
max{x,x−1}

}
. (2.13)

Then the question is how small can Mp be? As an application of the Weil bound on Kloost-

erman sums one can show that Mp ≤ 2(log p)p3/4 (see [37]). It seems natural to conjecture

that Mp ≤ p1/2+ε. In fact Tao [65] even suggested that Mp = O(p1/2) might be possible.

Using Theorem 2.12 one can show that there exist x modulo p such that

x+ x−1 mod p≤ p1/2+ε. (2.14)

For such x if x+Z x−1 < p, then (2.14) would imply the conjectural bound for Mp. How-

ever if x+Z x−1 ≥ p, then (2.14) does not give any useful information. Thus it would be

interesting to look at the distribution of the set

Ω
′
K,p :=

{
x+ x−1 : 1≤ x,x−1 ≤ p−1 and x+Z x−1 < p

}
. (2.15)

If Ω′K,p were not additively structured then it would imply the conjectural bound for Mp.

However in Theorem 2.20, we will show that this is not the case and Ω′K,p is not well dis-

tributed modulo p. Consequently one way to attack the conjectural bound on Mp would be

to find a proper subset of Ω′K,p which is not additively structured. Another way would be to

add certain elements to Ω′K,p in order to make a set that is not additively structured.

We show that if Ωp is not additively structured then A is well distributed.

Theorem 2.12. Let Yh be as (2.9). Then if Ωp is not additively structured i.e., satisfies
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2.1. INTRODUCTION

(2.10) and |Ωp|= (p−1)/2, then we have

1
q

q−1

∑
n=0

(
∑

m∈[n,n+h]
m/∈Ωp mod p
∀p|q

1−h∏
p|q

(
p+1
2p

))2

� h∏
p|q

(( p+1
2p

)2
+ c2

p

)
, (2.16)

or equivalently

Var(Yh)� E(Yh)∏
p|q

(
p+1
2p

+
2c2

p p
p+1

)
, (2.17)

where cp is the constant in (2.10).

Remark 2.13. Note that cp can never be too small. In fact one can get a lower bound

cp > 1/2. As a result the right hand side of (2.16) is always bigger than h/2ω(q).

Remark 2.14. Note that the trivial upper bound on Var(Yh) is E(Yh)
2. In section 3 we prove

a more general result without the restriction |Ωp|= (p−1)/2 (see Lemma 2.24).

Remark 2.15. By taking Ωp equal to the set of quadratic non-residues in Theorem 2.12, we

obtain Theorem 2.2.

Returning to the inverse conjecture for the large sieve, Green and Harper [31] proved the

conjecture when Ωp is an interval and gave a non-trivial result when Ωp has certain additive

structure. This brings us to the definition of a set with additive structure.

Definition 2.16 (Additively structured). For p a prime number we say that Ωp ⊆ Z/pZ is

additively structured if there exist a 6= 0 modulo p,

∣∣∣ ∑
x∈Ωp

e
(ax

p

)∣∣∣≥Cp p, (2.18)

where Cp depends on p and here we consider Cp� log−1 p.

Remark 2.17. Note that additively structured is the extreme opposite of not additively struc-

tured, since the opposite of not additively structured means every set has a Fourier coeffi-
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cient just bigger than p1/2+ε, while being additively structured means there exists a Fourier

coefficient bigger than p1−ε.

Let Ωp = {0,2,4, . . . , p−1}, for all p|q. Note that this set is additively structured since

for a = (p+1)/2 we have

∣∣∣∣∣ ∑
x∈Ωp

e
(xa

p

)∣∣∣∣∣=
∣∣∣∣∣e
( 1

2p

)
+1

e
( 1

p

)
−1

∣∣∣∣∣≥ p
π
.

For the set A we prove a result which shows that A is far from being well distributed.

Theorem 2.18. Let Ωp = {0,2,4, . . . , p−1} and Yh be as (2.9). Assume q = p1, . . . , pblogXc,

where X < pi < 2X and |p2− p1| � log p1. Then for every integer h < X2

logX we have that

1
q

q−1

∑
n=0

(
∑

m∈[n,n+h]
m/∈Ωp mod p
∀p|q

1−h∏
p|q

(
p+1
2p

))2

�
( h

2ω(q)P

)2
,

or equivalently

Var(Yh)� E(Yh)
2.

Theorem 2.12 shows a connection between non-additive structure in sets Ωp and well

distribution of A. Theorems 2.18 shows a connection between the additive structure of the

sets Ωp and A not being well distributed. Recall that A is obtained by sieving out the congru-

ence classes in Ωp. In the inverse conjecture for the large sieve, there is a similar connection

between the size of the sifted set and the additive structure of Ωp. More precisely, if the size

of the sifted set A is not too small, then A is the image of a quadratic polynomial and from

Example 1 we know that the image of a quadratic polynomial is not additively structured.

Thus if the size of A is large then A is not additively structured. Inspired by this observation

it seems natural to refine the inverse conjecture for the large sieve in terms of the additive
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structure of A. Now we state our conjecture.

Conjecture 2.19. Let A be the subset of [1,X ] obtained by sieving out congruence classes

in Ωp for p < X1/2. Moreover assume that for each p, Ωp is additively structured i.e. Ωp

has the property that there exist a 6= 0 modulo p such that

∣∣∣∣ ∑
x∈Ωp

e
(ax

p

)∣∣∣∣�Cp p,

with Cp� log−1 p. Then

|A| � Xε.

Harper and Green [31] proved a non-trivial bound for the size of A in the above conjecture.

They proved that if Ωp has many quadruples (x1,x2,x3,x4) such that x1+x2 = x3+x4, then

there exists c > 0 such that |A| � X1/2−c. Note that the quadruple condition is equivalent

to Ωp having a large Fourier coefficient. (Larger than p1−ε.)

To finish this part of the article we state a result regarding the distribution of Ω′K,p from

Example 2. Note that

|Ω′K,p|=


p+1

4 if p≡ 3 mod 4,

p−1
4 if p≡ 1 mod 4.

(2.19)

Theorem 2.20. Let Ω′K,p be as in (2.15). Then for h < p/2 we have

1
p

p−1

∑
n=0

(
∑

m∈[n,n+h]
m∈Ω′K,p

1− h
p
|Ω′K,p|

)2

� h2. (2.20)

In the last part of this article we study the distribution of s-tuples of reduced residues. Al-

though the following theorem is independent than previous results, the techniques are very
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similar. In particular Lemma 2.23 will be applied in all theorems.

Higher central moments for the distribution of s-tuples of reduced residues

Let

D = {h1,h2, . . . ,hs},

and νp(D) be the number of distinct elements in D mod p. We call D admissible if

νp(D) < p for all primes p. We call (a+ h1, . . . ,a+ hs) an s-tuple of reduced residues

if each element a+hi is coprime to q. In our previous results we were only able to calculate

the variance and could not obtain any estimate for higher moments. The reason for this, in

a sieve-theoretic language, is that when |Ωp|= (p−1)/2, as q tends to infinity the dimen-

sion of the sieve also tends to infinity. However, if we fix our admissible set and look at the

distribution of s-tuples of reduced residues, then the dimension stays bounded and conse-

quently we are able to derive results for higher moments. Let kq(m) be the characteristic

function of reduced residues, that is to say

kq(m) =


1 if gcd(m,q) = 1,

0 otherwise.

The generalization of Erdős’ conjecture, i.e.

V D
2 (q) = ∑

(ai+h j,q)=1
h j∈D

(ai+1−ai)
2� qP−s, (2.21)

concerns the gap between s-tuples of reduced residues. In order to prove the generalization

of Erdős’ conjecture (see [23] and [3]), the author in [3] studied the k-th moment of the

26



2.1. INTRODUCTION

distribution of the s-tuples of reduced residues: Let

MD
k (q,h) :=

q−1

∑
n=0

(
h

∑
m=1

kq(n+m+h1) . . .kq(n+m+hs)−h∏
p|q

(
1−

νp(D)

p

))k

.

In the case s= 1, i.e. D = {0}, and k < 2 this was studied by Hooley [40] who found an up-

per bound for M{0}2 (q,h). Hausman and Shapiro [33] gave an exact formula for M{0}2 (q,h).

Their formula immediately gives the upper bound M{0}2 (q,h) ≤ qhP. Finally, for a fixed

natural number k, Montgomery and Vaughan [60] showed

M{0}k (q,h)≤ q(hP)k/2 +qhP. (2.22)

For a fixed admissible set D it was proven in [3] that

MD
k (q,h)�s,k qhk/2P−2ks+ks. (2.23)

This was enough to get the generalization of Erdős’ conjecture, however the method failed

to get bounds as strong as (2.22). In the last section of this chapter we improve (2.23).

Theorem 2.21. Let P = φ(q)/q. For h < exp
( 1

kP1/s

)
, we have

MD
k (q,h)�s,k q(hPs)k/2 (2.24)

and in general

MD
k (q,h)�s,k qhk/2Psk−s2 k

2 . (2.25)

Remark 2.22. Note that (2.24) is the best possible upper bound and it matches the upper

bound derived from probabilistic estimates (see [3, Lemma 2.1]).

The open question that remains here is whether or not the bound (2.25) is sharp. In other
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words, is there an admissible set D such that for h≥ exp
( 1

kP1/s

)
, we have

MD
k (q,h)�s,k qhk/2Psk−s2 k

2 ?

Notation

Throughout the chapter we use the symbol � as an abbreviation for the word “square”.

For example, “a is a � modulo q” reads “a is a square modulo q”. Also, for functions g(x)

and h(x), we use interchangeably Landau’s and Vinogradov’s notation g(x) = O(h(x)),

g(x)� h(x) or h(x)� g(x) to indicate that there exists a constant C > 0 such that |g(x)| ≤

C|h(x)| for all x. We use subscripts such as�s,k to indicate that the constant C may depend

on parameters s,k. We let φ denote the Euler’s totient function, defined by φ(q) = #{1 ≤

n ≤ q : (n,q) = 1}. We also write P = φ(q)/q and we let +Z denote the addition in Z, as

opposed to modular addition.

2.2 Main estimate

In this section we prove an exponential identity for the indicator function of s-tuples of

reduced residues.

Lemma 2.23. Let D = {h1, . . . ,hs} be an admissible set. For square-free integers q we

have

kq(m+h1) . . .kq(m+hs) = PD ∑
r|q

µ(r)
φD(r) ∑

a<r
(a,r)=1

e
(

m
a
r

)
µD(a,r),

where

µD(a,r) = ∏
p|r

(
∑

s∈Dp

e
(sa(r/p)−1

p

p

))
,

φD(r) = ∏
p|r

(p−νp(D)),

PD =
∏p|q

(
p−νp(D)

)
q

,

(r/p)−1
p is the inverse of r/p in

(
Z/pZ

)∗
, and Dp consists of the reduction of elements of
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D modulo p.

Proof. The starting point in the method of Montgomery and Vaughan [60] is to use the

following Fourier expansion of the indicator function of reduced residues:

kq(m) = ∑
r|q

µ(r)
r ∑

0≤b<r
e
(

m
b
r

)
.

Using this expansion, we deduce that

kq(m+h1) . . .kq(m+hs)

= ∑
r1,r2,...,rs|q

µ(r1) . . .µ(rs)

r1 . . .rs
∑

0<ai≤ri
∑

s
i=1

ai
ri
= a

r

e
( s

∑
i=1

(m+hi)
ai

ri

)

= ∑
r|q
a≤r

(a,r)=1

e
(

m
a
r

)
∑

r1,r2,...,rs|q

µ(r1) . . .µ(rs)

r1 . . .rs
∑

0<ai≤ri
∑

s
i=1

ai
ri
= a

r

e
( s

∑
i=1

hi
ai

ri

)
.

We fix a,r and therefore it is enough to show that

∑
r1,r2,...,rs|q

µ(r1) . . .µ(rs)

r1 . . .rs
∑

0<ai≤ri
∑

s
i=1

ai
ri
= a

r

e
( s

∑
i=1

hi
ai

ri

)
(2.26)

= PD

µ(r)
φD(r)∏

p|r

(
∑

s∈Dp

e
(sa(r/p)−1

p

p

))
.

To show this, note that we can write

a
r
≡∑

p|q

ap

p
(mod 1)

uniquely where 0≤ ap < p. Fixing p0|r, we have that

a
r
· r

p0
≡ a

p0
≡

ap0

p0

( r
p0

)
(mod 1), (2.27)
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hence a≡ ap0

( r
p0

)
(mod p0). Since q, and consequently r, are square-free,

( r
p0
, p0
)
= 1,

so for ap0 6= 0, we have that ap0 ≡ a
( r

p0

)−1
p0

(mod p0). Using (2.27), we can can write the

left hand side of the (2.26) in terms of the prime divisors of q. Therefore (2.26) is equal to

∏
p|q

∑
qi|p

µ(q1) . . .µ(qs)

q1 . . .qs
∑

0≤ai<qi

∑
ai
qi
=

ap
p

e
( s

∑
i=1

hi
ai

qi

)
.

To simplify the condition ∑
ai
qi
=

ap
p , we write

∑
0≤ai<qi

∑
ai
qi
=

ap
p

e
( s

∑
i=1

hi
ai

qi

)
=

p

∑
v=1

1
p ∑

0≤ai<qi

e
((ap

p
−

s

∑
i=1

ai

qi

)
v
)

e
( s

∑
i=1

hi
ai

qi

)
.

Therefore (2.26) is equal to

∏
p|q

∑
qi|p

µ(q1) . . .µ(qs)

q1 . . .qs

p

∑
v=1

1
p ∑

0≤ai<qi

e
((ap

p
−

s

∑
i=1

ai

qi

)
v
)

e
( s

∑
i=1

hi
ai

qi

)
= ∏

p|q

p

∑
v=1

e
(
vap

p

)
p

s

∏
i=1

∑
qi|p

µ(qi)

qi
∑

0≤ai<qi

e
(ai

qi
(hi− v)

)
= ∏

p|q

p

∑
v=1

e
(
vap

p

)
p

s

∏
i=1

(
1− 1

p ∑
a≤p

e(
a
p
(hi− v))

)
= ∏

p|q

p

∑
v=1

v6≡hi mod p
hi∈D

e
(
vap

p

)
p

=
φD(q)r
qφD(r)∏

p|r

µ(p)
p ∑

s≡himod p
hi∈D
ap 6=0

e
(
s
ap

p

)
.

The last equality holds since ap = 0 for p - r, and for ap 6= 0 we have that

p

∑
v=1

v6≡hi mod p
hi∈D

e
(
v

ap

p

)
=− ∑

s∈Dp

e
(
s
ap

p

)
.

This completes the proof of the lemma.
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2.3 Distribution of squares modulo q

In this section we are going to prove Theorem 2.12 and Corollary 2.6. Before proceed-

ing with the proof we derive a formula for the left hand side of (2.3). For q square-free,

x is a square modulo q if and only if x is a square modulo p for all primes p dividing q.

For each p which divides q, let Dp := {h1,p, . . . ,hνp,p}. By the Chinese Reminder Theo-

rem there exists a set D = {h1, . . . ,hs}, such that D modulo p is equal to Dp, for all p|q.

For instance let h1,h2, . . .hs to be uniquely selected to satisfy the following congruences

hi ≡ hi,p mod p, for all p|q. In the case that i > νp and therefore hi,p does not exist, we take

hi,p to be equal hνp,p. This explains how we can construct the set D .

Now if

kq(m+h1) . . .kq(m+hs) = 1,

then m 6≡ −hi,p modulo p, for 1≤ i≤ νp and for all p dividing q. We now let

Dp = {−n1, . . . ,−n p−1
2
}, (2.28)

where ni’s are quadratic non-residues modulo p. From kq(m+ h1) . . .kq(m+ hs) = 1, it

follows that m is a square modulo q. Using Lemma 2.23 we have that

kq(m+h1) . . .kq(m+hs) = ∏
p|q

p+1
2
p ∑

r|q

µ(r)

∏p|r
p+1

2
∑
a≤r

(a,r)=1

e
(

m
a
r

)
µD(a,r)

=
1

2ω(q)P ∑
r|q

µ(r)

∏p|r
p+1

2
∑
a≤r

(a,r)=1

e
(

m
a
r

)
µD(a,r), (2.29)
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2.3. DISTRIBUTION OF SQUARES MODULO Q

where P = φ(q)
q . Summing this from m = n + 1 to n + h and then subtracting the term

corresponding to r = 1 we have

n+h

∑
m=n+1

kq(m+h1) . . .kq(m+hs)−
h

2ω(q)P

=
1

2ω(q)P ∑
r|q
r>1

µ(r)

∏p|r
p+1

2
∑
a<r

(a,r)=1

E
(a

r

)
µD(a,r)e

(
n

a
r

)
, (2.30)

where

E(x) =
h

∑
m=1

e(mx).

We square (2.30) and sum from n = 1 to q to obtain

q−1

∑
n=0

(
h

∑
m=1

kq(n+m+h1) . . .kq(n+m+hs)−
h

2ω(q)P

)2

= (2.31)

q
4ω(q)P2 ∑

r1, r2|q
r1,r2>1

µ(r1)µ(r2)

∏p|r1
p+1

2 ∏p|r2
p+1

2
∑

ai<r
(ai,ri)=1

i=1,2
a1
r1
+

a2
r2
∈Z

E
(a1

r1

)
E
(a2

r2

)
µD(a1,r1)µD(a2,r2).

Now we are prepared to prove the Theorem 2.2.

