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ABSTRACT 
 

 Selective application of herbicide in agricultural cropping systems provides both 

economic and environmental benefits.  Implementation of this technology requires 

knowledge of the location and density of weed species within a crop.  In this study, two 

image classification techniques (Artificial Neural Networks (ANNs) and Maximum 

Likelihood Classification (MLC)) are compared for accuracy in weed/crop species 

discrimination.  In the summer of 2005, high spatial resolution (1.25mm) ground-based 

hyperspectral image data were acquired over field plots of three crop species seeded with 

two weed species.  Image data were segmented using a threshold technique to identify 

vegetation for classification.  The ANNs consistently outperformed MLC in single-date 

and multitemporal classification accuracy.  With advancements in imaging technology 

and computer processing speed, these network models would constitute an option for 

real-time detection and mapping of weeds for the implementation of site-specific 

herbicide management. 
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CHAPTER 1   INTRODUCTION 
 

Precision agricultural techniques aim to manage fields based on spatial variability 

rather than generalized surveyed boundaries.  With the rapid development of spatial 

mapping technologies, these techniques have now become a reality.  Agricultural fields 

are typically non-uniform as spatial variability in soil properties and topography exists 

within field boundaries.  Through gathering and maintaining information about this 

spatial variability, management of agricultural inputs including fertilizer, irrigation and 

pesticides can be applied at varied rates to promote efficient use and optimize crop 

production (Mulla and Schepers, 1997).   

Site-specific herbicide management (SSHM) is one facet of precision agriculture, 

where herbicide application is dependant upon zones of weed density within the field 

rather than full spatial coverage application (Thompson et al., 1991).  For weed 

management, producers have three main options; mechanical control, chemical control or 

a combination of the two.  Mechanical control involving tillage, with the exception of 

inter-row cultivation, is generally limited to pre-seeding or post-harvest situations in 

cropping operations.  Research has linked tillage to soil erosion, the loss of soil moisture, 

and the spread of weed patches to other areas of the field (Brown and Steckler, 1995).  

With chemical management, a sprayer is typically used to apply a uniform amount of 

herbicide across the entire field.  Because weeds tend to grow in patches and re-occur in 

the same areas each growing season (Mortensen et al., 1995; Tang et al., 1999; Martin-

Chefson et al., 1999), a uniform application of herbicide may not yield optimal results in 

terms of economic efficiency.   
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SSHM allows for selective herbicide application based on zones of weed density 

and may result in a 30-72% reduction in herbicide requirements (Mortensen et al., 1995), 

thus increasing production profitability (Medlin et al., 2000).  With reported Canadian 

pest control product sales totalling $1.34 billion (78% of which were herbicide) in 2005 

(Crop Life, 2007), more efficient weed control practices could constitute a substantial 

savings to producers.   Secondarily, SSHM techniques also reduce environmental 

contamination potential, in terms of leaching to groundwater and losses to the atmosphere 

(Lindquist et al., 1998; Lippert and Wolak, 1999; Smith and Blackshaw, 2003).   

Effective implementation of SSHM techniques requires detailed spatial 

information on the location and population density of weed species at the field scale.  

This information is costly and time consuming when acquired through traditional field 

survey techniques.  Advances in spatial information technologies, including Global 

Positioning Systems (GPS), Geographic Information Systems (GIS) and Remote Sensing 

(RS) are offering land managers new tools for locating and targeting weed infestations 

(Swinton, 2005).   

Passive optical remote sensing technology, which samples the reflected solar 

electromagnetic (EM) radiation over a specific area or picture element (pixel), provides 

information about targets of interest (ie. weed and crop species) from which reflectance 

features and spatial objects can be extracted.  Differences in these measured 

characteristics can then be used to create generalized classes (classification) over 

agricultural fields.  Investigations into the use of RS image data (ground-based, airborne 

and satellite) for the detection and mapping of weed infestations have provided 
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encouraging results (Tian et al., 1999; Bechdol et al., 2000; Tang et al., 2000; 

Radhkrishnan et al., 2002), as reviewed in Chapter 2. 

SSHM systems can be separated into two main categories based on how the RS 

data are acquired and processed.  The first is a system where a weed map is produced 

from satellite or airborne RS data acquired prior to herbicide application.  A GIS 

integrated with the sprayer would then selectively activate the spray nozzles based on the 

prescribed map locations.  This technique would allow not only weed location and 

density to be used, but additional information including past yield, soil type and organic 

matter content could also be integrated into making the spray decision (Brown and 

Steckler, 1995).  The main limitations to this type of system are the timely acquisition of 

image data and associated cost of tasking airborne and satellite missions.   

These limitations can be mitigated through integration of the sensor, processing 

system and sprayer on the same implement in the field, which can then operate in real-

time.  As a producer navigates the field, the onboard sensor would acquire image data, 

process these data into weed location/density information and a resulting weed 

prescription map would be interpreted with the herbicide being applied “on the fly” only 

in required areas.  The very high spatial resolution of image data acquired (mm scale) at 

ground level increases potential to detect not only spectral differences between weed and 

crop species but also spatial differences in leaf shape and orientation.  Challenges to this 

type of system include computational load of onboard processing and the requirement for 

efficient and accurate implementation of automated weed detection procedures (Tang et 

al., 1999).  
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 This study investigated the image acquisition and processing component for a 

real-time SSHM system, and developed a procedure for the detection of select weed 

species in crops during the optimal herbicide application timeframe.  A prototype camera 

system was used to acquire very high spatial (mm scale) and spectral (10 nm wavebands) 

image data over weed and crop treatments in both laboratory and field-based trials.  The 

spectral and spatial resolution of image data acquired enabled testing the capability of 

both leaf shape and reflectance characteristics for discrimination of crop and weed 

species.  Two classification techniques were evaluated for species discrimination: 

Artificial Neural Networks (ANNs) and Maximum Likelihood Classification (MLC).  

This initial detection step is required for subsequent mapping of weed location and 

prescribed locations for herbicide application.   

Research objectives were to: 

(a) evaluate the potential of very high spatial resolution image data for segmentation 
of individual leaves and separation of background (soil, litter) from vegetation, 

 
(b) identify the spectral characteristics from lab and field-based image data for use in 

weed/crop differentiation, 
 
(c) evaluate two supervised classification techniques (MLC and ANN) for accuracy 

in species recognition and determine if a full hyperspectral dataset is required or a 
reduced number of bands are sufficient in classifying these data and 

 
(d) characterize the effect of plant stage on spectral reflectance characteristics, and if 

this variability can be accounted for in the classification procedures developed. 
 

Investigation into spectral and spatial differentiation of weed and crop species is 

required for development of SSHM techniques which are practical to the agricultural 

producer.  The following chapter reviews the state of the art with respect to species 

discrimination using spectral and spatial characteristics and the use of image processing 
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techniques including segmentation and pixel-based classifiers for identification of 

weed/crop species, a preliminary step in the production of herbicide prescription maps. 
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CHAPTER 2  LITERATURE REVIEW 
 
2.1  Introduction 

 Implementation of SSHM techniques requires knowledge of the location and 

density of weed species to make subsequent herbicide application decisions.  This chapter 

identifies the spectral and spatial characteristics which have been used in discrimination 

of plant species.  Acquisition of RS image data and the image processing procedures used 

for defining these spectral and spatial characteristics are explained and examples of weed 

and crop discrimination, drawn from published literature, are presented. 