Proof of Theorem 2.2. From the condition
a1

r1
+

a2

r2
∈ Z in (2.31) it follows that r1 = r2

and a2 = r−a1, thus we have

q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

=
q

4ω(q)P2 ∑
r|q

r>1

4ω(r)

∏p|r(p+1)2 ∑
a<r

(a,r)=1

∣∣∣∣E(a
r

)
µD(a,r)

∣∣∣∣2.
(2.32)

Now, we need to bound µD(a,r). For each ni in Dp in (2.28), employing the Legendre

symbol (−nia
(
r/p
)−1

p

)
=−

(
−1
p

)(
a
p

)((
r/p
)−1

p

)
.
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Since a 6= 0 the sequence
{
−nia

(
r/p
)−1} is either the sequence of quadratic residues or

the sequence of quadratic non-residues modulo p. Using the Gauss bound for exponential

sums over quadratic residues (respectively non-residues) [16, Page 13]

∣∣∣∣∑
i

e
(nia(r/p)−1

p

p

)∣∣∣∣=

√

p−1
2 if

(−a
(
r/p
)−1

p

)
=−1,

√
p+1
2 otherwise,

(2.33)

if p≡ 1 modulo 4 and ∣∣∣∣∑
i

e
(nia(r/p)−1

p

p

)∣∣∣∣= √p+1
2

(2.34)

if p≡ 3 modulo 4. Consequently, for a 6= 0,

∏
p|r

√
p−1
2

≤ |µD(a,r)| ≤∏
p|r

√
p+1
2

. (2.35)

Using this in (2.32) we have the upper bound

q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

≤ q
4ω(q)P2 ∑

r|q
r>1

∏
p|r

(√
p+1

)2

(p+1)2 ∑
a<r

(a,r)=1

∣∣∣∣E(a
r

)∣∣∣∣2, (2.36)

and the lower bound

q
4ω(q)P2 ∑

r|q
r>1

∏
p|r

(√
p−1

)2

(p+1)2 ∑
a<r

(a,r)=1

∣∣∣∣E(a
r

)∣∣∣∣2 ≤ q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

. (2.37)

Using the bound([60, Lemma 4]),

∑
a<r

(a,r)=1

∣∣∣E(a
r

)∣∣∣2 < r min(r,h), (2.38)
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and by employing this bound in (2.36) we have

q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

≤ q
4ω(q)P

h∏
p|q

(2+
2p3/2− p−1
p2 +2p+1

)<
q

2ω(q)P
h∏

p|q
(1+

1
√

p
).

For the lower bound, let r > h2. Then we have

φ(r)h� ∑
a<r

(a,r)=1

∣∣∣E(a
r

)∣∣∣2.
Therefore,

q
4ω(q)P

h ∑
r>h2

r|q

∏
p|r

(1− 3
√

p
)�

q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

.

Proof of Corollary 2.6. Let

L(x) = #
{

i : 1≤ i≤∏
p|q

( p+1
2
)

and si+1− si > x
}
.

Then

∑
si<q

(si+1− si)
2 = 2

∫
∞

0
L(y)ydy. (2.39)

For y < 2ω(q)P−1 logq∏p|q(1+
1√
p) we bound (2.39) trivially. To bound L(y) we note that

if si+1− si > h, then
h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

=− h
2ω(q)P

,

for si ≤ n≤ si+1−h. Therefore we have

∑
si+1−si>h

(si+1− si−h)
( h

2ω(q)P

)2�
q−1

∑
n=0

( h

∑
m=1

n+m is � mod q

1− h
2ω(q)P

)2

. (2.40)
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Now if we take y = [h/2] then the left hand side of (2.40) is

� L(y)y
( y

2ω(q)P

)2
.

Thus, by employing Theorem 2.2 we get the following bound:

L(y)� 2ω(q)P
y2 ∏

p|q
(1+

1
√

p
).

Applying this bound in the integral in (2.39) and the fact that for y > q, L(y) = 0 completes

the proof of the Corollary.

2.4 The general case

In this section we will prove Theorems 2.12, 2.18 and 2.20. Let Ωp ⊂ Z/pZ. We are

interested in numbers less than q such that, modulo p, they do not occupy any congruence

classes in Ωp, i.e. {m ≤ q : m /∈ Ωp mod p}. By the Chinese Remainder Theorem there

exist ∏p|q(p−|Ω(p)|) such numbers. A natural question is to ask about their distribution

modulo q (see [29]). Lemma 2.23 shows the connection between the distribution of these

numbers and the exponential sum over elements in Ωp. Let D = {h1, . . . ,hs} be a set such

that Dp = {−ω : ω ∈Ωp}. If kq(m+h1) . . .kq(m+hs) = 1, then m is not congruent to any

member of Ωp modulo p. Now we take a look at the distribution of these numbers. Observe

that

h

∑
m=1

kq(m+h1) . . .kq(m+hs)

= ∏
p|q

p−|Ωp|
p ∑

r|q

µ(r)
∏p|r(p−|Ωp|) ∑

a<r
(a,r)=1

E
(a

r

)
µD(a,r). (2.41)
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By a calculation similar to (2.31) we have

q−1

∑
n=0

(
h

∑
m=1

kq(n+m+h1) . . .kq(n+m+hs)−h∏
p|q

(
p−|Ωp|

p

))2

(2.42)

= q∏
p|q

(
p−|Ωp|

p

)2

∑
r|q

r>1

1
∏p|r(p−|Ωp|)2 ∑

0<a≤r
(a,r)=1

∣∣∣∣E(a
r

)
µD(a,r)

∣∣∣∣2 .
In the next lemma we bound the variance.

Lemma 2.24. Assume that for each p|q, |Ωp|= c′p p with (p−|Ωp|> p1/2+ε),and |µD(a, p)|<

cp
√

p, where c′p < 1. Then we have that

q−1

∑
n=0

(
∑

m∈[n,n+h]
m/∈Ωp mod p
∀p|q

1−h∏
p|q

(
p−|Ωp|

p

))2

≤ qh∏
p|q

(
(1− c′p)

2 + c2
p

)
.

Proof. Using the assumptions in Lemma 2.24 and (2.38) we have

q−1

∑
n=0

(
h

∑
m=1

kq(n+m+h1) . . .kq(n+m+hs)−h∏
p|q

(
p−|Ωp|

p

))2

� q∏
p|q

(
p− c′p p

p

)2

∑
r|q
r>1

h∏p|r(cp p)2

∏p|r(p− c′p p)2 = qh∏
p|q

(1− c′p)
2
∑
r|q

r>1

∏
p|r

(
cp

1− c′p

)2

< qh∏
p|q

(1− c′p)
2

(
1+
(

cp

1− c′p

)2
)

= qh∏
p|q

(
(1− c′p)

2 + c2
p

)
.

This completes the proof of the lemma.

Proof of Theorem 2.12. This follows from Lemma 2.24 by taking c′p = (p−1)/2p. Recall

that c′p =
|Ωp|

p .

Next we prove Theorem 2.18:
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Proof of Theorem 2.18. . Let D∗ = {h1, . . . ,hs} be an admissible set such that D∗p =

−Ωp = {0,−2, . . . ,−(p− 1)}. Let
a
r
= ∑

p|r

ap

p
, for ap =

p±1
2

. Since D∗p = {0,2, . . . , p−

1}, applying Lemma 2.23 we have that

|µD∗(a,r)|= ∏
p|r

∣∣∣∣∣ ∑
s∈D∗p

e
(sap

p

)∣∣∣∣∣= ∏
p|r

∣∣∣∣∣e
( 1

2p

)
+1

e
( 1

p

)
−1

∣∣∣∣∣≥∏
p|r

p
π
. (2.43)

Here, similar to the square case (section 2), we have PD∗ =
1

2ω(q)
P and φD∗(r) = ∏

p|r

p−1
2

.

Consequently, using (2.43) we have, similarly to (2.29) and (2.32), that

q−1

∑
n=0

(
h

∑
m=1

kq(n+m+h1) . . .kq(n+m+hs)−
hP

2ω(q)

)2

=
qP2

22ω(q) ∑
r|q
r>1

(
1(

∏p|r
p−1

2

)2

)
∑

0<a≤r
(a,r)=1

∣∣∣E(a
r

)
µD∗(a,r)

∣∣∣2

≥ qP2

22ω(q) ∑
r|q
r>1

4ω(r)

φ(r)2 ∑
ap=

p±1
2

p|r

∣∣∣E(∑
p|r

ap

p

)
µD∗(a,r)

∣∣∣2

≥ qP2

22ω(q) ∑
r|q
r>1

4ω(r)r2

φ(r)2π2ω(r) ∑
p|r

∣∣∣E(∑
p|r

1
2
± 1

2p

)∣∣∣2. (2.44)

Now, for r with an even number of distinct prime factors and ‖∑
p|r

±1
p
‖� 1/h, where ‖ · ‖

denotes the distance to the nearest integer, we have

∣∣∣E(∑
p|r

1
2
± 1

2p

)∣∣∣2� h2.

Consequently (2.44) is

� qP2

22ω(q)
h2

∑
r|q

r>1
‖∑p|r

±1
p ‖�1/h

4ω(r)r2

φ(r)2π2ω(r)
.
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Now let r = p1 p2, with ap1 =
p1 +1

2
and ap2 =

p2−1
2

, we have

‖ p1 +1
2p1

+
p2−1
2p2

‖=‖ 1
2p1
− 1

2p2
‖�

∣∣∣ logX
X2

∣∣∣� 1
h
,

which implies that (2.44) is

� qP2

22ω(q)
h2.

Remark 2.25. We picked h = X2

logX , so that the expectation of

#{m ∈ (n,n+h] : m 6∈D∗p mod p, for all p|q}= h∏
p|q

p+1
2p

=
X2P

2blogXc logX

is greater than 1. This is important in order to have the possibility of cancellation inside

q−1

∑
n=0

(
h

∑
m=1

kq(n+m+h1) . . .kq(n+m+hs)−
hP

2ω(q)

)2

.

We complete this section with the proof of Theorem 2.20.

Proof of Theorem 2.20. We begin with giving the proof for equation (2.19). Recall that

Ω
′
K,p :=

{
x+ x−1 : 1≤ x,x−1 ≤ p−1 and x+Z x−1 < p

}
,

If x+Z x−1 < p then (p− x)+Z (p− x)−1 ≥ p, Therefore half of the congruence classes

modulo p contribute to the size of Ω′K,p. Also, for y < p we have x+Z x−1 = x−1 +Z x = y.

This means that each y ∈ Ω′K,p has a double multiplicity, with the exception of y equal to

1+1−1. Considering the fact that for p≡ 1 mod 4, there exists an x such that x−1 = p− x,

and therefore x+ x−1 = p. This completes the proof of equation (2.19).

Now let Ωp :=
{
−ω : ω ∈ {0,1, . . . , p− 1} \Ω′K,p

}
= {ω1, . . . ,ω|Ωp|}. Using (2.19) we

38



2.4. THE GENERAL CASE

have |Ωp|= 3
4 p+O( 1

p). If kp(m+ω1)kp(m+ω2) . . .kp(m+ω|Ωp|) = 1, then m∈ΩK,p. We

use (2.42) to transform the left hand side of (2.20), and we have

1
p

p−1

∑
n=0

(
∑

m∈[n,n+h]
m∈Ω′K,p

1− h
p
|Ω′K,p|

)2

� 1
p2 ∑

0<a≤p−1

∣∣∣∣E(a
p

)
µ

Ωp
(a, p)

∣∣∣∣2 . (2.45)

To finish the proof of the theorem it is enough to show that
∣∣E( 1

p

)
µ

Ωp
(1, p)

∣∣� hp. Since

h < p/2 we have that
∣∣E( 1

p

)∣∣� h. For µ
Ωp

we have

µ
Ωp
(1, p) = ∑

x∈Ωp

e
( x

p

)
.

Recall that ΩK,p,Ω
′
K,p are defined by (2.12) and (2.15). Therefore if −ω ∈ Ωp then ω ∈(

Z/pZ\ΩK,p
)⋃{

x+ x−1 : x+Z x−1 ≥ p
}
. We have

µ
Ωp
(1, p) = ∑

x∈Z/pZ\ΩK,p

e
(−x

p

)
+ ∑

ω∈{x+x−1:x+Zx−1≥p}
e
(−ω

p

)
.

Using Weil’s bound for Kloosterman sums, the first sum above is O(
√

p). For the second

sum we prove

∑
ω∈{x+x−1:x+Zx−1≥p}

e
(−ω

p

)
=

ip
2π

+O(
√

p log p). (2.46)

The following argument for (2.46) was given by Will Sawin and Noam Elkies on Math

Overflow [1]. The left hand side of (2.46) is equal to

∑
1≤x,y≤p−1

1{xy=1}e(
−x− y

p
)1{x+Zy≥p}.

We use a two dimensional Fourier transform to evaluate the left hand side of (2.46). Let

Â(a,b) be the Fourier transform of 1{xy=1} and B̂(a,b) be the Fourier transform of 1{x+y>p}e(
x+y

p ).
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Then by using Parseval-Plancherel formula, the sum in (2.46) is:

∑0≤a,b≤p−1 Â(a,b)B̂(a,b)
p2 , (2.47)

where

Â(a,b) = ∑
0≤x<p

e
(ax+bx−1

p

)
= S(a,b; p),

B̂(a,b) = ∑
0≤x,y<p
x+y>p

e
((a−1)x+(b−1)y

p

)
.

Note that Â(a,b) is the Kloosterman sum unless a = b = 0. For B̂(a,b) when b 6= 1 we have

B̂(a,b) = ∑
1≤x<p

e
((a−1)x

p

)(
∑

p+1−x≤y≤p−1
e
((b−1)y

p

))

= ∑
1≤x<p

e
((a−1)x

p

)e(b−1)− e( (b−1)(1−x)
p )

e(b−1
p )−1

= ∑
1≤x<p

( e( (a−1)x
p )

e(b−1
p )−1

−
e( (a−b)x+b−1)

p )

e(b−1
p )−1

)
.

The first term in the latter sum is p−1
e((b−1)/p)−1) if a = 1 and −1

e((b−1)/p)−1 otherwise. The

second term in the latter sum is (p−1)e((b−1)/p)
e((b−1)/p)−1 if a = b and −e((b−1)/p)

e((b−1)/p)−1) otherwise.

Note that if a = b = 1, then B̂(1,1) is (p− 1)(p− 2)/2. Also if b = 1 and a 6= 1 we

have

B̂(a,b) =
p

e(a−1
p )−1

+1� p2

a
.

Now the main term in (2.47) comes from the contribution of Â(0,0)B̂(0,0). The error term

can be handled by using the Weil bound on Â(a,b) for (a,b) 6= (0,0) and the above elemen-

tary estimates for B̂(a,b) for (a,b) 6= (1,1).
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2.5 Higher central moments of reduced residues modulo q

In this section we will improve the result in [3] regarding the higher central moments of

s-tuples of reduced residues. The improvement comes from using Lemma 2.23 to transform

characteristic functions of s-tuples of reduced residues to an expression in terms of expo-

nential sums. The rest of the proof will follow Montgomery and Vaughan’s [60] arguments

(Lemma 7 and 8 in [60]). The important part of the proof is to estimate the innermost sum

in (2.48), which we divide into two cases: diagonal and non-diagonal configurations. In

the diagonal configuration the estimate derived is good enough for our purposes. In the

non-diagonal configuration we use Lemma 7 and 8 in [60] to save a small power of h. Let

D = {h1, . . . ,hs} be a fixed admissible set. By employing Lemma 2.23 we have that

q−1

∑
n=0

(
h

∑
m=1

kq(n+m+h1) . . .kq(n+m+hs)−hPD

)k

= qPk
D ∑

ri|q
ri>1

(
k

∏
i=1

µ(ri)

φD(ri)

)
∑

0<ai≤ri
(ai,ri)=1

∑
k
i=1

ai
ri
∈Z

(
E
(

a1

r1

)
µD(a1,r1) . . .E

(
ak

rk

)
µD(ak,rk)

)
,

where

µD(a,r) = ∏
p|r

(
∑

s≡himod p
hi∈D

e
(sa(r/p)−1

p

p

))
.

Let F(x) = min(h, 1
‖x‖) where ‖x‖ is the distance between x and the closest integer to x. We

have that |E(x)| ≤ F(x). Since |µD(a,r)| ≤ sω(r) we have

MD
k (q,h)� qPk

D ∑
r|q

∑
ri|r

ri>1
[r1,...rk]=r

k

∏
i=1

sω(ri)

φD(ri)
∑

0<ai≤ri
(ai,ri)=1

∑
k
i=1

ai
ri
∈Z

F
(

a1

r1

)
. . .F

(
ak

rk

)
. (2.48)
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Proof of Theorem 2.21. We use the method in [60] to bound

∑
0<ai≤ri
(ai,ri)=1

∑
k
i=1

ai
ri
∈Z

F
(

a1

r1

)
. . .F

(
ak

rk

)

in (2.48). First we focus on diagonal configuration i.e. r1 = r2,r3 = r4, . . . ,rk−1 = rk and

r2,r4, . . . ,rk are relativity co-prime. In the diagonal configuration we have that

∑
0<ai≤ri
(ai,ri)=1

∑
k
i=1

ai
ri
∈Z

F
(

a1

r1

)
. . .F

(
ak

rk

)
≤ ∑

0<a1≤r1

F
(

a1

r1

)2

. . . ∑
0<ak−1≤rk−1

F
(

ak−1

rk−1

)2

≤ r1r3 . . .rk−1hk/2 = [r1r3 . . .rk−1]hk/2.

Consequently, the contribution of the the diagonal configuration in (2.48) is less than

qPk
D ∑

r|q
∑

[r1,...,rk]=r
(r2i−1,r2 j−1)=1

i 6= j

(
r1

s2ω(r1)

φD(r1)2

)(
r3

s2ω(r3)

φD(r3)2

)
. . .

(
rk−1

s2ω(rk−1)

φD(r)2

)
hk/2

= qPk
D ∑

r|q

(
r
(s2 k

2)
ω(r)

φD(r)2

)
hk/2 = qPk

D ∏
p|q

(
1+

ps2 k
2(

p−νp(D)
)2

)
hk/2

� qhk/2Psk−s2 k
2 . (2.49)

In (2.49) we used the fact that the number of k-tuples (r1, . . . ,rk) with [r1, . . . ,rk] = r such

that each p divides exactly two of ri is less than (k/2)ω(r) (see [61]). In the non-diagonal

configuration Lemma 7 in [60] allows us to save a small power of h. Now we state the

Lemma 7 in [60] and explain how it should be apply. Our aim is to get the following

MD
k (q,h)� qhk/2Psk−s2 k

2
(
1+h−

1
7k P−(s+1)k)

. (2.50)

This bound is analogous to [60, Lemma 8] and its proof is nearly identical. The key dif-
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ference is in (2.48) we have sω(r)/φD(r) instead of 1/φ(r). Our main tool is the following

lemma.