2.2  Vegetation Species Differentiation 

 Characteristic feature differences must exist between vegetated species for 

accurate identification.  The relationship of plant matter to incoming solar radiation is one 

feature which can be utilized to discriminate plant species.  The plant tissue relationship 

to Electro-Magnetic (EM) radiation (reflectance and absorbance) is termed spectral 

signature, which is a measure of the reflectance properties of a target over a range of 

wavelengths (Figure 2.1). 
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Figure 2.1 Typical reflectance curves for soil and vegetation from field data acquired July 
19, 2005. 

 

Spectral signatures of photosynthetic plant species are similar with several 

characteristic absorption features caused by photosynthetically active material and 

internal leaf structure.  Absorption features occur in the spectral range of 400-2500 nm 

due to photosynthetic pigments (450 and 670 nm) and water (970, 1200, 1450, 1950 and 

2400 nm) (Gausman et al., 1973; Lillesand and Keifer, 1987; Grant, 1987; Curran, 1989; 

Vrindts et al., 1999; Lamb, 2000).  The magnitude of these spectral responses is a 

function of leaf thickness/structure, chlorophyll and other pigment concentrations and 

water content within the plant leaf (Lillisand and Keifer, 1987; Carter, 1991).  
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Chlorophyll and water content varies by plant species due to differences in physiology, 

and the ability to detect these variations using spectral response curves (signatures) is 

evident (Gausman et al., 1973; Lamb et al., 1999).  This variability in spectral reflectance 

at specific wavelength regions of the EM spectrum, particularly in the visible and near-

infrared (NIR), suggests potential for differentiation of weed from crop species 

(Zwiggelaar, 1998). 

Use of not only spectral characteristics but also spatial characteristics such as leaf 

shape and structural differences may also be used to identify and discriminate plant 

species.  For example, monocotyledon species characterized by long narrow grass-like 

leaves are very different from the broad and circular leaves in dicotyledons.  Through 

investigation of leaf shape measurements (perimeter, area, roundness etc.), different plant 

species could be identified based on spatial characteristics.   

Given these spectral and spatial characteristics identified as important for species 

discrimination, RS technology is a valuable resource as it can provide both spectral and 

spatial information of selected targets on the ground.  The following section describes the 

process by which RS data are acquired and how information can be extracted and applied 

to plant species discrimination. 

2.3  Information from Remote Sensing Techniques 

 RS is the process by which data are recorded about an object, area or phenomenon 

by a sensor that is not in direct contact with that object, area or phenomenon (Lillisand 

and Kiefer, 1987).  In this study, RS refers to the measurement and subsequent recording 

of reflected EM radiation at wavelengths from the visible (400-700 nm) to near-infrared 

(700-1000 nm) regions as provided by the sensor system utilized.  The spectral, spatial 
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and temporal resolution of the RS data are of particular importance as these resolutions 

have a significant effect on the processing methods used and the information that can be 

extracted.   

 Spectral resolution refers to the measurement width (wavelength) and number of 

wavebands recorded in the RS data.  A multispectral dataset will contain less than 10 

relatively wide (~60-100 nm) wavebands, while a hyperspectal dataset can have 200 or 

more narrow wavebands (~1-20 nm) and typically are contiguous (ie. uninterrupted 

across the measured spectrum).  The spatial resolution or scale of RS data refers to the 

area that each picture element (pixel) in the image represents on the ground.  This is a 

function of the system optics and the platform on which the sensor is situated.  For a 

given sensor configuration, greater target to sensor distance results in a larger ground area 

represented by a single pixel and therefore a lower spatial resolution.  Generally, a sensor 

placed on a satellite platform will have lower spatial resolution than an airborne system, 

with the highest spatial resolution (mm scale) obtained using ground-based systems.  

Temporal resolution is simply the number of RS data acquisitions over time. 

 Data processing techniques are used to derive information about objects and areas 

of interest from the RS data.  These processing tasks used in characterizing spectral and 

spatial differences, particularly in relation to weed and crop species discrimination are 

described in the following sections. 

2.3.1 Spatial Characteristics 

 The very high spatial resolution of ground-based sensors provides an opportunity 

for species discrimination based on leaf shape and textural features (Rosin, 2003; Cho et 

al., 2002).  The majority of past studies utilized multispectral colour (Red, Green, Blue) 
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(RGB) charge-coupled device (CCD) sensor systems, as access to hyperspectral systems 

was limited. Defining leaf shape requires identification of foreground regions (plant 

pixels) and elimination of background features (soil and litter pixels) (Martin-Chefson et 

al., 1999).  Foreground vegetation pixels can then be isolated using threshold techniques. 

Alternatively, processing methods such as watershed segmentation exist for identification 

of not only plant pixels but defining individual plant leaf segments. 

2.3.1.1 Image Thresholding 
 
 Thresholding is a common image processing technique to generalize image data 

and segment objects of interest based on the magnitude of spectral response.  This 

procedure involves selection of the upper and lower range of pixel values for the object 

of interest (foreground pixels) and assigning them a single value, segmenting the image 

data into two classes, foreground and background.  A transformation of RGB image data 

to Hue, Saturation and Intensity (HSI) colour space is a common practice to alleviate the 

effects of variable illumination (Cheng et al., 2001; Burks et al., 2000a) and typically 

provides better segmentation results. 

 Tang et al. (2000) reported a method for segmenting plant matter from 

background using a genetic algorithm based on HSI.  The genetic algorithm is an 

adaptive search method modelled after the genetic evolutionary process.  The algorithm 

searched for the best three-dimensional threshold boundaries in HSI colour space, which 

represented foreground (plant matter) in an image.  This family of algorithms was highly 

efficient in search problems and was rarely affected by local minima due to the parallel 

exploration of the search space.  The study utilized a colour CCD camera (Sony XC-003) 

to obtain imagery of soybean (Glycine max (L.) Merr.) under variable illumination 
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conditions.  Similar results were obtained between algorithm output and manually 

segmented images and the authors suggested this method could be used as a first step in a 

weed detection procedure to account for variable illumination conditions. 

 Another proposed method for recognizing plant species included both spectral and 

leaf geometric features used in a classification scheme (Chapron et al., 1999).  Imagery 

obtained over corn (Zea mays L.) and weed plots using a four band (RGB and NIR) CCD 

camera (bandwidths and model not reported) were segmented into green plant matter and 

soil background using a series of Legendre filters (to remove signal noise) and thresholds 

of colour transformations.  Colour transformations included HSI, and the Commission 

International de l’Eclairage colour space developed for perceptual uniformity (Cheng et 

al., 2001).  The resulting image was classified into two classes (corn, not corn) using an 

expert system involving morphological filters that identified leaf shape.  The procedure 

was robust under different illumination conditions but leaf overlap in the imagery 

hindered the classification accuracy, as the model could not efficiently separate 

overlapping leaves.   

 The calculation of texture statistics from HSI colour space has also shown 

promise in discrimination of weed species.  Burks et al. (2000b) used an image analysis 

technique based on a Colour Co-occurrence Method (CCM) to discriminate five 

greenhouse grown weed species [large crabgrass (Digitaria sanguinalis Scop.), giant 

foxtail (Setaria faberi Herrm.), common lambsquarters (Chenopodium album L.), ivyleaf 

morning-glory (Ipomoea hederacea (L.) Jacq.), velvetleaf (Abutilion theophrasti 

Medicus)] and soil.  The method involved colour transformation of RGB imagery 

(acquired with a colour CCD JVC TK-870U camera system) to HSI co-ordinates 
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followed by CCM matrix generation on the HSI bands, and Discriminant Analysis (DA) 

classification.  To reduce the dimensionality of the CCM texture statistics (33 for each of 

the HSI matrices) and select layers that best identified textural differences between 

species, the authors used a Stepwise Discriminant Analysis (SDA).  Overall classification 

accuracy was 93% for all six ground cover classes using 11 CCM texture features.  The 

selected texture features used in the classification scheme did not include the intensity 

component thus reducing the processing time by one third and offering greater potential 

for a real-time herbicide application system. 