Lemma 2.26 (Montgomery and Vaughan). For k ≥ 3, let r1, . . . ,rk be square free numbers

with ri ≥ 1 for all i. Further let r = [r1,r2, ...,rk], d = (rl,r2), r1 = dr′1,r2 = dr′2. and write

d = st where s|r3 . . .rk, (t,r3r4 . . .rk) = 1. Then

∑
0<ai≤ri
(ai,ri)=1

∑
k
i=1

ai
ri
∈Z

F
(

a1

r1

)
. . .F

(
ak

rk

)
� r1 . . .rkr−1(T1 +T2 +T3 +T4) (2.51)

where

T1 = h−1/20;

T2 = d−1/4when ri > h8/9for all i,

T2 = 0 otherwise;

T3 = s−1/2when ri > h8/9 for all iand r1 = r2,

T3 = 0 otherwise;

and

T4 =

(
1

r1r2sh2 ∑
(τ,t)=1

F
(
‖ r′1sτ ‖

r′1s

)2

F
(
‖ r′2sτ ‖

r′2s

)2
)1/2

when h8/9 < ri ≤ h2 for i = 1,2, t > d1/2and d < h5/9,

T4 = 0 otherwise.
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We shall also use the following estimate [60, Lemma 1]

∑
0<ai≤ri
(ai,ri)=1

∑
k
i=1

ai
ri
∈Z

F
(

a1

r1

)
. . .F

(
ak

rk

)
� 1

r

k

∏
i=1

(
ri ∑

(ai,ri)=1
F
(

ai

ri

)2
)1/2

. (2.52)

Now we explain how to choose r1,r2 in order to apply Lemma 2.26. Note that we only

need to consider those k-tuples r = (r1,r2, , ...,rk) for which ri > 1, [r1, ...,rk] = r, and each

prime divisor of r divides at least two of the ri, since otherwise the sum on the left hand

side of (2.51) is empty. If ri < h8/9 for some i, then by using (2.52) and [60, Lemma 4] we

have our desired result. Now suppose that ri > h8/9 for all i, and set di j = (ri,r j). For each

i we can find a j, such that

di, j ≥ h8/(9k−9). (2.53)

If there is a pair (i, j) for which this holds and ri 6= r j, then in Lemma 2.26 we choose these

to be r1,r2. We note that if ri = r1 then di, j = ri > h8/9, and (2.53) holds. Suppose now

that (2.53) holds only when ri = r j. If there is a triple (i, j,k) such that ri = r1 = rk, then

we apply Lemma 2.26 with ri,r j as r1,r2. Otherwise the ri are equal in distinct pairs, say

r1 = r2,r3 = r4, . . . ,rk−l = rk, and k is even. Let v be the product of all those prime factors

of r which divide more than one of the numbers r2,r4,r6, . . . ,rk. Then there exists i such

that (
r2i,∏

j 6=i
r2 j

)
≥ v4/k. (2.54)

In this case we take r1 and r2 to be r2i−1,r2i and by employing Lemma 2.26 we have

MD
k (q,h)� qPk

D ∑
r|q

1
r ∑

ri|r
ri>1

[r1,...rk]=r

k

∏
i=1

sω(ri)ri

φD(ri)

(
T1 +T2 +T3 +T4

)
. (2.55)

Note that if any of T2, T3, or T4 is non-zero then d ≥ h8/(9k−9). The contribution of T1 to
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(2.55) is

� qPsk
∏
p|q

(
1+

(
1+ sp/φD(p)

)k

p

)
� qPsk−(s+1)k

h−1/20. (2.56)

By the selection of r1,r2 we have that if T2 6= 0 then d ≥ h8/(9k−9). Therefore the contribu-

tion of T2 to (2.55) is� qPsk−(s+1)k
h−2/(9k−9). Now for T3 we have r1 = r2 and r1 ≥ h8/9.

If r1 = r2 = ri for some i > 2, then s = r > h8/9, so that T3 < T1 and therefore the con-

tribution of such T3 to (2.55) is smaller than T1 . It remains to consider the case when

r1 = r2,r3 = r4, ...,rk−1 = rk. Let r = uv where u is the product of those primes dividing

exactly one of r2,r4, ...,rk. Then each prime divisor of v divides two or more of the r2i.

By our choice of r1,r2 we have s ≥ v4/k. Put ri = uivi where ui = (ri,u) and vi = (ri,v).

Suppose that u and v are fixed, and let C(u,v) denote the set of (r1, . . . ,rk) of the sort under

consideration. We have |C(u,v)| ≤ dk/2(u)d(v)k/2. Using the change of variable r = uv and

by rearranging the sum in (2.55), for the contribution of T3 we have

∑
uv|q

1
uv ∑

(r1,...,rk)∈C(u,v)

(
∏

sω(ri)ri

φD(ri)

)
T3�∑

uv|q

dk/2(u)
(

sω(u)u
φD(u)

)2

d(v)k/2
(

sω(v)v
φD(v)

)k

uv1+2/k
(2.57)

= ∏
p|q

(
1+

ks2 p
2φ2

D(p)
+

2k/2(sv/φD(p)
)k

p1+2/k

)

� P−
s2k
2 .

For the contribution of T4, by the Cauchy inequality, we have

∑
r|q

1
r ∑

ri|r
ri>1

[r1,...rk]=r

k

∏
i=1

sω(ri)ri

φD(ri)
T4�

(
∑
r|q

1
r ∑

r1,...,rk

(
∏

sω(ri)ri

φD(ri)

)2
)1/2(

∑
r|q

1
r ∑

r1,...,rk

T 2
4

)1/2

.

(2.58)

The first factor on the right is made larger as it runs over all k-tuples for which ri|r. The
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larger expression is

∑
r|q

1
r ∏

p|r

(
1+
( sp

φD(p)

)2
)k

= ∏
p|q

(
1+

(
1+
( sp

φD(p)

)2
)k

p

)
� P−(s

2+1)k
. (2.59)

The second factor has been treated precisely in [60, pp. 324-325] and it is smaller than

h−2/7k. By combining (2.56), (2.57), (2.58) and (2.59) we complete the proof of (2.50).

Note that we have just sketched the key ideas of the proof, the interested reader can find

further details in [60]. To finish the proof of the Theorem 2.21 we appeal to Lemma 3.1 in

[3]. Let q1 = ∏ p|q
p≤y

p and q2 = ∏ p|q
p>y

p, where y ≥ hk. We set Pi =
φ(qi)

qi
for i = 1,2. Then

[3, Lemma 3.1] states that

MD
k (q,h)� q(hPs)[k/2]+qh(P)s +qhk/2P−2ks+ks

1 Psk
2 .

This lemma is obtained by combining two different estimates of MD
k (q,h): an exponential

estimate and a probabilistic estimate. The exponential estimate stated in [3, Lemma 1.2]

gives

MD
k (q,h)� qhk/2P−2ks+ks.

Here we use the estimate (2.50), instead of the above estimate and we derive:

MD
k (q,h)�k q(hPs)[k/2]+qhPs +qhk/2P

sk−s2 k
2

1
(
1+h−

1
7k P−(s+1)k

1
)
Psk

2 .

Now by considering y = hk, we have (2.25) and for h < e
1

kP1/s , we have (2.24), which com-

pletes the proof.

‘

46



Chapter 3

Discrete mean values of Dirichlet
polynomials

3.1 Introduction.

Let a,b : Z→ C be arithmetic sequences such that

supp(a)⊆ [1,M] and supp(b)⊆ [1,N], (3.1)

where M,N ≥ 1 1. Furthermore, we impose the size conditions

a(n) = Oε(nε) and b(n) = Oε(nε). (3.2)

For every ε > 0. Attached to a and b are the Dirichlet polynomials

A(s) = ∑
n

a(n)
ns = ∑

n≤M

a(n)
ns ,

B(s) = ∑
n

b(n)
ns = ∑

n≤N

b(n)
ns .

(3.3)

A key tool in analytic number theory is an estimate for

∫ T

−T
A(τ1 + it)B(τ2− it)dt, where τ1,τ2 ∈ R. (3.4)

1For x : Z→ C, supp(x) = {n ∈ Z | x(n) 6= 0}.
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A theorem of Montgomery and Vaughan [59] implies that

∫ T

−T
A(τ1 + it)B(τ2− it)dt = ∑

n≤N

a(n)b(n)
nτ1+τ2

(2T +O(N)).

If N = o(T ), then the mean value is asymptotic to ∑n≤N a(n)b(n)n−τ1−τ2 . However, if

N� T , then the behaviour of this sum changes. Indeed, the “main term” will no longer just

involve ∑n≤N a(n)b(n). In fact, it is necessary to consider correlations of a(n) and b(n).

We now introduce the correlation functions. Let a,b : N→ C be arithmetic functions and

h ∈ Z. For a triple (a,b;h) we define a correlation function by

Ca,b;h(x) = ∑
n≤x

a(n)b(n+h). (3.5)

Note that we define this when h ∈ Z. In the case h = 0 we have

Ca,b(x) := Ca,b;0(x) = ∑
n≤x

a(n)b(n), (3.6)

and when h < 0, we have

Ca,b;h(x) = ∑
|h|+1≤n≤x

a(n)b(n+h), (3.7)

since b(n) = 0 for n ≤ 0. Throughout this chapter we suppose that these correlation func-

tions satisfy the following nice property. There exist functions Ma,b;h(x) and Ea,b;h(x) such

that

Ca,b;h(x) = Ma,b;h(x)+Ea,b;h(x) (3.8)

where Ma,b;h(x), the “main term”, is a differentiable function of x and Ea,b;h(x) is an “error

term.” Moreover, we require a uniform bound of the following shape on Ea,b(x,h): there
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exists ϑ := ϑ(a,b) and δ := δ(a,b) such that for any ε > 0

Ea,b(x,h)� xϑ+ε for all |h| ≤ xδ. (3.9)

In the case h = 0, we shall write this as

Ca,b(x) = Ca,b;0(x) = Ma,b(x)+Ea,b(x). (3.10)

It shall be convenient to consider a weighted sum of the form

I = Ia,b,τ1,τ2,ω :=
∫
R

ω(t)A(τ1 + it)B(τ2− it)dt (3.11)

where τ1,τ2 ∈ R, and ω is a complexed valued function defined over R. Attached to ω, we

define its Fourier transform

ω̂(ξ) =
∫
R

ω(t)e−2πiξtdt. (3.12)

Note that ω̂(0) =
∫

∞

−∞
ω(t)dt, is the total weight of ω. Swapping summation order with the

integral in (3.11), we have

I = ∑
m,n≤N

a(m)b(n)
mτ1nτ2

∫
R

ω(t)
( n

m

)it
dt.

By (3.12), the diagonal terms m = n contribute

∑
m≤N

a(m)b(m)

mτ1+τ2

∫
R

ω(t)dt = ω̂(0) ∑
m≤N

a(m)b(m)

mτ1+τ2
.

The remaining terms are of the form m < n and n < m. In each of these regions we make

the variable changes n = m+h and m = n+h respectively where h≥ 1. The off-diagonals
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terms (m 6= n) thus are

∑
m,h

a(m)b(m+h)
mτ1(m+h)τ2

ω̂

(
−

log(m+h
m )

2π

)
+∑

n,h

b(n)a(n+h)
nτ2(n+h)τ1

ω̂

( log(n+h
n )

2π

)
. (3.13)

It is clear from this last formula that it will be important to understand the behaviour of

correlations sums given by (3.5). For ω̂ with nice decay properties it follows from Riemann-

Stieltjes integration that

Ia,b,τ1,τ2,ω = ω̂(0) ∑
m≤N

a(m)b(m)

mτ1+τ2
+ ∑
|h|≤H
h6=0

∫ N−h

|h|T 1−ε

M ′
a,b;h(x,h)W (x,h)dx

+O(N1−(τ1+τ2)+max(ϑ(a,b),ϑ(b,a))+ε),

(3.14)

where H = NT ε−1 and W (x,h) =
ω̂

(
− log( x+h

x )
2π

)
(x+h)τ1xτ2 . This can be proven by following closely the

argument of Goldston and Gonek [28]. In the case that ϑ = max(ϑ(a,b),ϑ(b,a))< 1, this

gives an asymptotic formula for N� T
1

1−ϑ . Thus if ϑ = 1
2 + ε, this provides an asymptotic

formula for N � T 2−ε′ . A key goal of this chapter is to provide a variant of this formula

for a discrete mean value over the zeros of an L-function.

In our work we shall consider certain discrete sums attached to principal L-functions of

GL(d). Let π be an irreducible cupsidal automorphic representation of GL(d) over Q with

unitary central character. For ℜ(s)> 1, let

L(s,π) =
∞

∑
n=1

aπ(n)
ns

is the corresponding L-function. L(s,π) has an analytic continuation to the whole complex

plane and the non-trivial zeros of L(s,π) located in the critical strip 0 < ℜ(s) < 1 shall be

denoted ρπ. We will need to consider the logarithmic derivative

− L′(s,π)
L(s,π)

=
∞

∑
n=1

Λπ(n)
ns . (3.15)
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We shall consider discrete means of the shape

S := Sπ,ω,a,b = ∑
γπ

ω(γπ)A(ρπ)B(1−ρπ),

where ρπ = βπ + iγπ ranges through non tirivial zeros of L(s,π) and ω(s) is a specially

chosen weight, holomorphic in a vertical strip. Let T be a large parameter. We begin by

considering two other parameters u and ∆ which depend on T and satisfy

aT ≤ u≤ bT (3.16)

and

∆� T
logT

. (3.17)

We define an entire weight which depends on u and ∆ by

ω(s) := ω∆,u(s) = ∆
−1

π
− 1

2 e(s−(
1
2+iu))2/∆2

for s ∈ C. (3.18)

We think of ω(1
2 + it) as a weight centred at the point 1

2 + iu and ∆ represents the width of

of the support of ω. That is, if t is such that | t−u
∆
| is large then ω(1

2 + it) is very small.

In the case that the length of Dirichlet polynomials is bigger than the length of the

integral (i.e., K ≥ T ), then the behaviour of the autocorrelations of the sequence a the

correlations of the sequences a and a∗Λ determine the size of S. Set

Ca∗Λπ,b(x,h) = ∑
n≤x

(a∗Λπ)(n)b(n+h), (3.19)

Cb∗Λπ,a(x,h) = ∑
n≤x

(b∗Λπ)(n)a(n+h), (3.20)

Ca,b(x,h) = ∑
n≤x

a(n)b(n+h), (3.21)
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where

(a∗Λπ)(m) = ∑
jk=m

a( j)Λπ(k) = ∑
jk=m
j≤M

a( j)Λπ(k), (3.22)

by (3.1) and similarly

(b∗Λπ)(m) = ∑
jk=m

b( j)Λπ(k) = ∑
jk=m
j≤N

b( j)Λπ(k). (3.23)

We assume we have expressions of the shape

Ca∗Λπ,b;h(x) = Ma∗Λπ,b;h(x)+Ea∗Λπ,b;h(x),

Cb∗Λπ,a(x,h) = Mb∗Λπ,a;h(x)+Eb∗Λπ,a;h(x),

Ca,b;h(x) = Ma,b;h(x)+Ea,b;h(x),

(3.24)

where each of the main terms above are differentiable with respect to x for each h. We set

W (x,h) =
e−

∆2 log2(1+ h
x )

4√
x(x+h)

(
1+

h
x

)−iT
. (3.25)

Theorem 3.1. Let n∈N and let L(s,π) be the L-function attached to an irreducible cuspidal

automorphic representation of GL(d) over Q with unitary central character. Let A,B be

Dirichlet polynomials defined in (3.3). Let k = min(M,N), K = max(M,N), and d is the
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degree of L(s,π). We set u = T in (3.18) and we have that

∑
L(ρπ,π)=0

T/2<ℑ(ρπ)<2T

ω∆,T (ρπ)A(ρπ)B(1−ρπ)

=
d
2π

(
logT +O(1)

)(
∑

|h|≤ k logT
∆

∫ k

max( |h|∆logT ,1)
M ′

a,b;h(x)W (x,h)dx+Ea,b(k)
)

− ∑
|h|≤N logT

∆

∫ N

max( |h|∆logT ,1)
M ′

a∗Λπ,b;h(x)W (x,h)dx

− ∑
|h|≤M logT

∆

∫ M

max( |h|∆logT ,1)
M ′

b∗Λπ,a;h(x)W (x,h)dx+Ea,b,Λπ
(N,M),

where

Ea,b,Λπ
(N,M) = O

(
∑

|h|≤N logT
∆

|Ea∗Λπ,b;h(N)|
N

+
|Ea∗Λπ,b;h(

|h|∆
logT )|

T h
+

∫ N

max( |h|∆logT ,1)
|Ea∗Λπ,b;h(x)|x−2dx

+ ∑
|h|≤M logT

∆

|Eb∗Λπ,a;h(M)|
M

+
|Eb∗Λπ,a;h(

|h|∆
logT )|

T h
+

∫ M

max( |h|∆logT ,1)
|Eb∗Λπ,a;h(x)|x

−2dx
)
,

Ea,b(k) = O
(

∑
|h|≤ k logT

∆

|Ea,b;h(k)|
k

+
|Ea,b;h(

|h|∆
logT )|

T h
+

∫ k

max( |h|∆logT ,1)
|Ea,b;h(x)|x−2dx

)
.

Remark. The diagonal term (i.e., the term correspondence to h = 0) in Theorem 3.1 is

d
2π

(
logT +O(1)

)(∫ k

1
M ′

a,b;0(x)x
−1dx

)
−

∫ N

1
M ′

a∗Λπ,b;0(x)x
−1dx−

∫ M

1
M ′

b∗Λπ,a;0(x)x
−1dx.

In some application the diagonal term forms the main term for S.

Corollary 3.2. Let A,B be Dirichlet polynomials defined in (3.3). Also assume that we have

Ea∗Λπ,b;h(x),Eb∗Λπ,a;h(x),Ea,b;h(x)� xσ,
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where 0≤ σ < 1. Then

∑
L(ρπ,π)=0

T/2<ℑ(ρπ)<2T

ω∆,T (ρπ)A(ρπ)B(1−ρπ)

=
d
2π

(
logT +O(1)

)(
∑

|h|≤ k logT
∆

∫ k

max( |h|∆logT ,1)
M ′

a,b;h(x)W (x,h)dx
)

− ∑
|h|≤N logT

∆

∫ N

max( |h|∆logT ,1)
M ′

a∗Λπ,b;h(x)W (x,h)dx

− ∑
|h|≤M logT

∆

∫ M

max( |h|∆logT ,1)
M ′

b∗Λπ,a;h(x)W (x,h)dx+O
(
KσT−1).

Gaps between the zeros of the Riemann zeta function. We now discuss how our discrete

mean value theorems may have applications to the gaps between the zeros of the Riemann

zeta function. Assume the Riemann hypothesis and let 1
2 + iγn denote the zeros of Riemann

zeta function such that

0 < γ1 < γ2 < · · · ≤ γn ≤ γn+1 ≤ ·· · .

It follows from Riemann’s zero counting formula for N(T ) that γn∼ 2πn
logn . For this reason, it

is useful to define the scaled ordinates γ̂n =
logγn

2π
γn. On average, we have that γ̂n+1− γ̂n ∼ 1.

In [57], Montgomery studied the pair correlation of the Riemann zeta function, namely the

distribution of γ̂m− γ̂n. Based on his work he made the following conjecture.

Small Gaps Conjecture. We have that

µ = liminf
n→∞

(̂γn+1− γ̂n) = 0. (3.26)

From his work on pair correlation he was able to deduce µ < 0.68. Later, by a different

method, Montgomery and Odlyzko [58] showed that µ < 0.5179. Conrey, Ghosh, and

Gonek [12] slightly improved this to µ < 0.5172. Bui, Milinovich, and Ng [8] reduced this
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to µ < 0.5155. This was later improved by Feng and Wu [25]. These arguments are based

on ideas of Montgomery, Odlyzko [58] and Mueller [63] which we now describe. Let ϕ be

a non-negative function defined on [T/2,2T ] where T is a large parameter. Define

Qϕ(c,T ) :=

∫ cπ

logT

− cπ

logT
∑

T/2≤γ≤2T
ϕ(γ+α)dα

∫ 2T

T/2
ϕ(t)dt

. (3.27)

If it can be shown that there exists a function ϕ and a parameter c such that Qϕ(c,T ) > 1

for all sufficiently large T , then it follows that µ≤ c.

Conrey, Ghosh, and Gonek made the choice

ϕ(t) =
∣∣∣ ∑

n≤T (logT )−2

a(n)
nit

∣∣∣2, (3.28)

where a(n) is an arbitrary sequence satisfying |a(n)|� nε. They showed that for this choice

Qϕ(c,T ) = c−
2
π

ℜ
(

∑nk≤K
Λ(n)a(k)a(nk)sin

(
πc logn

logT

)
√

n logn

)
∑k≤K |a(k)|2

+oT→∞(1).

Furthermore, they proved that if c < 0.5, then Qϕ(c,T ) < 1. Interestingly, Goldston, in

an unpublished work has shown that if c < 0.50001, then Qϕ(c,T ) < 1. Thus this choice

cannot be used to show µ≤ 0.50001. In order to make the quotient Qϕ(c,T ) large, one may

choose coefficients of the shape

a(n) = µr(n)n−
1
2 f
( logn

logN

)
for n≤ N,

where N = T (logT )−2, ζ(s)−r = ∑
∞
n=1 µr(n)n−s for r ≥ 1, and f is a smooth function. For
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this choice

ϕ(t) =
∣∣∣ ∑

n≤T (logT )−2

µr(n)

n
1
2+it

f
( logn

logN

)∣∣∣2.
may be viewed as some sort of approximation to |ζ(1

2 + it)|−2r and thus ϕ is large at the

zeros of ζ(s). In light of Goldston’s work, we shall consider Dirichlet polynomials with

length greater than T . Let

ϕ1(t) = ω(1
2 + it)

∣∣∣ ∑
n≤K

a(n)
nit

∣∣∣2 (3.29)

where ω is defined by (3.18), K = T ϑ and ϑ ≥ 1. The weight ω(1
2 + it) is included for

technical reasons; it is used to simplify the evaluation of various contour integrals. We shall

evaluate (3.27) with the choice ϕ1.

Corollary 3.3. Let A be the Dirichlet polynomial defined in (3.3) and for α ∈ R set

aα(n) := a(n)niα. (3.30)

We assume the following regarding the error terms in Theorem 3.1:

Eaα,aα,Λπ
(K,K) = o(N) and Eaα,aα

(K) = o(D), where

D = ∑
|h|≤K logT

∆

∫ K

max( |h|∆logT ,1)
M ′

a,a;h(x)W (x,h)dx,

N = cD−2ℜ

(
∑

|h|≤K logT
∆

∫ cπ

logT

− cπ

logT

∫ K

max( |h|∆logT ,1)
M ′

aα∗Λπ,a−α;h(x)W (x,h)dx
)

dα.

Therefore we have

Qϕ1(c,T ) =
N
D
+o
(N

D
+1
)
. (3.31)
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We can re-write (3.31) as

Qϕ1(c,T ) =
(
1+o(1)

)
×

(
c−

∫ cπ

logT
− cπ

logT
2ℜ

(
∑|h|≤K logT

∆

∫ K
max( |h|∆logT ,1)

M ′
aα∗Λπ,a−α;h(x)W (x,h)dx

)
dα

∑|h|≤K logT
∆

∫ K
max( |h|∆logT ,1)

M ′
a,a;h(x)W (x,h)dx

)
.

In the case of L(s,π) = ζ(s), we would like to choose coefficients a(n) so that ϕ1(t)> 1

for some c < 1
2 . Unfortunately, we currently do not know how to find such a(n). The above

result tells us in order to do this, we need to know how calculate the correlations Ca,a;h(x)

and Ca∗Λπ,a;h(x). An appropriate choice for a(n) is a(n) = λ(n) := (−1)Ω(n), the Liouville

function, where Ω(n) is the total number of prime factors of n. This leads us to correlation

of λ(n).

Chowla’s famous conjecture, Problem 57 in [11], addresses this.

Chowla’s conjecture. Let f (x) be an arbitrary polynomial with integer coefficients, which

is not of the form cg(x)2 where c is an integer and g(x) is a polynomial with integer coeffi-

cients. Then

∑
n≤x

λ( f (n)) = o(x).

We now state three related conjectures that we will be used in our result on the gaps be-

tween the zeros of the Riemann zeta function.

Shfited convolution sums of the Liouville and von Mangoldt functions.

LV (η0,σ0,δ0) : For the triple (η0,σ0,δ0) of positive numbers, if x is large,

1≤ a≤ xη0,1≤ b≤ xσ0, then uniformly

∑
n<x

(λα ∗Λ)(n)λ−α(an+b)� xδ0

(3.32)

Chowla’s Conjecture (strong form).
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Ch1(η1,σ1,δ1) : For the triple (η1,σ1,δ1) of positive numbers, if x is large,

1≤ a≤ xη1,1≤ b≤ xσ1, then uniformly

∑
n≤x

λ(n)λ(an+b)� xδ1.

(3.33)

Chowla’s conjecture (for prime values).

Ch2(η2,σ2,δ2) : For the triple (η2,σ2,δ2) of positive numbers, if x is large,

1≤ a≤ xη1,1≤ b≤ xσ2, then uniformly

∑
p≤x

λ(ap+b)� xδ2 .

(3.34)

Later we discuss the relationship between the above conjectures.

Corollary 3.4. Assume the Riemann hypothesis and the statements LV (0, 1
12 ,

92
100) and Ch1(0, 1

12 ,
92
100)

hold. Then we have that

µ < 0.4999.

In other words the gaps between consecutive zeros of the Riemann zeta function are in-

finitely often smaller than one half of the average gap.

Remark 3.5. In the discussion section we will show that instead of LV (0, 1
12 ,

92
100) and

Ch1(0, 1
12 ,

92
100) we can assume Ch1(1, 1

12 ,
84
100) and Ch2(1, 1

12 ,
84

100) and same result as above

will hold.

3.2 Properties of principal L-functions

Let π be an irreducible cuspidal automorphic representation of GL(d) over Q with uni-

tary central character. Attached to π is its L-function L(s,π). These functions were defined

by Godement and Jacquet in [27]. For ℜ(s)> 1, L(s,π) has an Euler product of the form

L(s,π) = ∏
p

m

∏
j=1

(
1−

α j(p)
ps

)−1
. (3.35)
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It is known that L(s,π) is either the Riemann zeta function or is an entire function of order

1. Its completed L-function is

Φ(s,π) = Ns/2
γ(s,π)L(s,π)

where N is a natural number and the gamma factor γ(s,π) is defined by

γ(s,π) =
m

∏
j=1

ΓR(s+µ j) (3.36)

where m ∈ N, µ j’s are complex numbers, and ΓR(s) = π
− s

2 Γ( s
2). Using the above notation

we have the functional equation:

Φ(s,π) = επΦ(1− s,π). (3.37)

where επ ∈ C with |επ|= 1, and Φ(s,π) = Φ(s,π).

3.3 The weight function

The weight. For c ∈ R, we write

∫
(c)

f (s)ds =
∫ c+i∞

c−i∞
f (s)ds.

In the rest of this chapter we will use of the following lemma:

Lemma 3.6. Let c ∈ R and x > 0. Then

1
2πi

∫
(c)

ω(s)xsds =
1

2π
x

1
2+iue−

∆2 log2 x
4 , (3.38)

1
2πi

∫
(c)

ω(1− s)xsds =
1

2π
x

1
2−iue−

∆2 log2 x
4 , (3.39)

∫
∞

−∞

ω(1
2 + it)dt = 1. (3.40)
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Proof. On page 5 of [5] it is proven that

∫
(c)

e(s−s0)
2/∆2

x−sds = i∆
√

πx−s0 exp(−∆2 log2 x
4

).

Therefore (3.38) and (3.39) follows from the above by choosing s0 =
1
2 + iu. Lastly, (3.40)

is given by ∫
∞

−∞

ω(1
2 + it)dt = ∆

−1
π
− 1

2

∫
∞

−∞

e−(t−u)2/∆2
dt = 1. (3.41)

Now we give a proof of our theorem.

Proof of Theorem 3.1. Consider

S := ∑
L(ρπ,π)=0

ω(ρπ)A(ρπ)B(1−ρπ),

IR =
1

2πi

∫ c+i∞

c−i∞
ω(s)A(s)B(1− s)

L′

L
(s,π)ds (3.42)

and

IL =
1

2πi

∫ 1−c+i∞

1−c−i∞
ω(s)A(s)B(1− s)

L′

L
(s,π)ds (3.43)

where 1 < c < 2. Moving the contour in IR to the left from ℜ(s) = c to ℜ(s) = 1− c and

applying the residue theorem establish

S = IR− IL. (3.44)

We simplify IL. The functional equation may be written in unsymmetrical form as

L(s,π) = χπ(s)L(1− s,π)
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where

χπ(s) = επN
1
2−s

γ(1− s,π)γ(s,π)−1.

Taking logarithmic derivatives, we have

L′

L
(1− c+ it,π) =

χ′π
χπ

(1− c+ it)− L′

L
(c− it,π), (3.45)

where
L′

L
(s,π) :=

∞

∑
n=1

Λπ(n)
ns

and
χ′π
χπ

(s) =− logN− γ′

γ
(1− s,π)− γ′

γ
(s,π).

Thus IL = J1− J2, where

J1 =
1

2πi

∫
(1−c)

ω(s)A(s)B(1− s)
χ′π
χπ

(s)ds, (3.46)

J2 =
1

2πi

∫
(1−c)

ω(s)A(s)B(1− s)
L′

L
(1− s,π)ds. (3.47)

We now have

S = IR− J1 + J2. (3.48)

Thus the evaluation of S has been reduced to that of IR, J1, and J2. We further simplify J2.

By the variable change s→ 1− s it follows that

J2 =
1

2πi

∫
(c)

ω(1− s)A(1− s)B(s)
L′

L
(s,π)ds. (3.49)

Observe that this now has a very similar form to (3.42). Thus IR and J2 may be treated

similarly. By the absolute convergence of the Dirichlet series in (3.42) and (3.49), we
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expand out the above integrate termwise to obtain

IR =− 1
2πi

∞

∑
m=1

∑
n≤N

(a∗Λπ)(m)b(n)
n

∫
(c)

ω(s)
( n

m

)s
ds,

J2 =−
1

2πi

∞

∑
m=1

∑
n≤M

(b∗Λπ)(m)a(n)
n

∫
(c)

ω(1− s)
( n

m

)s
ds.

where (a∗Λπ)(m) and (b∗Λπ)(m) are given by (3.22) and (3.23).

3.3.1 Evaluation of IR,J2

We now proceed to evaluate IR and J2. By Lemma 3.6 with x = n/m

IR =− 1
2π

∞

∑
m=1

(a∗Λπ)(m)√
m ∑

n≤N

b(n)√
n

( n
m

)iu
e−

∆2 log2( n
m )

4 . (3.50)

and similarly

J2 =−
1

2π

∞

∑
m=1

(b∗Λπ)(m)√
m ∑

n≤M

a(n)√
n

( n
m

)−iu
e−

∆2 log2( n
m )

4 . (3.51)

We remove n and m such that ∆| log( n
m)| ≥ logT to obtain a bound of O(e−c(logT )2

). We set

m = n+h and u = T and we have IR equals

∑
|h|≤N logT

∆

∑
max( |h|∆logT ,1)≤n≤N

(a∗Λπ)(n+h)b(n)W (n,h)+O(e−c(logT )2
). (3.52)

Recall that W (n,h) = e−
∆2 log2(1+ h

n )
4√

n(n+h)

(
1+ h

n

)−iT . Similarly we have

J2 = ∑
|h|≤M logT

∆

∑
max( |h|∆logT ,1)≤n≤M

(b∗Λπ)(n+h)a(n)W (n,h)+O(e−c(logT )2
). (3.53)
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By the Riemann-Stieltjes integration and (3.19) we have that

IR = ∑
|h|≤N logT

∆

∫ N

max( |h|∆logT ,1)

(
M ′

a∗Λπ,b;h(x)W (x,h)dx+W (x,h)dEa∗Λπ,b;h(x)

)
dx

+O(e−c(logT )2
).

Similarly, by employing (3.20) we have

J2 = ∑
|h|≤M logT

∆

∫ M

max( |h|∆logT ,1)

(
M ′

b∗Λπ,a;h(x)W (x,h)dx+W (x,h)dEb∗Λπ,a;h(x)

)
dx

+O(e−c(logT )2
).

An integration by parts yields

∑
|h|≤N logT

∆

∫ N

max( |h|∆logT ,1)
W (x,h)dEa∗Λπ,b;h(x)

= ∑
|h|≤N logT

∆

(
W (x,h)Ea∗Λπ,b;h(x)

]N
max( |h|∆logT ,1)

−
∫ N

max( |h|∆logT ,1)
Ea∗Λπ,b;h(x)dW (x,h)dx

)
.

(3.54)

Now by considering the fact that

∂

∂x
W (x,h)� x−2,

we have that (3.54) contribute

O
(

∑
|h|≤N logT

∆

|Ea∗Λπ,b;h(N)|
N

+
|Ea∗Λπ,b;h(

|h|∆
logT )|

T h
+

∫ N

max( |h|∆logT ,1)
|Ea∗Λπ,b;h(x)|x−2dx

)
, (3.55)

to the error term in Theorem 3.1.
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3.3.2 Evaluation of J1

Finally, we must evaluate J1. Observe that the poles of χπ(s) lie in the set

m⋃
j=1

{−µ j− k | k ∈ Z≥0}.

Label these poles as c j for 1≤ j≤m. Moving the contour to the right to the line ℜ(s) = 1/2

yields

J1 =−
1

2πi

∫
( 1

2 )
ω(s)A(s)B(1− s)

χ′π
χπ

(s)ds+O
(

∑
poles c j

ω(c j)A(c j)B(1− c j)
)
,

where the O-term is the contribution from the pole at s = 0 and it may be shown that this is

O(e−c log2 T ) for some c > 0. The integral is

− 1
2π

∫
∞

−∞

ω(1
2 + it)A(1

2 + it)B(1
2 − it)

χ′π
χπ

(1
2 + it)dt

=− 1
2π

∫
∞

−∞

1
∆
√

π
e−

(t−u)2

∆2 A(1
2 + it)B(1

2 − it)
χ′π
χπ

(1
2 + it)dt

=− 1
2π

∫ T2

T1

1
∆
√

π
e−

(t−u)2

∆2 A(1
2 + it)B(1

2 − it)
χ′π
χπ

(1
2 + it)dt +O(e−0.99(logT )2

)

where T1 = T −∆ logT and T2 = T +∆ logT . Denote the last integral in the above as J′1.

Let

g(t) =−χ′π
χπ

(1
2 + it) and φ(t) =

1
∆
√

π
e−

(t−T )2

∆2 A(1
2 + it)B(1

2 − it).

Then

J′1 =
1

2π

∫ T2

T1

φ(t)g(t)dt. (3.56)
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We now determine an asymptotic expansion for g(t). We have

g(t) = logN +
γ′

γ
(1

2 + it,π)+
γ′

γ
(1

2 + it,π)

= logN +2ℜ
γ′

γ
(1

2 + it,π)

= logN +2
( d

∑
j=1

ℜ
Γ′R
ΓR

(1
2 + it−µ j)

)
.

Observe that
Γ′R
ΓR

(s) =− logπ

2
+

1
2

Γ′

Γ
( s

2)

and thus

g(t) = logN−d logπ+
d

∑
j=1

ℜ
Γ′

Γ
(1

4 −
µ j
2 + i t

2). (3.57)

Note that for δ > 0 fixed and |arg(z)| ≤ π−δ,

Γ′

Γ
(z) = logz− 1

2z
+Oδ(|z|−2).

Taking real parts, we obtain in the same region

ℜ
Γ′

Γ
(z) = log |z|+Oδ(|z|−1).

Now we can check that

log |14 −
µ j
2 + i t

2 |= log |t|+ c+O(|t|−1).

Inserting this is (3.57) yields

g(t) = logN−d logπ+d(log(|t|)+ c)+O(dt−1).
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Integrating by parts yields

J′1 =
1

2π

∫ T2

T1

φ(t)g(t)dt

=
1

2π

(
g(t)

∫ t

T1

φ(x)dx
∣∣∣T2

T1
−

∫ T2

T1

g′(t)
(∫ t

T1

φ(x)dx
)

dt
)
.

Note that

g(t) = d log t + c0 + c1t−1 +O(t−2),

g′(t) = dt−1 +O(t−2)

and ∫ T2

T1

φ(t)dt =
∫

∞

−∞

φ(t)dt +O(e−0.99(logu)2
).

Using these estimates

J′1 =
1

2π

(
d(logT2 +O(1))

∫
∞

−∞

φ(t)dt +O
(∫ T2

T1

t−1
∣∣∣∫ t

T1

φ(x)dx
∣∣∣dt
))

The second error term is

� T2−T1

T2

∫ T2

T1

φ(t)dt� ∆ logT
T2

∫
∞

−∞

φ(t)dt. (3.58)

Also

logT2 = logT + log(
T2

T
) = logT + log

(
1+

∆ logT
T

)
= logT +O

(
∆ logT

T

)

Putting everything together

J′1 =
1

2π

(
(d logT +O(1+

∆ logT
T

))
∫

∞

−∞

φ(t)dt
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∫
∞

−∞

φ(t)dt =
∫

∞

−∞

e−
(t−T )2

∆2 A(1
2 + it)B(1

2 − it)dt

and thus

J1 =
1

2π

(
d(logT +O(1+

∆ logT
T

))
1

∆
√

π

∫
∞

−∞

e−
(t−T )2

∆2 A(1
2 + it)B(1

2 − it)dt

To finish the proof we apply Lemma 3.7 to the above integral.