2.3.1.2 Watershed Segmentation 
 

Watershed segmentation is a technique for identifying plant leaf segments within 

image data. Once defined, leaf shape differences can be used for species discrimination.  

This technique considers a grey scale image as a topographic surface with pixel values as 

“elevations”.  Low points or minima on the surface are identified and the surface is 

flooded from these points.  Building a “dam” keeps water from flowing between basins 

as flooded areas meet.  Once the surface is completely flooded, watershed lines 

represented by dams define regions in the image (Vincent and Soille, 1991; Beucher, 

1992; Bleau and Leon, 2000; Rambabu et al., 2004). 

 Since its introduction by Beucher and Lantuejoul (1979), many researchers have 

published alterations to the algorithm to improve efficiency.  The method developed by 

Vincent and Soille (1991) significantly reduced computational requirements for 

segmentation and has made watershed segmentation an operational tool for practical use 

(Li et al., 1999).  Though watershed segmentation has not been applied to leaf object 
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identification, it has been utilized to segment plant pixels from background (soil) in 

colour image data (Soille, 2000) using the red-green feature space. 

2.3.1.3 Leaf Shape Extraction 

 Once plant pixels are identified within the image through thresholding or other 

segmentation procedures, leaf shape measurements can be extracted.  These can include, 

but are not restricted to, measurements of perimeter, area, aspect, roundness, compactness 

and elongation (Cho et al., 2002).  Aitkenhead et al. (2003) obtained overall classification 

accuracies of 62 to 67% in the identification of ryegrass (Lolium perenne L.) and fat hen 

(Chenopodium album L.) in Autumn King carrot (Daucus carota L.) crops through a 

single shape measurement (perimeter2/area).  Using three shape features 

(perimeter/broadness, elongation and aspect ratio) produced class accuracies of 92% for 

radish (Raphanus sativus L.) and 98% for an amalgamated weed class [purslane 

(Portulaca oleracea L.), crabgrass and goosefoot (Chenopodium album L.)] (Cho et al., 

2002).  Limitations to segmentation procedures for discrimination of crops and weeds 

based on leaf shape characteristics include size/stage of plant, leaf occlusion and shadow 

effects (Chapron et al., 1999; Brown and Noble, 2005). 

2.3.2 Spectral Characteristics 

 RS data can be used to derive information about the spectral characteristics of 

vegetated species.  Classification is an image processing technique used to generalize 

complex image data into more meaningful categories or classes based on similarities in 

spectral pixel values.  Different methods exist including statistical classifiers that group 

pixels based on clusters formed in the spectral domain.  Artificial intelligence methods 
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such as ANNs, which attempt to model biological neural function, have been used in 

image classification and are shown to provide accurate and computationally efficient 

results (Atkinson and Tatnall, 1997).  Studies involving the detection of weeds in 

agricultural cropping systems using pixel-based classification techniques are abundant 

(reviews by Lamb and Brown, 2001; Noble et al., 2002), and can be applied to RS image 

data of any spatial and/or spectral resolution.  The following sections review statistical 

classifiers for detection of weeds in agricultural crops, followed by application of ANNs 

to crop/weed discrimination.   

2.3.3 Statistical Classifiers 

2.3.3.1 Airborne Sensing 

 Research into the creation of weed maps at the field scale using multi- and 

hyperspectral airborne remote sensing systems has been an active field of study (Brown 

et al., 1997; Lamb and Weedon, 1998; Medlin et al., 2000).  Though limitations exist for 

spatial resolution, these systems are well suited to large area mapping and can provide 

information on weed location at the field level but not at the individual plant level.  

 Lamb and Weedon (1998) mapped panicgrass (Panicum effusum R. Br.) in canola 

(Brassica napus L.) stubble using MLC and Normalized Difference Vegetation Index 

(NDVI) thresholding.  A four band CCD airborne system acquired spectral information 

over the blue (440 nm), green (550 nm), red (650 nm) and near-infrared (770 nm) regions 

of the electromagnetic spectrum at a spatial resolution of 1 m.  The separation of green 

plant matter from soil and stubble background resulted in an overall classification 

accuracy of >87% for both MLC and NDVI threshold methods.  Brown and Steckler 

(1995) also attempted to classify four weed species (green foxtail (Setaria viridis (L.) 
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Beauv.), quackgrass (Agropyron repens (L.) Beauv.), dandelion (Taraxacum officinale 

Weber) and lambsquarters in two no-till corn fields using MLC on both colour and 

colour-infrared photography (10 cm spatial resolution).  Confusion between dandelion 

and lambsquarters was observed and these two classes were grouped.  Species 

differentiation was obtained in this study with an overall accuracy of 75%.    

Medlin et al. (2000) used a four band CCD airborne system with one green (535-

545 nm), two red (690-700 nm and 715-725 nm) and a NIR (835-845 nm) band, to 

acquire data over two early season (eight weeks post-seeding) soybean fields.  The 

spectral response was linked to ground-based density populations of three weed species 

[pitted morning-glory (Ipomoea lacunose L.), sicklepod (Senna obtusifolia (L.) Irwin & 

Barnaby) and horsenettle (Solanum carolinense L.)].  The relationship between the 

spectral response and weed density was tested through SDA.  The imagery was classified 

using DA for the presence or absence of weeds rather than each weed species.  A positive 

relationship between weed density and classification accuracy was established but 

differentiation of weed species was not successful. 

Few studies have tested the potential for species discrimination and weed map 

production using high spectral resolution airborne hyperspectral image data.  Bechdol et 

al., (2000) acquired hyperspectral data using the Airborne Imaging Spectroradiometer for 

Applications system (SPECIM, Oulu, Finland), which records data over the spectral 

range of 450 to 900 nm.  Images of three spatial resolutions (1, 2 and 3 m) were acquired 

over corn and soybean fields infested with eight weed species.  The imagery was 

atmospherically corrected and converted to reflectance.  Through classification of 

minimum noise fraction feature space, weed infestation zones showed agreement with 
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ground-data collected over all spatial resolutions.  Discrimination amongst weed species 

was not achieved. 

2.3.3.2 Ground-Based Sensing 

 Ground-based sensing platforms offer many advantages over airborne or satellite 

systems.  These include absence of atmospheric scattering/absorption and very fine 

spatial resolution as the target is situated closer to the sensing system.  A major limitation 

is spatial coverage, but in precision agricultural techniques aimed at individual fields, 

data are not required for large areas.  Several methods have been developed for weed 

detection using statistical classifiers at ground level, using both multi- and hyperspectral 

image data. 

 An inexpensive CCD camera (Canon model 760) was utilized by Brown and 

Steckler (1993) to collect spectra (440, 530, 650, 730 nm) over a no-till corn field with 

two weed species [quackgrass and milkweed (Asclepias syriaca L.)].  Image data were 

acquired at 8 m as well as 600 m (aerial) above the target resulting in spatial resolutions 

of 15 and 150 mm respectively.  Using MLC, >80% overall accuracy was obtained with 

the 600 m acquisition when defining three classes (weeds, corn and background) though 

individual weed species could not be differentiated.  The 8 m acquisition enabled 

separation of individual species as 66% of corn, 90% of quackgrass and 100% of 

milkweed pixels were correctly classified.  A similar project was reported (Brown et al., 

1994) using the same sensing system and imaging techniques to acquire data over no-till 

corn with seven weed species.  Again, MLC was used with optimal results obtained when 

weed species were joined into a single class. 
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 Because many weeds can be characterised by red stems, El-Faki et al. (2000a, b) 

attempted to differentiate crop and weed species based on stem colour.  Off nadir image 

data (45° incident angle) were collected using a colour CCD video camera (Sony XC-

711) and provided a detailed view (mm spatial resolution) of the plant stems.  Imagery 

was collected over trays of plants grown in a greenhouse.  Trays included hard red winter 

wheat infested with wild buckwheat (Polygonum convolvulus L.), cheat grass (Bromus 

secalinus L.) and field bindweed (Convolvulus arvensis L.) as well as soybean infested 

with johnsongrass (Sorghum halepense (L.) Pers.), redroot pigweed (Amaranthus 

retroflexus L.) and yellow foxtail (Setaria glauca (L.) Beauv.).  The method involved 

testing both DA and ANNs for classification.  A pre-processing step masked plant leaves, 

with the remaining stems passed to the classifications (DA, ANN).  Mis-classification 

rates for most weed species were below 3% for both methods, with the DA producing the 

highest accuracy in crop classification (least square means of 55% for soybean and 62% 

for wheat).  The authors stated that crop and weed stage were factors affecting the 

accuracy of weed detection.   

Though ground-based hyperspectral imaging systems are rare, spectroradiometers 

which acquire spectral response of a single area (similar to a single pixel) provide the 

opportunity to measure reflectance characteristics of crop and weed species at very high 

spectral resolution and have provided encouraging results in weed detection and species 

discrimination studies.  Vrindts et al. (2002) used an optical spectrum analyzer (Macam 

Photometrics Ltd., Livingston, Scotland) to obtain lab spectra from 400-2000 nm of 

seven weed species as well as corn and soybean.  Through SDA, band ratios were 

selected that were deemed best for species discrimination.  DA of these band ratios 
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produced classifications in which 97% of the weed and crop lab spectra were correctly 

classified.  In the field, spectra from 400-900 nm were obtained using an Imspector V9 

spectrograph (SPECIM).  Using the same DA method, 90% of the crop and weed spectra 

were correctly classified.  Illumination was a limitation as the discriminant models were 

developed under specific light conditions. 

DA classification provided good results in a study of excised leaves of two crop 

(canola and spring wheat) and five weed species (lambsquarters, green foxtail, redroot 

pigweed, wild mustard (Sinapis arvensis L.) and wild oat (Avena fatua L.)) (Smith and 

Blackshaw, 2003). An ASD fieldspec pro spectroradiometer (Analytical Spectral Devices 

Inc., Boulder, CO.) and an LI-1800 integrating sphere (Li-COR Inc., Lincoln, Nebraska) 

were used to obtain spectra.  Spectral resolution of these data were resampled to 

hyperspectral (350-2500 nm at 10 nm intervals) and multispectral (representing the 

Landsat wavebands) datasets. Species classification accuracies of 89% and 90% were 

obtained using the multispectral and hyperspectral datasets, respectively.  The authors 

suggested that the hyperspectral dataset was optimal as confusion was only observed 

within the monocotyledon species, whereas confusion between monocotyledon and 

dicotyledon species sometimes occurred in classification of the multispectral dataset. 

 An imaging spectrometer used by Borregaard et al. (2000) provided data for an 

extensive study of weed discrimination techniques including linear and quadratic DA, 

Principal Component Analysis (PCA) and partial least-squares regression.  Using both 

visible (400-700 nm) and NIR (660-1060 nm) line imaging spectrometers (VTT 

Electronics, Oulu, Finland), spectral data were acquired for two crops [sugar beet (Beta 

vulgaris L.) and potato (Solanum tuberosum L.)] and three weed species (fat hen, 
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bindweed and fools parsley (Aethusa cynapium L.).  The imagery was segmented to 

obtain pure plant spectra used in classification method evaluations.  The bi-linear 

methods proved to be the most efficient with overall accuracies of 70-80% on four 

species (one crop and three weeds), and 90% when aggregated into two classes (crop and 

weed). 

2.3.4 Artificial Neural Networks 
 

With the advancement of computing capability and the substantial amount of data 

supplied by imaging sensors, there is an increasing need for efficient data processing and 

interpretation tools.  Artificial neural networks, which attempt to model biological neural 

pathways, have been used extensively in many different applications.  The acceptance of 

ANNs in the field of remote sensing is due to several factors including the ability to 

handle complex feature space, to be computationally efficient and, to integrate different 

types of data (Atkinson and Tatnall, 1997).  ANNs are also advantageous in that they can 

handle classes with two or more clusters in spectral space (i.e. aggregated class “soil” 

which contains both “bare soil” and “crop litter” pixels) and as a non-parametric 

approach, they do not have underlying assumptions such as multivariate Gaussian 

normality (as in MLC).  For classification of plant reflectance spectra, which are typically 

not normally distributed (Noble and Crowe, 2005), ANNs may present an advantage over 

more traditional techniques. 

  ANN development began with the introduction of the perceptron (Rosenblatt, 

1958), a very simple feed-forward network model used to solve linear problems.  

Network models were incapable of distinguishing classes that were not linearly separable 

until the mid-1980’s with the development of back-propagation training (Smith, 1993).  
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Through the past 40+ years, advancement in network architecture, training methodology 

and software design have resulted in the introduction of many ANN types, the most 

common being the feed-forward Multi-Layer Perceptron (MLP) trained by the back-

propagation algorithm (Atkinson and Tatnall, 1997; Kannellopoulos and Wilkinson, 

1997).   

The MLP network consists of three or more layers including an input layer, one or 

more hidden layers and an output layer (Figure 2.2).  Each layer contains a number of 

nodes which model biological neurons assembled by weighted channels creating a 

network.  Input values are passed to the hidden layer with associated weights assigned to 

the connecting pathways.  In each neuron, the weighted sum of all pathways is calculated 

and a non-linear (typically “sigmoid”) transformation function is applied to model non-

linear transfer effects.  The value then passes to the output layer (or subsequent hidden 

layer(s)).  The output layer can have one or more nodes, with values ranging from 0-1.  

Each class is assigned a specific output range, and the output value is classified 

accordingly. 
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Figure 2.2 The Multi-Layer Perceptron (MLP) network architecture. 
 

 Training the feed-forward MLP network is commonly achieved through back-

propagation.  This supervised training method utilizes input and output pairs to compute 

an overall error for the entire network. This overall error is minimized through an error 

signal that is fed back through the network and alters the individual connection weights 

(Lawrence, 1994).  By utilizing known input and output pairs, the weights are adjusted 

through several iterations (termed epochs) until the appropriate output is achieved and 

overall network error is minimized.   

 One issue with ANN use is that it can be difficult to build the network model 

properly to achieve optimal or near-optimal network architecture, especially given the 

number of input parameters involved.  This complexity has been somewhat mitigated 

with the release of commercial neural network software packages that provide initial 

values for network specification although these values are highly dependent on the 

application. 
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Neural networks first appeared in the remote sensing literature in the late 1980’s 

(Key et al., 1989; Benediktsson et al., 1990), with application to weed-crop 

discrimination appearing in the late 1990’s (Yang et al., 1998, 2000; Moshou et al., 

2001).  Ground-based imaging sensors present the classifier with vast amounts of target 

information in the spatial and/or spectral domains to which ANNs are particularly well 

suited.  This is important in real-time image processing systems that require 

computational efficiency.  The following section reviews several studies in which ANNs 

were utilized for classification of weed species in agricultural cropping systems.   