Proof of Corollary 3.2. By Using the bound |Ea∗Λπ,b;h(x,h)| � xσ in (3.55) we obtain an

error term O(Nσ/T ). We have a similar calculation for J2.

Lemma 3.7. Let A,B be Dirichlet polynomials defined in (3.3). Let

I =
∫
R

ω(t)A(1
2 + it)B(1

2 − it)dt. (3.59)

Then we have that

I = ∑
|h|≤ k logT

∆

∫ k

max( |h|∆logT ,1)
M ′

a,b;h(x)W (x,h)dx+Ea,b(k), (3.60)

where

Ea,b(k) =
(

∑
|h|≤ k logT

∆

|Ea,b;h(k)|
k

+
|Ea,b;h(

|h|∆
logT )|

T h
+

∫ k

max( |h|∆logT ,1)
|Ea,b;h(x)|x−2dx

)
.

Proof. This follows similar argument to our estimation of IR and J2. The main difference

is here we only need to consider the shifted convolutions of a(n) and b(n).

3.4 Small gaps between the zeros of the zeta function

In this section we establish Corollary 3.3 which provides a formula for Qϕ1(c,T ).
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Proof of corollary 3.3. Observe that

Qϕ1(c,T ) =

∫ cπ

logT
− cπ

logT
∑

T/2≤γ≤2T
ω(

1
2
+ i(γ+α))|A(1

2
+ i(γ+α)|2dα

∫ 2T

T/2
ω(

1
2
+ it)|A(1

2
+ it)|2dt

(3.61)

To prove the corollary we take φ(t) = |A(1
2 + it)|2ω(1

2 + it), and apply Theorem 3.1 by

considering aα(n) = a(n)niα in place of a(n) and a−α(n) = a(n)n−iα in place of b(n). Note

that since ω(1
2 + it) is positive therefore by the Mean Value Theorem there exist t̃ ∈ [t, t+α]

such that

|ω(1
2 + i(t +α))−|ω(1

2 + it)|< T−1+ε
ω(1

2 + it̃)� T−1+ε
ω(1

2 + it).

Thefore we can apply Theorem 3.1 to get

Q (c,T ) =
N
D
+E (3.62)

where

N =
∫ cπ

logT

− cπ

logT

( logT
2π

+O(1)
)

∑
|h|≤K logT

∆

∫ K

max( |h|∆logT ,1)
M ′

a,a;h(x)W (x,h)
( x

x+h

)iαdxdα

−2ℜ

(
∑

|h|≤K logT
∆

∫ K

max( |h|∆logT ,1)
M ′

aα∗Λπ,a−α;h(x)W (x,h)dx
)

dα

and

D = ∑
|h|≤K logT

∆

∫ K

max( |h|∆logT ,1)
M ′

a,a;h(x)W (x,h)dx.
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We integrate with respect to α in the first integrand of N and we have

∫ cπ

logT

− cπ

logT

( logT
2π

+O(1)
)

∑
|h|≤K logT

∆

∫ K

max( |h|∆logT ,1)
M ′

a,a;h(x)W (x,h)
( x

x+h

)iαdxdα

=c+O( 1
logT )

)
∑

|h|≤K logT
∆

∫ K

max( |h|∆logT ,1)
M ′

a,a;h(x)W (x,h)dx

+O
(

1
T ∑
|h|≤K logT

∆

∫ K

max( |h|∆logT ,1)
M ′

a,a;h(x)W (x,h)dx
)

Therefore we have

N
D

= c−

∫ cπ

logT
− cπ

logT
2ℜ

(
∑|h|≤K logT

∆

∫ K
max( |h|∆logT ,1)

M ′
aα∗Λπ,a−α;h(x)W (x,h)dx

)
dα

∑|h|≤K logT
∆

∫ K
max( |h|∆logT ,1)

M ′
a,a;h(x)W (x,h)dx

+O( 1
logT ).

For the error term E we have

E =
Eaα,aα,Λπ

(K,K)D+Eaα,aα
(K)D−Eaα,a(K)N

D(D+Eaα,aα
(K))

(3.63)

Here we use the assumption that Eaα,aα,Λπ
(K,K) = o(N) and Eaα,aα

(K) = o(D) and there-

fore we have

E = o
(∣∣N

D

∣∣+1
)
. (3.64)

This shows that Q (c,T )∼ N
D

, as T −→ ∞.

To prove Corollary 3.4 we need to apply Corollary 3.3 to

A(s) = ∑
n≤K

λ(n)niα

ns . (3.65)

Note that we will take K to be much larger than T and therefore we will have off diagonal

contribution. However, we will show that that the off-diagonal contribution is negligible.

In order to use Corollary 3.3 need to show Eλ,λ,Λ(K,K) = o(N) and Eλ,λ(K) = o(D). By
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assuming LV (0, 1
2 ,δ), for h 6= 0 we have

∑
n≤x

(λ−α ∗Λ)(n)λα(n+h)� xδ. (3.66)

This shows that for h 6= 0, Mλ−α∗Λ,λα;h(x) = 0 and Eλ−α∗Λ,λα;h(x,h) = O(xδ). We also

have Eλ−α,λα;h� xδ1 by the strong form of Chowla’s conjecture with a = 1, Ch1(0, 1
2 ,δ1).

This shows that we can take K = T 2/(1+δ)−ε and have Eλ,λ,Λ(K,K) = o(N) and Eλ,λ(K) =

o(D). Consequently we can apply Corollary 3.3 to (3.65)

Proof of Corollary 3.4. Let c be positive such that c = O(1) and let K = T θ. We apply

Corollary 3.3 to (3.65) and we have

Qϕ1(c,T )∼ c−

∫ cπ

logT
− cπ

logT
2ℜ

( ∫ K
1 M ′

λα∗Λ,λ−α
(x)W (x,0)dx

)
dα∫ K

1 M ′
λ,λ(x)W (x,0)dx

(3.67)

We have that W (x,0) = x−1 and therefore we can rewrite the integrals in the above as the

corresponding summations and therefore we have

Qϕ1(c,T )∼
(

c−

∫ cπ

logT
− cπ

logT
2ℜ

(
∑

mn≤K

λ(m)miαΛ(n)λ(mn)(mn)−iα

mn

)
dα

K

∑
n=1

λ(n)2

n

)

= c−

(
2
π

∑
mp≤K

λ(m)λ(mp)sin
(
πc logn

logT

)
mp

)
K

∑
n=1

λ(n)2

n

+O
( 1

logT

)

= c+
2logK

π

∫ K
1

(
1− logx

logK

)
sin
(

πc logx
logT

)
x logx dx

logK +O(1)

= c+
2
π

∫ 1

0

(1−u)sin
(
πcu logK

logT

)
u

du+O
( 1

logT

)
= c+

2
π

∫ 1

0

(1−u)sin
(
πcuθ

)
u

du+O
( 1

logT

)
.
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With the choice c = 0.4999 and θ = 1+1/12 we find that this expression equals 1.00034+

O(1/ logT ) and thus Qϕ1(c,T )> 1 as T → ∞.

Discussion Here we will show the relation between LV (η0,σ0,δ0) and Ch1(η1,σ1,δ1)

and Ch2(η2,σ2,δ2). We will prove that Ch1(η0,1,δ1), plus Ch2(η0,1,δ2), imply LV (η0,0,(1+

δ)/2) with δ = max(δ1,δ2).

We have that

∑
n≤x

(λ−α ∗Λ)(n)λα(n+h) = ∑
1≤mpk≤x

λ(m)λ(mpk +h)
(

pk +
h
m

)iα
log p (3.68)

=
L

∑
k=1

∑
m<
√

x

λ(m) ∑
p≤(x/m)1/k

λ(mpk +h)
(

pk +
h
m

)iα
log p (3.69)

+
L

∑
k=1

∑
m≥
√

x
∑

p≤(x/m)1/k

λ(m)λ(mpk +h)
(

pk +
h
m

)iα
log p (3.70)

where L = O(logx). The terms k ≥ 2 in (3.69) are estimated trivially as

∑
2≤k≤L

∑
m≤
√

x
∑

p≤(x/m)1/k

log p� ∑
2≤k≤L

∑
m≤
√

x

(x/m)1/k� x
1
2 .

For k = 1, we let g(x) = (x+ h
m)

iα logx and the inner sum in (3.69) is

∑
p≤ x

m

λ(mp+h)g(p) =
(

∑
p≤ x

m

λ(mp+h)
)

g( x
m)−

∫ x
m

1

(
∑
p≤t

λ(mp+h)
)

g′(t)dt.

Using the fact that g′(t)� t−1+ε together with Ch2(η0,1,δ2), (3.34), we find that

∑
p≤ x

m

λ(mp+h)g(p)� ( x
m)

δ2
( x

m + h
m

)iα log( x
m)+O

(∫ x/m

1
tδ2−1+ε

)
� ( x

m)
δ2+ε. (3.71)
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Thus (3.69) is bounded by

� ∑
m≤
√

x

|λ(m)|( x
m)

δ2+ε +
√

x� x(1+δ2+ε)/2.

We now estimate (3.70). We rewrite the sum as

L

∑
k=1

∑
p<x1/(2k)

log p ∑√
x≤m≤x/pk

λ(m)λ(mpk +h)
(

pk +
h
m

)iα
.

Now by using Ch1(η0,1,δ1), (3.33), and the fact that

∂

∂x

((
pk +

h
x

)iα
)
� x−1+ε

and partial summation we have that the innermost sum in (3.70) is

( x
pk

)δ1
(

pk +
hpk

x

)iα log(x)+O
(∫ x/pk

1
tδ1−1+εdt

)
. (3.72)

Therefore we have that (3.70) contributes O(x(1+δ1+ε)/2) to the error term. Finally, let

δ = max(δ1,δ2), then for h 6= 0 we have

∑
n<x

(λ−α ∗Λ)(n)λα(n+h) = O(x(1+δ+ε)/2). (3.73)

3.4.1 Small gaps and Q (c,T )

In this section we give a proof of the fact that Q (c,T )> 1 implies µ≤ c. Assume that

Qϕ(c,T ) =

∫ cπ

logT
− cπ

logT
∑T/2≤γ≤2T ϕ(γ+α)dα∫ 2T

T/2 ϕ(t)dt
> 1,

this means that there exist an intersection between intervals [γ− cπ

logT ,γ+
cπ

logT ] where T/2≤

γ ≤ 2T are the imaginary parts of the zeros of the zeta function. Therefore we can find γ
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and γ′ such that

|γ− γ
′|< 2πc

logT
,

and therefore there exist n such that

γn− γn+1 =
2πc̃

logT
,

with |c̃|< c. Using this we have

γn logγn

2π
− γn+1 logγn+1

2π
=

1
2π

(
γn+1 log

(
1+

2πc̃
γn+1 logT

))
+

c̃
logT

log
(
γn+1 +

2πc̃
logT

)
= c̃+O

( 1
logT

)
, (3.74)

Since |γn+1 +
2πc̃

logT |< 2T +1. Therefore we have |γ̂n− γ̂n+1| ≤ |c̃|< c. Now since we have

µ = liminfn→∞

(
γ̂n+1− γ̂n

)
we conclude that µ < c.
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Chapter 4

On binary and quadratic divisor
problems

4.1 Introduction

In this paper we are concerned with shifted convolution sums of several arithmetic func-

tions. We divide the introduction into three parts. In the first part we discuss the binary

divisor problem which plays an important role in bounding the fourth moment of the zeta

function on the critical line. In the second part we discuss the quadratic divisor prob-

lem which has applications to bounding more general L-functions. In the last part of the

introduction we discuss the application of the quadratic divisor problem to the Lindelöf

hypothesis.

4.1.1 Binary convolution sums

The binary additive divisor problem is related to calculation of

∑
m−n=h

d(m)d(n) f (m,n), (4.1)

where d(n) is the number of divisors of n and f is a smooth function on R+×R+ which

oscillates mildly. Vinogradov [66] and Conrey and Gonek in [13] conjectured that

∑
n≤X

d(n)d(n+h) = Main term+O(X1/2+ε),
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uniformly for h ≤ X1/2, where the main term is of the form XP(logX), where P is a

quadratic polynomial whose coefficients are functions of h. This problem begins with In-

gham, who found an asymptotic with error term o(X). Estermann [24] improved the error

term to O(X11/12+ε). Using Weil’s optimal bound on Kloosterman sums, Heath-Brown [35]

improved the error term to O(X5/6+ε). The final improvement on the error term with respect

to X was obtained by Deshouillers and Iwaniec [17]. For fixed h they proved

∑
n≤X

d(n)d(n+h) = Main term+O(X2/3+ε). (4.2)

Further improvement in the h-aspect was obtained by Motohashi [62], where he proved a

uniform result for h≤ X64/39. Finally, Meurman [55] improved the range to h≤ X2−ε. This

is the best result in the literature.

In this article shifted convolution sums of the shape

∑
am−bn=h

λ(m)γ(n) f (am,bn) (4.3)

shall be considered for sequences including the divisor function, Fourier coefficients of a

primitive cusp form, and the number of representations of an integer n, as a sum of two

squares. Let g(z), be a primitive cusp form of weight k and level q. We have that g has a

Fourier expansion

g(z) =
∞

∑
n=1

α(n)n(k−1)/2e(nz). (4.4)

The shifted convolution sum for the Fourier coefficients α(n) of f is

∑
am−bn=h

α(m)α(n) f (am,bn). (4.5)

Blomer [6] proved that if f is supported on [X ,2X ]×[X ,2X ] and has decaying partial deriva-

tives satisfying
∂i+ j

∂xi∂y j f (x,y)� 1
X i+ j , (4.6)
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then (4.5) is� X1/2+θ+ε. Here θ is the constant such that for λ(n) the eigenvalues of the

Hecke operator that acts on the space of weight 0 Maass cusp forms of level q, we have

|λ(n)| ≤ d(n)nθ. The Ramanujan-Petersson conjecture predicts θ = 0 and the Weil bound

for Kloosterman sums gives θ≤ 1/4. Kim and Shahidi [50] proved θ≤ 1/9, and the current

best bound is θ≤ 7/64, due to Kim and Sarnak [49].

For sums of two squares we have

r(n) = #{(x,y) : x2 + y2 = n}= 4∑
d|n

χ4(d),

where χ4 is the non principal character modulo 4. For odd h, Iwaniec [45], by employing

spectral theory, proved

∑
n≤X

r(n)r(n+h) = 8
(
∑
d|h

1
d

)
X +O(h1/3X2/3),

and Chamizo [10] gave a conditional result for general h.

There is a major difference between sequences like d(n) or r(n) and α(n). We will

explain it as follows. For α(n) we have

∑
n≤X

α(n)e(nx)�
√

X logX ,

while the same sum obtained by replacing α(n) with d(n) or r(n), depends on x, has main

terms bigger than
√

X . This difference makes it harder to deal with shifted convolution

sums of sequences like d(n) or r(n). More precisely, the circle method developed by Jutila

[48] is very powerful for calculating the shifted convolution sums of coefficients of modular

or Mass forms of SL(2,Z) and even SL(3,Z) (see [64]). However because of the difference

mentioned, the Jutila circle method is not useful for shifted convolution sums of the se-

quences whose main terms are greater than
√

X . The purpose of this part of this article is to

develop the δ-method of Duke and Friedlander and Iwaniec [22] in order to handle shifted
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convolution sums of these sequences, with good error terms. The key ingredient is Voronoi

type summation formulae which introduces Kloosterman sums via the circle method. In

our work instead of using the Weil bound on Kloosterman sums we will get a better error

term by means of the Kuznetsov trace formula [18, Theorem 1].

In this direction we prove

Theorem 4.1. Let f be a smooth function supported on [X ,2X ]× [X ,2X ] satisfying (4.6).

then for ε > 0 and h� X1−ε, we have

∑
m−n=h

d(m)d(n) f (m,n) = Main term( f )+O(X1/2+εhθ). (4.7)

The main term is the same as [22, Equation 5] with a,b = 1.

Note that the Ramanujan Petersson conjecture predict that θ = 0. This theorem im-

proves on Meurman’s result [55], O(X1/2+εh1/8+θ/2), for the weight function f satisfying

(4.6). (See page 238 of [55] with N � X .)

Another example of sequences with main terms is obtained from τχ(n) = ∑d|n χ(d)

where χ is a Dirichlet character. We prove that

Theorem 4.2. Let χ be an odd primitive character modulo a prime number p. Let f be a

smooth function supported on [X ,2X ]× [X ,2X ] satisfying (4.6). Then for h� X1−ε, if p|h

we have

∑
m−n=h

τχ(m)τχ(n) f (m,n) = Main term( f )+O(X1/2+θ+ε), (4.8)

where the Main term stated in (4.63). For the sum of two squares, if 4|h we have

∑
m−n=h

r(m)r(n) f (m,n) = Main term( f )+O(X1/2+θ+ε). (4.9)

where the main term comes from setting q = 4 in (4.63).

Note that (4.8) improves, in the binary case, the error O(X3/4+ε) obtained by Heap [34].

Our method seems to be applicable to the shifted convolution sum of the divisor function
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and the Fourier coefficient of a cusp form of the full modular group and weight k. We

expect the following to hold:

∑
n−m=h

α(n)d(m) f (n,m) = O(X1/2+εhθ). (4.10)

Next we look at more general shifted convolution sums.

4.1.2 Quadratic divisor problem

As we mentioned previously one application of the binary divisor problem is to bound-

ing the moments of the zeta function. In this section we study a variation of the binary

divisor problem that has applications to other families of L-functions. Let Lg(s) be the

L-function attached to g in (4.4), i.e.

Lg(s) :=
∞

∑
n=1

α(n)n−s. (4.11)

This L-function satisfies a functional equation from which the convexity bound

Lg(s)� (k2|s2|q)
1
4+ε

may be derived. The Lindelöf hypothesis asserts

Lg(s)�
(
k2|s2|q

)ε
, (4.12)

for any ε > 0. In many applications it suffices to replace the exponent 1/4 by any smaller

number. Such an estimate is called a subconvex bound. In order to break the convexity

bound on Lg(s), Duke, Friedlander and Iwaniec in [21, 20] needed an asymptotic with a

good error term for D f (a,1;h), where

D f (a,b;h) := ∑
am−bn=h

d(m)d(n) f (am,bn). (4.13)
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In [22] they proved that if f satisfies (4.6) then

D f (a,b;h) = Main term( f ,a,b)+E f (a,b,h), (4.14)

where

E f (a,b,h) = O(X3/4+ε).