2.3.5 ANN Classification of Weeds in Agriculture 

Machine vision based weed detection techniques provide very high resolution 

spatial imagery but are lacking in spectral dimensionality.  In these applications, shape 

characteristics of plant leaves are investigated for discriminating species, particularly 

broadleaf (dicotyledon) crops infested with grassy (monocotyledon) weeds.  Studies 

utilizing ANNs for classification of single plant image subsets, texture (co-occurrence 

measures) and leaf shape measurements aim to overcome the limited spectral information 

of machine vision sensors through incorporation of spatial species differences (Cho et al., 

2002; Aitkenhead et al., 2003; Yang et al., 2000 & 2003; Burks et al., 2000a & 2005). 

ANN classification of six weed species based on 11 CCM texture measurements 

(Burks et al., 2000b) expanded on a previous texture study (Burks et al., 2000a). The 

network architecture was evaluated by altering the number of nodes in the two hidden 

layers. The network model produced consistently high classification accuracies with the 

best topology producing a 97% overall (approx 90% individual class) accuracy.   
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Testing different network architectures based on classification accuracy also 

suggested that a large network does not necessarily produce the highest accuracies.  This 

study was extended to evaluate different network types including counter-propagation, 

back-propagation, radial basis function and the DA classifier (Burks et al., 2005).  The 

authors suggested the importance of reducing the number of input variables using SDA as 

a consistently successful procedure for simplification of the classification problem.  From 

the several classification methods utilized, the back-propagation network model produced 

the highest accuracy (97%). 

Cho et al. (2002) proposed an approach for discrimination between radish and 

three weed species based on leaf measurements (area, perimeter, length, width and length 

of major and minor axes) used to calculate eight shape features (aspect ratio, roundness, 

compactness, elongation, perimeter to broadness ratio, length to perimeter ratio, length to 

width ratio and cube of perimeter to area by length ratio) input to a MLP network model.  

Vegetation was segmented from the acquired colour imagery using Photoshop (Adobe 

Systems Inc., San Jose, CA), and shape characteristics were extracted using Image Pro 

Plus (Media Cybernetics Inc., Silver Spring, MD).  SDA was used to identify three shape 

measurements (perimeter/broadness, aspect and elongation) classified using DA, while 

all eight measurements were used as input to an ANN.  A network architecture of eight 

input, seven hidden and two output nodes classified 10 radish and 20 weed images with 

100% accuracy, while the DA classifier produced 93% and 94% class accuracy in radish 

and weeds, respectively.   

Aitkenhead et al. (2003) used a MLP neural network for discrimination amongst 

crop (carrot), weeds (ryegrass and fat hen) and soil.  Image pre-processing involved 
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delineating subset blocks of 32 x 24 pixels that contained plant matter.  Two image 

classification methods were tested.  First, a shape characteristic (perimeter2/area) mean 

was calculated from the training subset image data for the weed and crop classes and the 

validation blocks were classified based on distance to class means.  Secondly, the image 

subsets identified were classified using an ANN with the whole image block passed to the 

input layer, two hidden layers and two output values (soil=0,0; carrot=1,0; weeds=0,1; 

crop and weeds=1,1).  When plants of varied size were considered, the shape 

characteristic produced a classification accuracy of 62%, while the ANN classified 

between 62-82% of plant sample images correctly.   

The effects of feed-forward back-propagation network architecture on 

classification of corn and seven weed species were evaluated in a study by Yang et al. 

(2000).  Image data were collected using a Kodak DC50 RGB camera from which image 

subsets of 100 x 100 pixels containing a single crop or weed plant were manually 

selected.  The subsets were converted from 24-bit colour to 8-bit grey scale.  Several 

ANN architectures were created using Neural Network Toolbox v.2.0 for Matlab v.5.0 

(Mathworks, Natick, MA) in which a single hidden layer contained 70 to 300 nodes with 

one (crop=1; weeds=0) or two nodes (crop=1,0; weeds=0,1) in the output layer.  It was 

expected that the network with two output nodes would give an estimate of probability 

and that this would give some flexibility to interpretation of results.  The single output 

network produced class accuracies of 70-100% for corn and 50-80% for weeds while the 

network with two outputs produced accuracies of 60-90% for corn and 40-80% for weed 

classes.  McNemar and Briar Score statistics showed no significant differences between 

the various network models based on their predictive abilities.  This suggested the 
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simplest model (least hidden and output nodes) was as effective in crop/weed 

discrimination as the more complex model.   

This study was later expanded to detect four weed species in corn (Yang et al., 

2003).  Subset images of single plants were again defined (60 x 60 pixels) and converted 

to grey scale with four orientations per image (0°, 90°, 180° and 270°).  Two types 

(crop/amalgamated weed and crop/single weed) of ANNs were developed using 

NeuralWorks Professional II v5.23 (NeuralWare Inc., Pittsburgh, PA) with a single 

hidden layer of multiple nodes (100 – 1000) and one and two output nodes.  The resulting 

networks produced accuracies of 54-90% for corn and 32-100% for single weed species.  

This performance range indicated the importance of sample size and network 

architecture.  Species type also affected classification accuracy as the worst classification 

accuracy was for corn and quackgrass, both of which are monocotyledon species and 

have similar leaf structural characteristics.  Higher class accuracies were obtained for the 

crop/individual weed as opposed to the crop/amalgamated weed class.   

 Discrimination between sunflower (Helianthus annuus L.), common cocklebur 

(Xanthium strumarium L.) and background using three band (RGB) ground-based image 

classification with a MLP network using 1, 2 and 3 hidden layers was recently conducted 

(Kavdir, 2004).   Network models developed consisted of sunflower-weed, plant-bare soil 

and sunflower-weed-soil classification schemes. The architectures consisted of 4800 

inputs (3 colour values x 40 x 40 pixels) with 35-300 nodes in the first, 15-100 in the 

second and 7-15 in the third hidden layers.   

The best classification for sunflower-weed scheme was obtained using three 

hidden layers (50 x 25 x 7) with 70 of 86 images correctly identified.  Models with one or 
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two hidden layer architectures achieved slightly lower accuracies, though logistic 

regression showed no statistically significant difference in networks with 1, 2 or 3 hidden 

layers in discriminating plant and soil.  Classification of the sunflower-weed-soil scheme 

had 93 of 129 images correct with one hidden layer and 103 of 129 using models with 

two hidden layers.  Again classification accuracy of the ANN models was highly 

sensitive to network architecture.  Because shadow and variability in plant size were 

inherent in these image data the author suggested further work should focus on in-field 

experiments where soil type and crop residue may affect classification accuracies.   

 Few studies have addressed weed-crop discrimination with ANNs using ground-

based hyperspectral data.  As discussed in section 2.1, plant spectral reflectance 

characteristics in bands outside the visible region of the electromagnetic spectrum 

provide more information than RGB colour imaging sensors and may increase the 

feasibility of weed-crop discrimination.  Moshou et al. (2001) collected point spectra 

(200-2000 nm at 10 nm wavelengths) over corn, sugar beet and several weed species 

(individual species not identified).  Discriminatory bands were selected from the 200 

available using correlations between the two classes (high correlation indicates more 

information content contained within the band).   

This procedure identified five bands for corn-weed and three bands for sugar beet-

weed classifications.  Different ANN types were tested including MLP trained using 

adaptive learning rate and momentum, Self-Organizing Map (SOM) trained with local 

linear mappings and, probability neural networks.  The MLP classifier accuracies were 

90% / 66% (corn / weed) and 86% / 94% (sugar beet/weed) but the best performance was 

observed in the SOM network with class accuracies of 96% / 90% (corn / weed) and 98% 
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/ 97% (sugar beet / weed).  The authors suggested that the SOM network obtained faster 

convergence and produced better overall classification performance.  

2.4  Summary 

Research into the detection and discrimination of weeds in crops from both 

ground-based and aerial platform remote sensing systems is extensive.  Spectral, spatial 

and temporal resolution often limits using aerial and satellite platform sensors for plant 

species discrimination and revisit schedules of satellite-based systems can hinder 

acquisition of data at critical plant stages (Radhkrishnan et al., 2002).  Ground-based 

sensor systems are an attractive alternative due to the very high spatial resolution (mm 

scale) of image data but attention must be given to the increased computational cost of 

processing these data (Brown and Noble, 2005).  Few studies have investigated the 

potential of hyperspectral image data for weed crop discrimination mainly due to lack of 

sensor system availability and higher cost.  

Segmentation techniques, especially thresholding have consistently been applied 

for separation of foreground vegetation pixels from background in very high spatial 

resolution image data.  This first step of segmentation can be used to define shape 

characteristics and also identify foreground pixels in RS image data.  Identification of 

vegetation pixels can simplify the weed-crop classification problem through eliminating 

the need for soil or litter classes. 

 Building on past research, this study investigated the potential for weed and crop 

discrimination from the rich information (spectral and spatial) ground-based 

hyperspectral image data can provide. The following chapter reviews equipment and 
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methods used in acquisition and analysis of RS data for addressing the study objectives 

introduced in Chapter 1.   

  28



 

CHAPTER 3   MATERIALS AND METHODS 
 
 
3.1  Introduction 

 This chapter describes equipment and procedures used in acquisition of 

hyperspectral image data and its evaluation for detection of selected weed species in post-

emergent crops.  This is followed by radiometric correction and procedures for 

conversion of raw image data to reflectance.  The laboratory and field experimental 

design is presented followed by image segmentation techniques explored for identifying 

pixels of vegetation as well as identification of individual leaves within acquired image 

data.  A method for selection of a subset of wavelengths, which are important for species 

discrimination, is presented as well as classification (MLC and ANN) techniques used to 

define species location within the image data.  Validation methods for assessing 

classification accuracy, important for comparison of the two classification procedures, are 

then explained.  

3.2  Hyperspectral Imaging System 

The hyperspectral imaging system (Figure 3.1) and image acquisition software 

were developed by DeltaTee Enterprises Ltd. located in Calgary, Alberta, Canada.  The 

system uses a magnetic carriage to “step” a linear variable filter (Schott Veril, VIS-NIR 

200) across a charge-coupled device (CCD) sensor for hyperspectral image acquisition.  

The interference filter’s central wavelength varies linearly over a 200 mm length of glass 

substrate (Figure 3.2) and permits acquisition of a data cube with 61 wavebands from 400 

– 1000 nm at 10 nm increments.  The imaging sensor, manufactured by Point Grey 

Research (Vancouver, British Columbia) uses a 0.5 inch progressive scan CCD sensor 
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(Sony, ICX414AL).  This sensor outputs a 640 x 480 pixel image with a signal to noise 

ratio of greater than 60 dB.  Image data output are 16-bit unsigned integers, enabling a 

raw digital number (DN) dynamic range of 0 – 65535.  The system focuses incoming 

radiation with an 8 mm C-mount VIS-NIR lens (Schneider Kreuznach, Germany) fixed to 

create 44 º vertical and 33º horizontal fields-of-view with the focus and aperture (f/1.4 to 

f/11) adjusted manually.  This range in aperture settings ensures the system can be set to 

avoid saturation (DN reading above the 65535 limit of the CCD). 

The image acquisition software (SPDaq, DeltaTee Enterprises Ltd.) allows 

electronic shutter and waveband width adjustments, and was used to acquire, save and 

perform radiometric correction of the hyperspectral image data.  

 

 

 

a 
b 

c 
d

Figure 3.1 Hyperspectral imaging system components; a) lens, b) linear variable filter, c) 
imaging sensor and d) carriage system. 
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Figure 3.2 Linear relationship between measuring distance and wavelength in 200 mm 
filter (obtained from Edmund Optics, 2007). 

 
3.3  Calibration of Image Data 

Prior to image analysis, the acquired image data were radiometrically corrected.  

This consisted of three steps; dark correction, frequency resampling and uniformity 

correction.  The final processing step, conversion to reflectance, was achieved using the 

ENVI/IDL software package (ITT Industries Inc., Boulder, CO).  The following sub-

sections discuss each correction applied. 

3.3.1 Dark Current Correction 

Dark current correction accounts for internal signal noise and false response in the 

CCD potential wells inherent to this type of imaging system.  Thermal energy read as 

incoming photons can constitute a false reading of incoming radiation termed dark noise.  

Dark noise is positively related to thermal energy, and as the temperature of the imaging 

environment changes, particular attention must be given to dark noise effects.  Correction 

involved collection of 200 frames with the lens covered to eliminate all sources of 

incoming radiation.  The mean DN (n=200) for each pixel was calculated creating an 
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image of measured dark noise which was subtracted from each band in successive image 

acquisitions.  Dark noise correction data were acquired regularly throughout the period of 

image data collection to account for variation in dark noise effects. 

3.3.2 Frequency Resampling 

The raw image data consisted of several frames in which wavelength varied 

across the X dimension due to the linear variable filter used in the hyperspectral image 

acquisition.  A frequency resampling technique applied to the data cube transformed 

these data into frames of one consistent wavelength.  The procedure shifts the frequency 

data through a linear interpolation to adjacent images to produce a single wavelength 

horizontally across the image (Figure 3.3).  A number of extra images are taken to avoid 

extrapolation.  The factors for this correction (slope and intercept) are specific to the filter 

used in the imaging system and were calculated by the manufacturer. 

Extra images

Raw data
Re-sampled data

W
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Figure 3.3 Example of frequency resampling applied to image data cube. 
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3.3.3 Uniformity Correction  

Uniformity or flat field correction reduces variability in the imaging scene caused 

by fluctuation of the quantum efficiency of each potential well in the CCD matrix, termed 

photo response non-uniformity.  Secondly, as a result of circular lens optics, a gradient 

effect (viginetting) across the image is inherent in any imaging system.  Uniformity 

correction, which corrects these effects, can be calculated by filling the field-of-view with 

a target of consistent reflectance.  An integrating sphere was developed and used for 

uniformity coefficient collection at DeltaTee’s laboratories.   

The camera was setup to view the evenly illuminated integrating sphere.  For each 

f/stop the shutter speed was adjusted so that the maximum value in the dataset was 

approximately 75% of the full dynamic range.  With the optimal shutter speed 

established, a full hyperspectral data cube was acquired and dark correction applied.  The 

wavelength at which the highest signal response occurred was identified, and the average 

value was calculated for that band.  A correction coefficient matrix was created by 

dividing the average value by the value for each pixel (Equation 3.1).  Multiplication of 

this uniformity coefficient matrix with each band in the acquired hyperspectral data 

produces a uniformity corrected image.  The coefficient matrix is calculated by: 

yxyx UAvgC ,, /=       (3.1) 

where Avg is the average DN value, Ux,y is the DN value of a pixel at column x and row 

y, and Cx,y is the correction coefficient for the pixel at column x and row y. 
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3.3.4 Reflectance Conversion 

The final step of image processing involved conversion of DN values to 

reflectance.  Reflectance is a measure of the percentage of incoming solar radiation 

reflected by an image target on a per pixel basis.  This conversion required imaging a 

Spectralon (polytetrafluoroethylene) calibration panel.  The panel reflects approximately 

99% of incoming solar radiation across the 400-1000 nm wavelength range of the 

imaging system, with reflectance coefficients provided by the manufacturer (Labsphere, 

Inc., North Sutton, NH) at 50 nm increments (Appendix A). 