Note that the main term has order of magnitude of X/ab, thus the result is nontrivial as long

as ab < X1/4. As an application of (4.14) in [21, 20] they proved that

Lg(
1
2 + it)� q47/192+ε. (4.15)

In general, improving the error term or getting the error term of order X1−ε/ab, appears to

be an extremely hard problem which we discuss in the next section. The purpose of this

article is to improve the error term when one of a or b equals 1. We prove the following:

Theorem 4.3. Let Let f be a smooth function supported on [X ,2X ]× [X ,2X ] satisfying

(4.6). For h� X1−ε, We have

D f (a,1;h) := ∑
am−n=h

d(m)d(n) f (am,n) = Main term( f ,a,1)+O(X1/2+θ+ε), (4.16)

where the Main term stated in the Equation (4.80).

Note that θ< 7/64≈ 0.109375. This unconditionally improves the error term O(X0.75+ε)

of [22] to O(X0.6094), and under the Ramanujan-Petersson conjecture to O(X0.5+ε).

Remark 4.4. For the application to get a subconvex bound (4.15) it is enough to take b = 1.

In general to detect the condition am− bn = h in the sum (4.13), one needs to use

some variant of the circle method. There are two major versions of the circle method that

can be used in shifted convolution sums problems. The δ-method was invented by Duke,
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Friedlander and Iwaniec [19] and it was used to break the convexity bound on L-functions

associated to holomorphic cusp forms. Their idea was developed in many other papers (see

[51, 56]). Another method used frequently in such problems is known as the Jutila circle

method [48], which also has applications on shifted convolution sums for GL(3)×GL(2)

[64]. We did not use either of these methods. In the case of the δ-method the inverses of

a and b would enter in the Kloosterman sums. This would make it difficult to average the

Kloosterman sums. We tried to apply Blomer’s [6] treatment of the Jutila circle method

to D f (a,b;h). However, despite many attempts, we were unable to make the argument

work. The problem starts with [6, Lemma 3.2], which provides square root cancellation

on average for shifted convolution sums of Fourier coefficient of cusp forms. We do not

have such estimates for the divisor function. Here we use a more elementary method which

goes back to Heath-Brown and was used by Meurman in [55]. In our argument we need to

take b= 1, otherwise the inverse of b enters the Kloosterman sums and makes the averaging

difficult. It might be possible to treat the case b > 1 by using spectral theory of automorphic

forms to break the Kloosterman sums into Fourier coefficients of Maass forms. However,

even if this idea works, it will greatly complicate the argument and we would like to present

a simple proof.

4.1.3 Generalized shifted divisor problem

In the previous section we mentioned the connection between the quadratic divisor prob-

lem and sub-convexity bounds for families of L-functions. Breaking the convexity bound is

a step forward towards the Lindelöf hypothesis (4.12) for these L-functions. Now let

Mk(T ) =
∫ T

0

∣∣ζ(1
2 + it

)∣∣2kdt (4.17)
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be the k-th moment of the Riemann zeta function. The Lindelöf hypothesis for the Riemann

zeta function is equivalent to the statement that

Mk(T )� T 1+ε, (4.18)

for all positive integers k and all positive real numbers ε. There is a close connection

between the generalized shifted divisor problem and the moments of the zeta function.

Here we define the generalized shifted divisor problem, or (k, l)-shifted divisor problem, as

finding non-trivial estimates for the sum

∑
m−n=h

dk(m)dl(n) f (m,n), (4.19)

where dk(n) = #{(d1 · · ·dk) ∈Nk : d1 · · ·dk = n}, and f satisfies (4.6). There are conflicting

conjectures regarding the size of the error term in the (k,k)-shifted divisor problem.

Conjecture 4.5. Vinogradov [66] conjectured

∑
m−n=h

dk(m)dk(n) f (m,n) = Main term( f )+O(X1− 1
k ). (4.20)

Furthermore, Ivic [44] suggested that the O term in (4.20) should be replaced by Ω.

Contrary to Ivic’s conjecture, Conrey and Gonek’s [13] conjectured the following.

∑
m−n=h

dk(m)dk(n) f (m,n) = Main term( f )+O(X
1
2+ε), (4.21)

uniformly for h ≤
√

X . Note that in their formulation of the conjecture, f is the indicator

function of [X ,2X ]× [X ,2X ]. However in practice we need to consider f as in (4.6). Ivic’s

conjecture in the case k = 2 was proven by Motohashi [62] and Szydlo improved the result

and showed the error term in the case k = 2 is Ω±(X1/2).

We mentioned some of the results for the (2,2)-shifted divisor problem in the first part
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of the introduction. For k, l > 2 this problem remains unsolved and seems to be extremely

hard. For the case (k, l) = (3,2) an asymptotic formula was obtained by Hooley [39].

For the case (k,2) an asymptotic formula was derived by Linnik [54] using the dispersion

method. Motohashi improved on Linnik’s result by saving a power of logX in the error

term. A power savings in the error term was obtained by Friedlander and Iwaniec [26]

in the case (k, l) = (3,2). They showed that there exists δ > 0 such that the error term is

smaller than X1−δ. Heath-Brown [36] showed that δ = 1/102 is valid.

Here we describe a bridge between the quadratic divisor problem and the (k, l)-shifted

divisor problem. We explain this by means of the following lemma.

Lemma 4.6. Let f be a compactly supported function defined on R2. We have that

∑
a,b

D f (a,b;h) = ∑
a,b

∑
am−bn=h

d(m)d(n) f (am,bn) = ∑
m−n=h

d3(m) d3(n) f (m,n). (4.22)

In general for k, l ≥ 2 we have

∑
ai

1≤i≤k−1

∑
b j

1≤ j≤l−1

∑
a1···ak−1n−b1···bl−1m=h

d(n) d(m) f (a1 · · ·ak−1n, b1 · · ·bl−1m)

= ∑
m−n=h

dk(m) dl(n) f (m,n). (4.23)

This lemma shows that by summing D f (a,b;h) over a and b we can study the general-

ized shifted divisor problem. Therefore the error term in the (k, l)-shifted divisor problem is

the sum of the error terms in the quadratic divisor problem. This brings us to the following

crucial question.

Question: What is the size of the error E f (a,b,h)?

We may assume the following plausible assumptions:

1. The function E as a function of a,b oscillates mildly with respect to changes in a,b.

This means that if ‖ (a,b)− (c,d) ‖2 is small then E f (a,b,h) and E f (c,d,h) are

roughly the same size.
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2. For a,b� 1, E f (a,b,h) = O(X1/2+ε).

3. We assume that it possible to restrict the sum of E f (a,b,h) over a,b in (4.22) to the

region ab� X .

Using these heuristics we may conclude that either E f (a,b,h)=O(
√

X/ab) or E f (a,b,h)=

O(
√

X/ab). Note that E f (a,b,h)=O(
√

X/ab) matches very well with Conrey and Gonek’s

conjecture for (k,k)-shifted divisor problem (4.21). While assuming E f (a,b,h)=O(
√

X/ab)

only matches Vinogradov’s conjecture for (3,3)-shifted divisor problem. Moreover, to get

Vinogradov’s conjecture (4.20) for general k one needs to assume specific cancellations

between E f (a,b,h) when we sum over a,b. This argument shows that the conjecture of

Conrey and Gonek on the order of magnitude of the error terms in (k,k)-shifted divisor

problem seems to be more accurate than Vinogradov’s and Ivic’s conjectures.

We conclude this section with pointing out the connection between the (k,k)-shifted

divisor problem and the Lindelöf hypothesis for the Riemann zeta function. Ivic [44] has

shown that if (4.20) holds for k = 3 then (4.18) holds for k = 3. Moreover, in [43] he proved

that if we assume that the error term, on average over h in (4.21), has square root cancella-

tion, then the Lindelöf hypothesis for the Riemann zeta function would follow.

Structure of the paper and notation. We will proceed first with introducing the δ-method

and then using the Voronoi summation formulas to form Kloosterman sums. After that

we will prove the necessary conditions that are needed for using the Kuznetsov formula in

averaging the Kloosterman sums. We conclude the paper by treating the quadratic divisor

problem with a different formulation but somehow similar with the method used in the bi-

nary divisor problem. Note that throughout the paper we consider h� X1−ε.
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Kloosterman sums. Let m,n,q be natural numbers and e(x) = e2πix. The sum

S(m,n;q) = ∑
1≤x<q
(x,q)=1

e
(mx+nx

q

)
(4.24)

where xx≡ 1 (mod q), is called the Kloosterman sum. Weil [68] proved that

S(m,n;q)≤ d(q)
√

gcd(m,n,q)
√

q.

Although the Weil bound is optimal, on average the Kloosterman sum has a size about qε.

This follows from Kuznetsov’s formula which is a certain average of S(m,n;q) over q. Our

use of kuznetsov’s formula instead of the Weil bound the key tools used in this article.

Bessel functions. Throughout this article we make extensive use of the standard Bessel

functions. They are defined as follows:

Jn(z) =
∞

∑
k=0

(−1)k(z/2)2k+n

k!(n+ k)!
,

Yn(z) =−
n−1

∑
k=0

(n− k−1)!
πk!

(z/n)2k−n +
∞

∑
k=0

(−1)k(n− k−1)!
πk!

(2log(z/2)− Γ′

Γ
(k+1)− Γ′

Γ
(k+n+1)),

Kn(z) =
1
2

n−1

∑
k=0

(−1)k(n− k−1)!
k!

(z/n)2k−n

+
(−1)n−1

2

∞

∑
k=0

(−1)k(n− k−1)!
k!

(2log(z/2)− Γ′

Γ
(k+1)− Γ′

Γ
(k+n+1)).

Moreover we use the following properties.
(
zvYv(z)

)′
= zvYv−1(z),

(
zvKv(z)

)′
=−zvKv−1(z),

and
(
zvJv(z)

)′
= zvJv−1(z). We also use the following bounds from [51, Lemma C.2]. For

z > 0 and k ≥ 0

( z
1+ z

)iY (i)
0 (z)� (1+ | logz|)

(1+ z)1/2 , (4.25)

( z
1+ z

)iK(i)
0 (z)� e−z(1+ | logz|)

(1+ z)1/2 . (4.26)
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For further properties of Bessel functions see [52].

4.2 δ-method

In this section we follow [22] to introduce and set up the δ-method. Let Q > 0 and w(u)

be an even, smooth, compactly supported function on Q≤ |u| ≤ 2Q and

w(i)(u)� 1
Qi+1 ,

∞

∑
q=1

w(q) = 1. (4.27)

The δ function is defined on Z by δ(0) = 1 and δ(m) = 0 for m 6= 0. The δ-method gives

a decomposition of the δ function in terms of additive characters e(·) on rational numbers.

More precisely we have:

δ(m) =
∞

∑
q=1

∑
(d,q)=1

e
(md

q

)
∆q(m), (4.28)

where

∆q(m) =
∞

∑
r=1

w(qr)−w( m
qr )

qr
.

Let f (x,y) be a differentiable function supported in [X ,2X ]× [X ,2X ] satisfying (4.6). Let φ

be a smooth function supported on [−X ,X ] with the property that φ(i)� X−i. By applying

(4.28) to detect the condition m−n = h in (4.7) we have

∑
m−n=h

d(m)d(n) f (m,n) = ∑
q<Q

∗

∑
d mod q

e
(−hd

q

)
∑
m,n

d(m)d(n)e
(dm−dn

q

)
E(m,n,q), (4.29)

where

E(x,y,q) = f (x,y)φ(x− y−h)∆q(x− y−h). (4.30)

For the left hand side of (4.8), (4.9) and (4.10) we have similar formula.
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4.3 Voronoi summation formulas

Let f (n) be an arithmetic function, let q be an integer, and let g(n) be a compactly

supported function on R+. For (d,q) = 1 we have

∑
n

f (n)e
(nd

q

)
g(n) = ∑

a mod q
e
(a

q

)
∑

n≡da mod q

f (n)g(n) (4.31)

where dd ≡ 1 (mod q). Now if for a 6= 0, f (n) has some sort of well distribution modulo q

one can study the main term and the error term in (4.31). The general Voronoi summation

formula studies the sum of the type (4.31) for certain sequences. The idea started with

Voronoi in [67]. Here we state the Voronoi summation formula for d(n),τχ(n),r(n) and

α(n).

Lemma 4.7. Let g(x) be a smooth, compactly supported function on R+ and let (d,q) = 1.

We have

∞

∑
n=1

d(n)e
(nd

q

)
g(n) =

1
q

∫
∞

0
(logx+2γ− logq)g(x)dx+

2

∑
i=1

∞

∑
n=1

e
(±nd

q

)
gi(n), (4.32)

where

g1(n) =−
2π

q

∫
∞

0
g(x)Y0

(4π
√

nx
q

)
dx

g2(n) =
4
q

∫
∞

0
g(x)K0

(4π
√

nx
q

)
dx.

If (c,q) = 1, for τχ(n), where χ is an odd Dirichlet character modulo c, we have

∞

∑
n=1

τχ(n)e
(nd

q

)
g(n) =

χ(q)
q

L(1,χ)
∫

∞

0
g(x)dx (4.33)

−2π
χ(q)

q
τ(χ)

c

∞

∑
n=1

τχ(n)e
(−ndc

q

)∫ ∞

0
g(x)J0

(4π
√

nx√
cq

)
dx,
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if c|q we have

∞

∑
n=1

τχ(n)e
(nd

q

)
g(n) =

χ(d)
q

τ(χ)L(1,χ)
∫

∞

0
g(x)dx (4.34)

−2πi
χ(d)

q

∞

∑
n=1

τχ(n)e
(−nd

q

)∫ ∞

0
g(x)J0

(4π
√

nx
q

)
dx,

and if c = 4 and q≡ 2 (mod 4) we have

∞

∑
n=1

r(n)e
(nd

q

)
g(n) =−2πi

χ(d)
q

∞

∑
n=1

r∗(n)e
(−nd

2q

)∫ ∞

0
g(x)J0

(4π
√

nx
q
√

2

)
dx, (4.35)

where

r∗(n) = ∑
m1m2=n

χ4(m1)
(
1− (−1)m1

)
(4.36)

Finally, for Fourier coefficients of weight k cusp form we have

∞

∑
n=1

α(n)e
(nd

q

)
g(n) =

−2πik

q

∞

∑
n=1

α(n)e
(−nd

q

)∫ ∞

0
g(x)Jk−1

(4π
√

nx
q

)
dx. (4.37)

Here Y0,K0 and Jk are Bessel functions.

The formula for d(n) is due to Jutila [47]. The formula for α(n) and τχ(n) in the case

(c,q) = 1 and c|q can be found in Chapter 4 of [46]. Here we would give a proof for the

case c = 4 and q≡ 2 (mod 4).

Proof of Lemma 4.7. Let χ4 be the non principal odd character modulo 4. We have

∑
n

r(n)e
(nd

q

)
g(n) = ∑

n
∑

m1m2=n
χ4(m1)e

(m1m2d
q

)
g(m1m2). (4.38)

We set m1 = 2n1q+u1 and m2 = n2q+u2. Since q≡ 2 (mod 4), with this choice of m1 we

have χ4(m1) = χ4(u1) and therefore (4.38) is equal to

∑
u1 mod 2q
u2 mod q

∑
n1,n2

χ4(u1)e
(u1u2d

q

)
g
(
(u1 +2qn1)(u2 +qn2)

)
(4.39)
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We apply the Poisson summation formula (Equation (4.24) of [46]) to the sum over n1,n2.

Therefore, (4.39) is equal to

1
2q2 ∑

m1,m2

∑
u1 mod 2q
u2 mod q

χ4(u1)e
(u1u2d

q
+

m2u2

q
+

m1u1

2q

)
ĝ
( m1√

2q
,

m2√
2q

)
, (4.40)

where

ĝ
( m1√

2q
,

m2√
2q

)
=

∫
∞

0

∫
∞

0
g(xy)e

(−m1x√
2q

)
e
(−m2y√

2q

)
dxdy.

Note that
√

2 in the denominator comes from the change of variable inside the above inte-

gral. Now the sum over u2 inside (4.40) is zero unless u1 ≡ dm2 (mod q), in which case the

sum is equal to q. Since we considered u1 modulo 2q we have only choices dm2,dm2 + q

for u1. Considering this (4.40) is equal to

1
2q ∑

m1,m2

(
χ4(dm2)e

(m1m2d
2q

)
+(−1)m1χ4(dm2 +q)e

(m1m2d
2q

))
ĝ
( m1√

2q
,

m2√
2q

)
(4.41)

The rest of the proof follows exactly the proof of Theorem 4.14 in [46]. Note that in the

case q≡ 2 (mod 4) we do not have a main term because the main term comes from setting

m1 or m2 equal to zero. For m1 = 0 we get χ4(dm2)+χ4(dm2+q) inside the parenthesis in

(4.41), which is equal to zero since q≡ 2 (mod 4). For m2 = 0 we have both χ4(dm2) and

χ4(dm2 +q) are equal to zero.

Next we apply the Voronoi summation formula (4.32) to the rigt hand side of (4.29).

Similarly we use Lemma (4.7) equations (4.33), (4.34) and (4.35) for (4.8), (4.9).

4.4 Toward Kloosterman sums

In this part we apply the Voronoi summation formula (Lemma 4.7) to the sums we

derived from the δ-method. This will lead to the Kloosterman sums inside our formula

for the error terms. Our final aim is to average the Kloosterman sums and obtain sharp

estimates for the error terms. For τχ(n) we will work out the formula in detail. For the
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shifted convolution of r(n) in (4.9), and the shifted convolution of d(n) and α(n) in (4.10),

we will give the final formula. As for the divisor function, we will write the result for d(n)

using [22, Equation (24)]. We consider the general case a,b not necessarily equal to 1 to

explain why our argument cannot be applied to the quadratic divisor problem.

4.4.1 Formula for τχ

By using the δ-method we have

∑
m−n=h

τχ(m)τχ(n) f (m,n) = (4.42)

∑
q<Q

∗

∑
d mod q

e
(−hd

q

)
∑
m,n

τχ(m)τχ(n)e
(dm−dn

q

)
E(m,n,q).