Immediately before and after image acquisition, the Spectralon panel was imaged 

(f/11 and shutter speed = 2-4 ms) ensuring sensor saturation did not occur.  The raw 

image pixel values of the reference panel were extracted and band means calculated.  

Acquisition of laboratory and field plot data required a slower shutter speed to provide 

appropriate signal strength to the CCD sensor, and typically ranged from 4-8 ms.  The 

relationship between exposure time and DN output in the CCD sensor system evaluated 

and found to be linear up to the saturation point (DN=65535) (Figure 3.4).  This 

suggested a conversion ratio could be applied prior to reflectance conversion, accounting 

for differences in shutter speed between the acquired panel and target image data.   
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Figure 3.4 Relationship between electronic shutter and raw digital numbers on CCD 
sensor (Mean n=4544, error bars = +/- standard deviation). 

 
An IDL program was written to convert the image data cubes to reflectance 

(Equation 3.2).  The program includes an exposure multiplier (conversion ratio), which 

accounts for instances where the reference panel was collected at a different shutter speed 

(same aperture) than the target/plot images.  For example, if a panel image acquired at 2 

ms is used to correct a field image acquired at 6 ms then the exposure multiplier would be 

3.  The program multiplies the DN’s of the calibration target by 3 before reflectance 

correction is run.  Reflectance is calculated as: 

R(x,y,b) = ( I(x,y,b) * SP(b)) / CT(b)     (3.2)  

where CT is the calibration target average DN, I is the image DN value, R is the image 

reflectance value, SP is the spectralon panel reflectance coefficient and x,y,b  represent 

the horizontal coordinate, vertical coordinate and band, respectively. 
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3.4  Experimental Design 

3.4.1 Crop and Weed Species 

 It was important that the weed/crop species selected in the study represent both 

monocotyledon and dicotyledon morphologies encountered in agricultural applications, 

as well as being of economic importance in western Canadian cropping systems.  Based 

on these criteria, three crop species [Eclipse field pea (PEA) (Pisum sativum L.), Invigor 

5020 canola (CAN) (Brassica napus L.), and AC Barrie spring wheat (WHT) (Triticum 

aestivum L.)] and two weed species [redroot pigweed (RRP) (Amaranthus retroflexus L.) 

and wild oat (WO) (Avena fatua L.)] were selected for investigation.   

3.4.2 Laboratory Trial  

Using laboratory and greenhouse facilities located at the Agriculture and Agri-

Food Canada Research Centre in Lethbridge, Alberta, weed/crop mixtures were seeded in 

trays of Cornell mix, an equal-part mixture of sphagnum peat moss and vermiculite 

(Table 3.1).  These treatments were grown in a greenhouse under sodium vapour lighting 

with a 16 hour day - 8 hour night cycle at a constant temperature of 21° C. 

Table 3.1 Planting depth and seed placement for greenhouse reared crop and weed 
mixtures. 

Species Planting Depth (cm) Seed Placement 
canola 1.5-2 0.5 cm spacing 

pea 5 0.5-1cm spacing 
wheat 4 Seed end to end  
redroot 
pigweed 

Surface Broadcast, and 
raked into surface 

wild oat 1.5-2 Broadcast, covered 
with soil 
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Four replications of these treatments were planted at approximately two-week 

intervals.  For this study, canola, redroot pigweed and a single wheat plant were 

transplanted into two trays. These trays provided a variety of leaf shapes and sizes, 

sufficient for initial testing of segmentation procedures. 

3.4.3 Field Trial 

The field study site was located at the Agriculture and Agri-Food Canada 

Research Centre in Lethbridge, Alberta (49.7°N, 112.833°W). The soil type was Dark 

Brown Chernozemic of lacustrine origin with a pH of 8.0 and 3% organic matter content. 

Weeds were surface broadcast on plots (5 m x 2.5 m) prior to seeding the various crops 

(Table 3.2).  Seeder movement over plots allowed the broadcast weeds to be embedded in 

the soil, facilitating germination.  During the seeding operation, nitrogen at 40 kg ha-1 and 

phosphorous at 10 kg ha-1 were banded 10 cm deep between crop rows. 

Table 3.2 Seeding procedures for the field trials. 

Species Rate Depth 
(cm) 

Row Spacing 
(cm) 

canola 8 kg ha-1 1-2 23 
pea 253 kg ha-1 5 23 

wheat 124 kg ha-1 4 23 
redroot 
pigweed 

27 g plot-1 Surface N/A 

wild oat 100 g plot-1 Surface N/A 
 
 
 

Field plots of the eleven treatments (5 monocultures and 6 weed/crop 

combinations) (Table 3.3) were seeded on four dates (Table 3.4) to increase the window 

of opportunity for collecting timely (weather/crop stage) image data.  Spring flooding 

hindered the first two seeding dates but hand watering of trial 3 and 4 improved 
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emergence in all species except wild oat.  Hand weeding ensured only species of interest 

existed within each plot and periodic irrigation promoted healthy crop/weed growth. 

Table 3.3 Crop (canola, pea and wheat) and weed (redroot pigweed and wild oat) 
treatments designated for laboratory and field plot experiments. 

# Treatment Abbreviation * 
1 canola monoculture CAN 
2 pea monoculture PEA 
3 wheat monoculture WHT 
4 redroot pigweed monoculture RRP 
5 wild oat monoculture WO 
6 canola / redroot pigweed mixture CAN / RRP 
7 canola / wild oat mixture CAN / WO 
8 pea / redroot pigweed mixture PEA / RRP 
9 pea / wild oat mixture PEA / WO 
10 wheat / redroot pigweed mixture WHT / RRP 
11 wheat / wild oat mixture WHT / WO 

*Abbreviated names are used in further reference to crop and weed treatments. 

 

Table 3.4 Planting dates for crop/weed plots in 2005 field season. 

Trial Seeding Date Notes 
1 May 5 RRP emerged late.   
2 May 31 Flooding killed PEA and RRP did not 

emerge. 
3 July 6 Excellent emergence in most species 

due to hand watering. 
4 July 19 Excellent emergence of all species. 

 
 
 
3.5  Image Acquisition Protocol 

3.5.1 Lab Data Acquisition 

 The hyperspectral camera system was used to acquire image data (400-1000 nm at 

10 nm intervals) of each greenhouse-reared treatment.  Placement of the sensor, nadir to 

the plant samples, at a distance of 1 m resulted in a spatial resolution of 1.25 x 1.25 mm.  
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Samples were artificially illuminated using a single 500 watt halogen lamp placed at a 

constant distance from the plant samples.  The light source was set at an angle of 27° off 

nadir, similar to the Solar Zenith Angle (SZA) of a mid-July day at 1:00 pm.  Collection 

of hyperspectral data from sample trays assisted in camera system troubleshooting, 

development of acquisition protocols and provided imagery for evaluation of hue band 

thresholding and watershed segmentation. 