Recall that E(·, ·, ·) is defined in (4.30). First we split the sum over q into two cases: (p,q) =

1 and p|q. For (p,q) = 1 we apply (4.33) first to the sum over n and we end up with two

terms. Then we apply (4.33) to the sum over m and we get two other terms. Consequently

we have

∑
q<Q

(p,q)=1

∗

∑
d mod q

e
(−hd

q

)
∑
m,n

τχ(m)τχ(n)e
(dm−dn

q

)
E(m,n,q)

= ∑
q<Q

(p,q)=1

∗

∑
d mod q

e
(−hd

q

) |χ(q)|2
q2 L(1,χ)2

∫
∞

0

∫
∞

0
E(x,y,q)dxdy (4.43)

+ ∑
q<Q

(p,q)=1

∗

∑
d mod q

e
(−hd

q

)(
2π
|χ(q)|2

q2
τ(χ)

p
L(1,χ)

∞

∑
m=1

τχ(n)e
(−md p

q

)∫ ∞

0

∫
∞

0
E(x,y,q)J0

(4π
√

mx
q
√

p

)
dxdy

−2π
|χ(q)|2

q2
τ(χ)

p
L(1,χ)

∞

∑
n=1

τχ(n)e
(−nd p

q

)∫ ∞

0

∫
∞

0
E(x,y,q)J0

(4π
√

ny
q
√

p

)
dxdy+(2π)2 |χ(q)|2

q2

(τ(χ)

p

)2

×
∞

∑
m,n=1

τχ(m)τχ(n)e
(−(m+n)d p

q

)∫ ∞

0

∫
∞

0
E(x,y,q)J0

(4π
√

mx
q
√

p

)
J0
(4π
√

ny
q
√

p

)
dxdy

)
.
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Now since we assumed that p|h we write h = h′p. For p|q we apply (4.34) in Lemma 4.7

once to the sum over m and once to the sum over n. Therefore, when p|q (4.42) is equal to

∑
q<Q
p|q

∗

∑
d mod q

e
(−hd

q

) |χ(d)|2
q2 τ

2(χ)L(1,χ)2
∫

∞

0

∫
∞

0
E(x,y,q)dxdy (4.44)

+ ∑
q<Q
p|q

∗

∑
d mod q

e
(−hd

q

)(
2πi
|χ(d)|2

q2 τ(χ)L(1,χ)
∞

∑
m=1

τχ(m)e
(−md

q

)∫ ∞

0

∫
∞

0
E(x,y,q)J0

(4π
√

mx
q

)
dxdy

+2πi
|χ(d)|2

q2 τ(χ)L(1,χ)
∞

∑
n=1

τχ(n)e
(−nd

q

)∫ ∞

0

∫
∞

0
E(x,y,q)J0

(4π
√

ny
q

)
dxdy

+(2πi)2 |χ(d)|2

q2

∞

∑
m,n=1

τχ(m)τχ(n)e
(−(m+n)d

q

)∫ ∞

0

∫
∞

0
E(x,y,q)J0

(4π
√

mx
q

)
J0
(4π
√

ny
q

)
dxdy

)
.

4.4.2 Formula for the sum of two squares

For r(n) we have a formula similar to (4.42) with τχ(·) replaced by r(·). Here we have

to split the summation over q to three cases: 4|q, (4,q) = 1 and q ≡ 2 (mod 4). For the

first two cases the final formula would be the same as (4.43) and (4.44) with p = 4 and

τχ(·) = r(·). The case we need to work out is q≡ 2 (mod 4). Let r∗ be as (4.36). Then the

corresponding formula to (4.42) for r(n) is

∑
q<Q

q≡2 (mod 4)

∗

∑
d mod q

e
(−hd

q

)( |χ(d)|2
q2 (2πi)2 (4.45)

∞

∑
m,n=1

r∗(m)r∗(n)e
(−(m+n)d

2q

)∫ ∞

0

∫
∞

0
E(x,y,q)J0

(4π
√

mx√
2q

)
J0
(4π
√

ny
√

2q

)
dxdy

)
.

Note that since r∗(n) = 0 for even n, we can write the sum over m,n in (4.44) in terms of

odd m,n. Therefore (m+ n)/2 is an integer and with this we will have our Kloosterman

sums.
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4.4.3 Formula for the divisor function

For the shifted convolution sum of d(n), i.e. equation (4.13), using [22, Equation (24)]

we have

D f (a,b;h) = Main term( f )+E1(a,b)+E2(a,b)+
8

∑
j=3

E j(a,b), (4.46)

where

Main term( f ) = ∑
q<Q

(ab,q)
q2 S(h,0;q)

∫
∞

0

∫
0∞ f (log(ax)−λa,q)(log(by)−λb,q)E(x,y,q)dxdy,

E1(a,b) = ∑
q<Q

(ab,q)
q2

(
∞

∑
m=1

d(m)S(h,−(b,q)bqm;q)Ib(m,q)+
∞

∑
n=1

d(n)S(h,(a,q)aqn;q)Ia(n,q)
)
,

E2(a,b) = ∑
q<Q

(ab,q)
q2

∞

∑
m,n=1

d(m)d(n)S(h,(a,q)aqm− (b,q)bqn;q)Iab(m,n,q). (4.47)

Also aq = a/(a,q) and aq is the inverse of aq modulo q and

Iab(m,n,q) = 4π
2
∫

∞

0

∫
∞

0
Y0
(4π(a,q)

√
mx

q

)
Y0
(4π(b,q)

√
ny

q

)
E(x,y,q)dxdy, (4.48)

and

Ia(m,q) =−2π

∫
∞

0

∫
∞

0
Y0
(4π(a,q)

√
mx

q

)
(log(by)−λb,q)E(x,y,q)dxdy (4.49)

Ib(n,q) =−2π

∫
∞

0

∫
∞

0
(log(ax)−λa,q)Y0

(4π(b,q)
√

ny
q

)
E(x,y,q)dxdy, (4.50)

and λa,q = 2γ + log aq2

(a,q)2 . The term ∑
8
j=3 E j(a,b) corresponds to five more error terms

involving a K0-Bessel function that are similar to E1,E2. Our aim is to show that

E1(1,1),E2(1,1)� X1/2+εhθ.

Remark 4.8. In [22, Equation (24)] there is a typo. Instead of (a,q)aq they have a, inside

the Kloosterman sums. We would also like to emphasize that we cannot prove our result for
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D f (a,b;h) for a,b 6= 1 because the term aq enters into the Kloosterman sums. Ultimately,

this will make the averaging impossible. The advantage of Jutila circle method [48] is that

the sum over q can be restricted to the multiples of ab, while in the δ-method the sum over q

runs over all integers less than Q. However, it seems difficult to apply Jutila’s circle method

to the divisor function as it does not have square root cancellation while the sum of the

coefficients coming from holomorphic or cusp forms has square root cancellation, see [6].

Here we just deal with the error term E2(a,b). The error term E1(a,b) can be handled

similarly. As for error terms E j(a,b), 3 ≤ j ≤ 8, that arise from the K0-Bessel function,

can be handled by the similarity between the K0 and Y0-Bessel functions. We set a,b = 1

and write I(m,n,q) in a place of Iab(m,n,q).

4.5 Bounding I(m,n,q)

In this section we make the necessary adjustments in order to be able to use results re-

garding averaging Kloosterman sums. The main difficulty in proving the fact that I(m,n,q)

oscillates mildly with respect to q, comes from small q. In [22] the parameter Q, in the

δ-method, is equal to 2
√

X . If we use the same choice of Q and follow the method in [22,

Equation (30)] for q� 1 we get the bound I(m,n,q)�
√

X , while we need I(m,n,q)� Xε.

We overcome this difficulty by changing the parameter Q from
√

X to

Q = X1/2+ε.

As a result we have to consider a wider range for the sum over q in (4.47). However, the

faster rate of decay of the partial derivatives of w in the δ-method will help us to show that

I(m,n,q) is very small for q < X
1
2−ε. Let I(m,n,q) be as (4.48) with a = b = 1,

I(m,n,q) = 4π
2
∫

∞

0

∫
∞

0
Y0
(4π
√

mx
q

)
Y0
(4π
√

ny
q

)
E(x,y,q)dxdy.
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We will prove the following lemmas to show that the contribution of small q’s in (4.47)

are negligible. We will also find upper bounds for the range of the sum over n in (4.47).

We will consider I(m,n,q) with a Y0−Bessel function, but the same lemmas are valid with

replacing Y0 with J0−Bessel function.

Lemma 4.9. For ε > 0 there exist i, j ∈ N such that, for q < X1/2−ε we have

I(m,n,q)� m−i/2−1/4n− j/2−1/4X−1

and

I(n,q)� n− j/2X−1.

Proof. We begin with a change of variable in I(m,n,q). Setting u =
4π
√

mx
q

and v =

4π
√

ny
q

in the expression for I(m,n,q) yields

I(m,n,q) =
4π2q4

(4π)4mn

∫
∞

0

∫
∞

0
uY0(u)vY0(v)E

(
u2q2

(4π)2m
,

v2q2

(4π)2n
,q
)

dudv. (4.51)

By employing the recursive formula (zvYv(z))′ = zvYv−1(z) and integration by parts in (4.51)

we have

I(m,n,q)� q2(i+ j+2)

mi+1n j+1

∫
∞

0

∫
∞

0
ui+1Yi(u)v j+1Y j(v)E(i, j,0)

(
u2q2

(4π)2m
,

v2q2

(4π)2n
,q
)

dudv.

(4.52)

Similarly, by integrating by parts in (4.49), for I(n,q) we deduce that

I(n,q)� q2( j+1)

n j+1 ×
∫

∞

0

∫
∞

0
(logx−λq)v j+1Yj(v)E(0, j,0)

(
x,

v2q2

(4π)2n
,q
)

dxdv.

Here we need to estimate the partial derivatives of E(x,y,q). Recall that E(x,y,q)= f (x,y)φ(x−
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y−h)∆q(x− y−h), and for the partial derivatives of E we have

E(i, j,0) :=
∂i+ j

∂xi∂y j E(x,y,q) = ∑
r,r′,s,s′≥0

r+r′=i
s+s′= j

cr,r′,s,s′( f φ)(r,s)∆
(r′,s′)
q . (4.53)

For the partial derivative of f and ∆q, we have ( f φ)(r,s)�X−r−s and ∆
(r′,s′)
q � (qQ)−r′−s′−1.

Now since q < X1/2−ε we have qQ < X , so the major term in (4.53) is ∆
(i, j)
q . Therefore we

have E(i, j,0)� (qQ)−i− j−1. We will apply this bound for E(i, j,0) together with Yi(u)� 1√
u

in (4.52) to get

I(m,n,q)� q2(i+ j+2)

mi+1n j+1(qQ)i+ j+1

∫ √
2mX
q√

mX
q

∫ √
2nX
q√

nX
q

ui+ 1
2 v j+ 1

2 dudv (4.54)

�i, j
q2(i+ j+2)X (i+ j+3)/2mi/2+3/4n j/2+3/4

mi+1n j+1(qQ)i+ j+1qi+ j+3 �i, j
X (i+ j+3)/2

mi/2+1/4n j/2+1/4Qi+ j+1
.

A similar argument for I(n,q) yields:

I(n,q)� X ( j+4)/2

n j/2Q j+1
.

Now, using Q = X1/2+ε and j =
⌊3

ε

⌋
completes the proof.

The following lemma will provide the bound for the sum over m,n in Equation (24) in [22]

Lemma 4.10. For X1/2−ε < q<X1/2+ε, the contribution of m,n>X3ε in (4.47) is O(X−1/2).

Proof. Since X1/2−ε < q < X1/2+ε, we have 1
qQ > 1

X . Therefore E(i, j,0)� X−i− j−1. We are

using same bounds as Lemma 4.9 in (4.52) and consequently

I(m,n,q)�i, j
q2(i+ j+2)X (i+ j+3)/2mi/2+3/4n j/2+3/4

mi+1n j+1X i+ j+1qi+ j+3

�i, j
qi+ j+1X (i+ j+3)/2

mi/2+1/4n j/2+1/4X i+ j+1
.

Now using q < X1/2+ε we get I(m,n,q)�i, j Xε(i+ j+1)+1m−i/2−1/4n− j/2−1/4. Similarly for
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I(n,q) we have that I(n,q)� j Xε( j+1)+1n− j/2. And therefore by taking j =
⌊3

ε

⌋
we have

∑
m,n>X3ε

d(m)d(n)I(m,n,q)�i, j
X

Xε(i+ j−3)/2
� 1√

X
.

The same bound for the sum over I(n,q) holds. Using this in (4.47) combined with the

trivial bound on the Kloosterman sums gives us the error term of order O(X−1/2+ε). This

shows the the contribution of m,n > X3ε is negligible and we only need to consider the sum

over m,n in (4.47) up to X3ε. This finishes the proof of the Lemma.

It follows from Lemma 4.9 and 4.10 that

E2(1,1) = ∑
X1/2−ε<q<X1/2+ε

1
q2 ∑

m,n<X3ε

d(m)d(n)S(h,m−n;q)I(m,n,q)+O(
1√
X
),

and a similarly

E1(1,1) = ∑
X1/2−ε<q<X1/2+ε

1
q2 ∑

n<X3ε

d(n)S(h,n;q)I(n,q)+O(
1√
X
).

4.6 Averaging the Kloosterman Sums

In this part we state the lemmas that we will need in averaging the Kloosterman sums.

These results were derived by an application of the Kuznetsov formula. The first lemma is

due to Deshouillers and Iwaniec [48]. This will be used when we average the Kloosterman

sums over all moduli.

Lemma 4.11. Let m≥ 1, P> 0, Q> 0, and let g(x,y) be a function of class C4 with support

on [P,2P]× [Q,2Q] satisfying

∂i+ j

∂qi∂r j g(x,y)� 1
PiQ j for 0≤ i, j ≤ 2. (4.55)
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Then for any complex numbers ap we have

∑
P<p<2P

∑
Q<q<2Q

apg(p,q)S(h,±p,q)� (
√

h+Q)P1/2hθ

(
∑
p
|ap|2

)1/2

(hPQ)ε. (4.56)

The second lemma [6, Proposition 3.5.] is useful when the averaging over q is over multi-

ples of an integer.

Lemma 4.12. With the notation of Lemma 4.11 and for N ∈ N we have

∑
P<p<2P

∑
Q<q<2Q

N|q

apg(p,q)S(h,±p,q) (4.57)

� Q
(

∑
p
|ap|2

)1/2(
1+

hP
Q2 +

P
N

)1/2hθ

(
1+
(Q2

hP

)θ
)
(hPQ)ε.

4.7 Proof of Theorems

In this section we prove Theorems 4.1 and 4.2. We fix n, and we set m− n = r, therefore

we have

E2(1,1) = ∑
n<X3ε

∑
X1/2−ε<q<X1/2+ε

∞

∑
|r|<X3ε

d(n+ r)d(n)S(h,r;q)
I(n+ r,n,q)

q2 +O(
1√
X
).

Note that I(n+ r,n,q) is a function of q and r so we set I(n+ r,n,q) := I (q,r). An im-

portant part of the proof of theorems is to show that the functions that are attached to the

Kloosterman sums satisfy (4.55). We will show this for the function I(n+ r,n,q). The

other functions are similar to this case. In order to apply Lemma 4.11 we need to show that

I (q,r)/q2 oscillates mildly with respect to q,r.

Lemma 4.13. Let X1/2−ε < Q < X1/2+ε and R < X3ε. Then for Q < q < 2Q and R <

r < 2R we have
∂i+ j

∂qi∂r j

( 1
X136ε

I (q,r)
q2

)
� 1

Q iR j .
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Proof. By (4.51) it follows that

∂

∂q
I (q,r)

q2 � 1
n(n+ r)

∫
∞

0

∫
∞

0
uY0(u)vY0(v)

∂

∂q
q2E(

u2q2

(4π)2(n+ r)
,

v2q2

(4π)2n
,q)dudv. (4.58)

By the chain rule for multi-variable functions

∂

∂q
q2E = 2qE +

2q3u2

(4π)2(n+ r)
E(1,0,0)+

2q3v2

(4π)2n
E(0,1,0)+q2E(0,0,1). (4.59)

Considering the range of q in Lemma, we use these bounds E < 1/X , E(1,0,0) < 1/X2 and

E(0,1,0) < 1/X2. For E(0,0,1) we need to estimate

∂

∂q
∆q(x− y−h) =

∞

∑
r=1

∂

∂q

(
w(qr)−w(x−y−h

qr )

qr

)
=−

∆q(x− y−h)
q

(4.60)

+∑
r

w′(qr)
q

+
(x− y−h)w′(x− y−h/qr)

q3r2 .

By Lemma 2 in [22] we have wi(u)� 1
Qi+1 , and ∆q(u)� 1

qQ . Therefore, each term in (4.60)

is bounded by 1
qQ2 . Plugging in these bounds into (4.59) and considering the range of q we

have
∂

∂q
q2E� (1+u2 + v2)

X3ε

√
X
.

We use the above in (4.58) and by taking to account that since X < u2q2

(4π)2(n+r) < 2X the

range in the integral for u,v is 0 < u,v < X5ε, we have

∂

∂q
I (q,r)

q2 � X34ε

X
1
2+ε
� 1

Q 1−ε
.

For the second derivative with respect to q we apply the same method to each term in (4.59)

and use the similar bound on the derivatives of E. For the derivatives with respect to r we
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have

∂

∂r
I (q,r)

q2 =
4π2

(4π)4n(n+ r)

∫
∞

0

∫
∞

0
uY0
(
u
)
vY0
(
v
) ∂

∂r
q2E(

u2q2

(4π)2(n+ r)
,

v2q2

(4π)2n
,q)dudv.

Also we have

∣∣∣ ∂

∂r
q2E(

u2q2

(4π)2(n+ r)
,

v2q2

(4π)2n
,q)
∣∣∣= ∣∣∣ u2q4

(4π)2(n+ r)2 E(1,0,0)
∣∣∣� u2X4ε

r2 ,

and therefore
∂

∂r
I (q,r)

q2 � X34ε

R 2 .

A similar calculation we use for second derivative in respect to r and derivative in respect

to q,r. This finishes the proof of Lemma.

Now we need to apply Lemma 4.11 to X−136εI (q,r)q−2. In order to do that we need

to put the support of the function in dyadic intervals. Here we use Harcos’s treatment [32].

Let ρ be a smooth function whose support lies in [1,2] and satisfies the following identity

for x > 0:
∞

∑
k=−∞

ρ(2−k/2x) = 1. (4.61)

We write
1

X136ε

I (q,r)
q2 =

∞

∑
k,l=−∞

Ik,l(q,r),

where

Ik,l(q,r) =
1

X136ε

I (q,r)
q2 ρ(

q
2k/2Q

)ρ(
r

2l/2R
)

and Q=X1/2+ε and R=X3ε. The support of Ik,l(q,r) is [2k/2Q,2k/2+ 1Q]×[2l/2R,2l/2+ 1R].

Note that we just need to use Lemma 4.11 in the range of X1/2−ε < q < X1/2+ε and r < R.

Also For r = 0 the Kloosterman sum simplifies to the Ramanujan sum and therefore we

estimate the corresponding error term trivially.

Proof of Theorem 4.1. Take ε = ε/134. We apply Lemma 4.11 to Ik,l(q,r) for−4ε
logX
log2 ≤
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k ≤ 0 and −6ε
logX
log2 ≤ l ≤ 0. For the derivatives of Ik,l(q,r) we need to have bounds on the

derivatives of ρ( q
2k/2Q

)ρ( r
2l/2R

) for which we have

∂

∂q
ρ(

q
2k/2Q

)ρ(
r

2l/2R
)� 1

2k/2Q
� X4ε

Q
(4.62)

The derivative with respect to r has a similar bound. Using Lemma 4.13 and the above we

have that Ik,l(q,r) satisfies the condition of Lemma 4.11. Therefore to have a upper bound

on the error terms arising from (4.47), we apply Lemma 4.11 with m = h and P = R and

ap = d(n)d(n+ p) to Ik,l(q,r). This will take care of the error term E2(1,1). For the error

terms E1(1,1) we follow a similar method to show I(n,q) in (4.49) oscillates mildly with

respect to q and n. The only difference with I(m,n,q) is that instead of one of the Bessel

functions in (4.48) we have a logq term coming from λ1,q. The derivative of logq has the

desired decay with respect to q. This will finish the proof of theorem

Proof of Theorem 4.2. We give a sketch of the proof as it very similar to the proof of

Theorem 4.1.

Main term. The main term here comes from Equations (4.43) and (4.44). We combine

these with the argument of the section 6 of [22] and we have the main term is

∑
q<Q

(p,q)=1

S(h,0;q)
|χ(q)|2

q2 L(1,χ)2
∫

∞

0
f (x,x−h)φ(h)dx (4.63)

+ ∑
q<Q
p|q

S(h,0;q)
τ2(χ)

q2 L(1,χ)2
∫

∞

0
f (x,x−h)φ(h)dx

Error term. The difference with the proof of Theorem 4.1 is that we split the sum over q

in (4.43) and (4.44) into two cases: (p,q) = 1 and p|q. Recall that h′ = h/p. For (p,q) = 1

we need to deal with averaging Kloosterman sums of the form S(−h′,−(n+m);q) over q
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and m,n:

∑
q<Q

(p,q)=1

1
q2

(
∞

∑
m,n=1

τχ(m)τχ(n)S(−h′,−(m+n); q)IJ(m,n,q)

)
.

Note that IJ(m,n,q) would be the same as I(m,n,q) in Theorem 4.1 if we change Y0 to J0.

For p|q we average Kloosterman sums of the form S(−h,−(n+m); q). For the sum over

q with the condition p|q we use Lemma 4.12 and we have the error term O(X1/2+θ+ε). For

the sum over q with the condition (p,q) = 1, first we add the following terms

∑
q<Q
p|q

1
q2

(
∞

∑
m,n=1

τχ(m)τχ(n)S(−h′,−(m+n); q)IJ(m,n,q)

)

and then subtract them. By adding this we get a sum over all q, so we may use Lemma

4.11 and we get the error therm O(X1/2+εhθ.) For the terms that we had subtracted we use

Lemma 4.12 and we get the error term O(X1/2+θ+ε). The final error is O(X1/2+θ+ε) as in

(4.8). This finishes the proof of the first part of the Theorem.

Now to show the second part of the theorem regarding the sum of two squares note that

the main term in this case is the same as (4.63) when we set q = 4. For the error term the

proof is also very close to the proof of of (4.8), with only minor modification. Here the

sum over q is divided to three cases: (q,4) = 1, 4|q and q ≡ 2 (mod 4) and each involves

a Kloosterman sums with different arguments. For (q,4) = 1, we add the sums over even

q’s and subtract them. We use Lemmas 4.11 and 4.12 respectively. The error term is

O(X1/2+θ+ε). For 4|q we use Lemma 4.12 and the error term is O(X1/2+θ+ε). Finally for

q ≡ 2 (mod 4), we add the sums over q’s such that 4|q and subtract them. We use Lemma

4.12 twice, once with sum over even q’s and once with the sum over q’s such that 4|q. This

finishes the proof of the Theorem.
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4.8 Quadratic divisor problem

In this section we use a version of Dirichlet’s hyperbola method to write the divisor

function d(n) in terms of a summation of a weight function. Our analysis of the left hand

side of (4.16) follows the argument in [7]. Let ω be a smooth function such that ω(x) = 1

on [0,1] and ω(x) = 0 on [2,∞). For n < Q we have

d(n) = ∑
δ|n

ω
( δ√

Q

)(
2−ω

( n
δ
√

Q

))
. (4.64)

Thus

∑
am−n=h

d(m)d(n) f (am,n) =
∞

∑
m=1

d(m)d(am−h) f (am,am−h)

=
∞

∑
δ=1

ω
( δ√

Q

)
∑
δ|n

d(am−h) f (am,am−h)
(

2−ω
( m

δ
√

Q

))
=

∞

∑
δ=1

ω
( δ√

Q

)
∑

n≡−h(aδ)

d(n) f (n−h,n)
(

2−ω
( n+h

aδ
√

Q

))

Using Corollary 4.12. of [46] for the innermost sum we have

∑
am−n=h

d(m)d(n) f (am,n) =
∞

∑
q=1

(a,q)S(h,0;q)
q2

∫
∞

0

(
log
( x

q2 )+2λ
)
K(a,q),q(x) f (ax,ax−h)dx

−2π

∞

∑
q=1

(a,q)
q2

∞

∑
n=1

d(n)S(h,n;q)
∫

∞

0
Y0
(4π

√
n(ax−h)

q

)
K(a,q),q(x) f (ax,ax−h)dx (4.65)

−2π

∞

∑
q=1

(a,q)
q2

∞

∑
n=1

d(n)S(h,n;q)
∫

∞

0
K0
(4π

√
n(ax−h)

q

)
K(a,q),q(x) f (ax,ax−h)dx

where

Kr,q(x) =
∞

∑
δ

1
δ

ω
( qδ

r
√

Q

)(
2−ω

( rx
δq
√

Q

))
.

Note that here since the support of f is [X ,2X ]× [X ,2X ], we can take Q = 2X/a, also using

the definition we have that Kr,q(x) = 0 for q > 2r
√

Q. Similar to the proof of Theorem 4.1

we need to show that the functions attached to the Kloosterman sums in (4.65) oscillate
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mildly with respect with q and n. In order to do this there is a minor difficulty in dealing

with the function K(a,q),q(x) when (a,q) varies. Therefore we need to average over q’s such

that (a,q) is fixed. As in the case of the binary divisor problem we will show that the

contribution from small q’s is negligible. The integral in the second sum in (4.65) equals

1
a

∫
∞

0
Y0
(4π

√
n(x−h)
q

)
K(a,q),q

(x
a

)
f (x,x−h)dx, (4.66)

by the variable change ax→ x. In order to prove our result we need to estimate the second

and third sum in (4.65). Using (4.66) we have that the second sum in (4.65) equals

Θ :=
∞

∑
q=1

(a,q)
aq2

∞

∑
n=1

d(n)S(h,n;q)
∫

∞

0
Y0
(4π

√
n(x−h)
q

)
K(a,q),q

(x
a

)
f (x,x−h)dx (4.67)

For the rest of the paper we focus on estimating this sum since the third sum in (4.65)

shall satisfy the same bound and can be handled similarly. Let (a,q) = d, this condition is

equivalent to (a/d,q/d) = 1 and we detect this with ∑σ|( a
d ,

q
d )

µ(σ). Using this the outer sum

in (4.67) simplifies to

∑
d|a

∑
q

(a,q)=d

= ∑
d|a

∑
σ| ad

µ(σ) ∑
q

σd|q

(4.68)

and hence

Θ = ∑
d|a

∑
σ| ad

µ(σ) ∑
q

σd|q

Θa,h(σ), (4.69)

where

Θa,h(σ) =
d
a

∞

∑
q=1
σd|q

1
q2

∞

∑
n=1

d(n)S(h,n;q)I(n,q,d), (4.70)

and

I(n,q,d) :=
∫

∞

0
−2πY0

(4π
√

n(x−h)
q

)
Kd,q(x/a) f (x,x−h)dx. (4.71)

Our aim is to show that

Θa,h(σ)�
d
a

X1/2+θ. (4.72)
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Putting this in (4.69) gives

Θ� X1/2+θ
∑
d|a

2ω(a/d)d
a

� X1/2+θ+ε. (4.73)

and this establishes Theorem 4.3. In order to prove (4.72) we will divide the range of the

summation over n,q to three cases:

1. q < X1/2−ε and n≥ 1.

2. X1/2−ε ≤ q≤
√

aX and n� q2/X1−3ε.

3. X1/2−ε ≤ q≤
√

aX and n� q2/X1−3ε.

We estimate cases 1, 2, by using Lemmas 4.14 and 4.15 and the trivial bound for the Kloost-

erman sum. For case 3 we apply Lemma 4.12. To proceed we prove the following Lemmas

for I(n,q,d) to show that the contribution of small q’s are negligible

Lemma 4.14. For q < X1/2−ε, we have that

I(n,q,d)� n−2X−1.

Proof. First we set

F(x) = Kd,q(x/a) f (x,x−h).

By the product and multi variable chain rule, equation (4.6) for derivatives of f and [7,

Equation (2.30)] i.e.
∂i+ j

∂xi∂q j Kr,q(x)�i, j
logQ
X iq j , (4.74)

for derivatives of K we have that

F(i)(x)� 1
xi .
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Recall that the support of F is [X ,2X ]. By the variable change u = 4π
√

n(x−h)/q and

integration by parts i times using the recursive formula we have

I(n,q,d)� q2(i+1)

ni+1

∫
∞

0
ui+1Yi

(
u
)
F(i)( u2q2

n(4π)2 +h
)
du. (4.75)

we switch back u to x in the above and we have

I(n,q,d)�q2(i+1)

ni+1

∫
∞

0

(4π
√

n(x−h)
q

)i+1Yi
(4π

√
n(x−h)
q

)
F(i)(x)

√
n

q
√
(x−h)

dx

� qi

ni/2

∫
∞

0
(x−h)

i
2Yi
(4π

√
n(x−h)
q

)
F(i)(x)dx.

We use

F(i)(x)� 1
X i , Yi(u)� 1 and (x−h)� X ,

on the above and by considering the fact that the support of F is [X ,2X ] we have

I(n,q,d)� qi

niX i/2−1 . (4.76)

Now, by using the fact that q < X1/2−ε and i large enough, we conclude the proof.

Lemma 4.15. Let Q > X1/2−ε. Then for q ∈ [Q ,2Q ], we have that

∑
n>Q 2/X1−3ε

d(n)|I(n,q,d)| � 1. (4.77)

Proof. By using (4.76) we have

∑
n>Q 2/X1−3ε

d(n)|I(n,q,d)| � qi

X
i
2−1

∑
n>Q 2/X1−3ε

d(n)

n
i
2

� qi

X
i
2−1

( Q 2

X1−3ε

)− i
2+1+ε� Q 2

X
3
2 (i−6)ε

.

Now similar to the proof of Lemma 4.14 by taking i large enough we obtain (4.77).
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This lemma shows that we only need to consider the contribution of n < Q 2/X1−3ε in

(4.70). Now we need to show that the derivatives of I(n,q,d)/q2, satisfy the conditions of

Lemma 4.12. Note that by using a smooth partition of unity similar to the proof of Theorem

4.1 we break the support of I(n,q,d) to dyadic intervals. The largest error term comes from

d
√

2X/a < q < 2d
√

X/a, and d2Xεa−1 < n < 2d2Xεa−1. Also Kd,q = 0 for q > 2d
√

X/a.

Lemma 4.16. Let Q > X1/2−ε and q ∈ [Q ,2Q ], and n ∈ [N,2N] then for 0≤ i, j ≤ 2

∂i+ j

∂qi∂n j

(Q 2−ε

X
I(n,q,d)

q2

)
�i, j

1
Q iN j . (4.78)

Proof. We differentiate once with respect to q and once with respect to n. We state the

necessary bounds on functions in the integrand (4.71). The derivative with respect to n is

∂

∂n
I(n,q,d) =

∫
∞

0
− 1

nq2
4π2
√

n(x−h)
q

Y ′0
(4π

√
n(x−h)
q

)
Kd,q(x/a) f (x,x−h)dx (4.79)

By Lemma 4.15 we may assume n ≤ q2/x1−3ε. Therefore for z = 4π
√

n(x−h)/q, since

x ∈ [X ,2X ] we have z� Xε. In order to use (4.25) we need to multiply the integral (4.79)

with 1/(1+ z) and since z� Xε this would at most augment it by Xε. Now we pull out 1/n

from (4.79) and we use q ∈ [Q ,2Q ], and the fact that f is supported in [X ,2X ]× [X ,2X ]

and K� logX to get (4.78) for (i = 0, j = 1). If we differentiate I(n,q,d) with respect to

q using (4.74) we obtain (4.78) for (i = 1, j = 0) exactly similar to the case (i = 0, j = 1).

Now we differentiate (4.79) with respect to q to obtain (4.78) for (i = 1, j = 1).

∂

∂q∂n
I(n,q,d) =

1
n

∫
∞

0
− ∂

∂q

(
1
q2

4π2
√

(x−h)
q

Y ′0
(4π

√
n(x−h)
q

)
Kd,q(x/a) f (x,x−h)dx

)
.

All the terms with q in the denominator and also Kd,q would obviously give us the 1/q

saving that we need. We just treat the term with derivative of Bessel function.

∂

∂q
Y ′0
(4π

√
n(x−h)
q

)
=

1
q

(
−4π

√
n(x−h)
q

Y (2)
0
(4π

√
n(x−h)
q

))
,
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which for bounding this we use (4.25) and the fact that z� Xε. For the cases (i = 2, j = 1),

(i = 1, j = 2) and (i = 2, j = 2) the proof is similar to the case (i = 1, j = 1). This finishes

the proof of the Lemma.

Proof of Theorem 4.3. As mentioned earlier we need to establish (4.72). Here the main

term is:
∞

∑
q=1

(a,q)S(h,0;q)
q2

∫
∞

0

(
log
( x

q2 )+2λ
)
K(a,q),q(x) f (ax,ax−h)dx (4.80)

For the error term, note that to use Lemma 4.12 we need to use the smooth partition of unity

to put the support of I(n,q,d)/q2 in dyadic intervals. In order to do this let ρ be the same

as the proof of Theorem 4.1 and ρ satisfies (4.61) and R = d
√

2X/a and S = d2Xε/a, we

write q−2I(n,q,d) = ∑
∞
k,l=−∞

Ik,l(n,q,d), where

Ik,l(n,q,d) = q−2I(n,q,d)ρ(
q

2k/2R
)ρ(

n
2l/2S

). (4.81)

Thus we have

Θa,h(σ) = ∑
k,l

d
a

∞

∑
q=1
σd|q

1
q2

∞

∑
n=1

d(n)S(h,n;q)Ik,l(n,q,d). (4.82)

The support of Ik,l is [2k/2R,2k/2+ 1R]× [2l/2S,2l/2+ 1S]. Now since Kd,q = 0 for q >

2d
√

X/a and the fact that Ik,l is supported on 2k/2d
√

2X/a ≤ q ≤ 2k/2+1 d
√

2X/a, we

conclude that k≤ 0. Also we have |k| � logX . To continue with the proof we are returning

to our range separation for the summation over q,n in (4.70):

1. q < X1/2−ε and n ≥ 1. For this range using Lemma 4.14 we have Ik,l(n,q,d) �
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I(n,q,d)� n−2X−1 and consequently

X1/2−ε

∑
q=1
dσ|q

∑
k,l

∞

∑
n=1

d(n)
Ik,l(n,q,d)

q2 S(h,n;q)

�
X1/2−ε

∑
q=1
dσ|q

∞

∑
n=1

d(n)
I(n,q,d)

q2 S(h,n;q)� 1
X

X1/2−ε

∑
q=1
dσ|q

∞

∑
n=1

d(n)
qn2 � Xε−1.

2. X1/2−ε ≤ q≤ d(X/a)1/2 and n� q2X3ε−1. First note that if d/
√

a < X−ε then since

Kd,q = 0 for q > 2d(X/a)1/2, we fall into the first range. Now by using Lemma 4.15

we have

∑
k,l

∑
X1/2−ε≤q≤d(X/a)1/2

dσ|q

∑
n�q2X3ε−1

d(n)
Ik,l(n,q,d)

q2 S(h,n;q)

= ∑
X1/2−ε≤q≤d(X/a)1/2

dσ|q

∑
n�q2X3ε−1

d(n)
I(n,q,d)

q2 S(h,n;q)� ∑
X1/2−ε≤q≤d(X/a)1/2

1
q
� 1.

3. X1/2−ε ≤ q≤
√

aX and n� q2X3ε−1. For this range we need to apply Lemma 4.12.

By using (4.81) we beak the support of I into dyadic intervals and for the current

range we have to deal with Ik,l where

2
log2

(
log
( √a√

2dXε

)
−1
)
≤ k ≤ 0.

and
2

log2
log
( a

d2Xε

)
≤ l ≤ 2

log2
log
( d2q2

aX1−2ε

)
−3.

Our aim is to handled the following sum for k, l in the above range

∑
k,l

∞

∑
q=1
dσ|q

∞

∑
n=1

d(n)
Ik,l(n,q,d)

q2 S(h,n;q)
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Each of the Ik,l in the above range can be handled using Lemma 4.12. Here we only

consider the range R < q < 2R, and S < n < 2S i.e k = l = 1, for which we have the

biggest error term. Now since the volume of the box that k, l take their values in, is

bounded by (logX)2 we have the final error term is bounded by (logX)2 times the

error that comes from k = l = 1. Lemma 4.16 enable us to average the Kloosterman

sums above by employing Lemma 4.12 and also save a factor X/Q 2−ε. Thus by

setting ap = d(p), Q = R and P = S in Lemma 4.16 we have the above is bounded by

a
d2 d

(X
a

)1/2(d2

a

)1/2(1+ h
X
+

d
aσ

)1/2hθ

(
1+
(X

h

)θ

)

and therefore (4.70) is bounded by dX1/2+θ+ε/a. This finishes the proof of (4.72)

and using (4.73) finishes the proof of the theorem.
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