3.5.2 Field Data Acquisition 

 The same hyperspectral camera system used in the lab experiment was placed on 

a boom arm, mounted on a flat-bed truck (Figure 3.5) and centered over each field plot at 

1 m target distance.  Imagery acquired from each plot was of 1.25 mm x 1.25 mm spatial 

resolution over the 400 – 1000 nm spectral range at 10 nm intervals.  Image data were 

acquired at nadir ± 2 hours from solar noon (approx. 11 am-3 pm) under clear sky 

conditions to reduce the illumination intensity variation associated with changes in SZA 

and intermittent cloud cover.  Data acquisition was limited to days of negligible wind to 

minimise leaf movement during plot imaging.   
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Figure 3.5 Flatbed Truck with sensor system boom. 

 

Treatments seeded on July 6, 2005 provided temporal sampling as image data 

were acquired at approximately 1, 2, 3 and 4 weeks (July 14, 19, 26 and Aug. 3, 

respectively) after seeding.  The July 19 and 26 acquisition dates encompassed the 

timeframe of optimal plant growth stage for herbicide application and thus were the focus 

in this study.  The field-based plot image data provided data representative of real field 

conditions and were used for further investigation of threshold techniques (using 

Vegetation Indices (VI)) and evaluation of ANNs and MLC. 

3.6 Image Segmentation 

Two image segmentation techniques were investigated in this study.  The first 

method, a simple threshold of a single band for identification of foreground (vegetation) 

pixels and creation of a vegetation mask, aids in simplifying the classification problem 
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through elimination of background pixels.  The second method, watershed segmentation, 

was evaluated for efficiency in defining individual leaves within the image data, from 

which leaf shape variables could be extracted.  As leaves of many weed and crop species 

differ in shape, potential exists for species discrimination based on shape characteristics.  

The following subsections explain these segmentation procedures in detail. 

3.6.1 Thresholding 

Hue Threshold 
The hue colour component, which represents the dominant wavelength (relating 

to colour) (Lillesand and Kiefer, 1987) and human perception of colour (Cheng et al., 

2001) was calculated from laboratory image data from RGB colour space.  An IDL 

function, adapted from the method described by Foley and Van Dam (1982), was used to 

obtain hue values from red (670 nm), green (550 nm) and blue (450 nm) image 

wavebands.  The range of hue values output from this function ranged from 0-360° with 

green centered at 120°, blue centered at 240° and red at 0° or 360°.  Extracting the mean 

and standard deviation for green plant matter from the hue band, a threshold range of 90–

160° was identified as vegetation and assigned a value of 1, all other values were 

assigned 0 and considered background.   

The resultant threshold image contained a number of erroneous pixels that were 

removed with a series of erode then dilate morphological operators (Haralick et al., 1987) 

using a 3 x 3 circular filter kernel (Figure 3.6).  The erode function removes pixels that fit 

inside the structural element (kernel) as it is passed over the image, thereby removing the 

noise pixels and consequently reducing the size of the areas of interest. Through applying 

the dilate function, existing features in the mask are returned to their original size.  These 

  41



 

operators used in sequence eliminate isolated pixels while maintaining feature 

boundaries.  

0 1 0
1 1 1
0 1 0

Figure 3.6 Circular structural element used in morphological erode and dilate procedures 
on vegetation mask for noise removal. 

 

MCARI Threshold 

A second method was developed for defining vegetation pixels based on image 

data acquired over field-based crop and weed treatments.  Several Vegetation Indices 

(VI’s) were evaluated for separating vegetation and background.  The best separation was 

observed in the Modified Chlorophyll Absorptance Reflectance Index (MCARI) 

(Equation 3.3) image (Daughtry et al., 2000).  The MCARI threshold method assigned 

pixel values ranging from 0.1 to 2.0 as green plant matter and values below 0.1 were non-

vegetated and therefore not of interest.  MCARI is calculated as: 

)/(*)](*2.0)[( 670700550700670700 RRRRRRMCARI −−−=       (3.3) 

 where R550 is reflectance at 550 nm, R670 is reflectance at 670 nm and R700 is reflectance 

at 700 nm. 

   

3.6.2 Watershed Segmentation 

The watershed segmentation algorithm was run (using IDL) to segment individual 

leaves from laboratory acquired image data.  Prior to segmentation, the hue band was 

quantized to reduce the data range in the imagery.  Reduction of data range has a 

smoothing effect, reducing small variations in the image surface.  Because over-
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segmentation is stated as an issue with this algorithm (Li et al., 1999; Ruberto et al., 

2002), the reduced surface variability improved results.    

 Vegetation in the hue image is lighter than the background and inversion ensures 

the watershed algorithm interprets vegetation as basins on the image surface.  The 

segmentation was applied on the original 8-bit (256 shades), quantized 4-bit (16 shades) 

and 3-bit (8 shades) image representations.  The final step involved application of a 

vegetation mask (see hue threshold above) to the watershed output, masking background 

pixels and highlighting areas of interest in the imagery. 

3.7 Manually Defined Leaves  

Experimental analyses required that individual leaves be manually digitized to 

provide a dataset of known species class to be used in classification training and 

validation.  These Regions Of Interest (ROIs) were defined from image data collected on 

both July 19 and 26 (Table 3.5).  The plant stages on July 26 resulted in greater crop and 

weed ground cover, and allowed a larger number of pixels to be defined for all plant 

species except WHT.  The total number of ROIs and associated pixels for each species 

are given in Table 3.6.  This large database of image pixels were sub-sampled for 

statistical analyses (Analysis of Variance (ANOVA), PCA, SDA) and providing training 

and validation sets for the supervised classification techniques MLC and ANNs.   

 
Table 3.5 Manually defined ROIs for both image acquisition dates. 

 July 19 July 26 
Crop/Weed # Crop ROIs # Weed ROIs # Crop ROIs # Weed ROIs 
CAN / RRP 29 55 30 43 
WHT / WO 35 16 25 10 
PEA / WO 22 20 21 33 
WHT / RRP 42 60 55 36 
CAN / WO 45 19 24 15 
PEA / RRP 20 57 20 35 
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Table 3.6 Total number of ROIs and their associated pixels for each weed and crop 
species investigated. 

 July 19 July 26 
Species # ROIs # Pixels # ROIs # Pixels 
CAN 64 23,899 53 62,082 
PEA 42 11,007 41 15,437 
WHT 77 6,932 80 6,416 
RRP 171 12,161 114 22,438 
WO 45 2,299 58 3,434 

 
 

3.7.1 Classification Training 

The two supervised classification methods (MLC and ANN) required input data 

of each species for training.  Particular attention was given not only to representation of 

species spectrally, but also spatially across each image scene.  Each image was divided 

into nine equal sections. Training samples (ROI leaves) were selected (1-4 regions per 

section, based on leaf size) from each section equally across the plots (for example, CAN 

leaves were sampled from both the CAN/WO and the CAN/RRP treatments).  This 

ensured that any sensor variation across the image scene would be represented in the 

classification training dataset.  With selection of leaf regions complete, a one of n 

sampling procedure reduced the training set to approximately 500 pixels for each species 

(Table 3.7).   
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Table 3.7 Number of ROI training samples and associated pixels selected for 
classification training.  Subset pixels selected by 1 of n sampling. 

Species # ROIs ROIs/Section Total # pixels Subset Pixels 
July 19 Acquisition 

CAN 9 1 5334 649 
RRP 36 4 3287 532 
PEA 18 2 4424 562 
WHT 36 4 3454 591 
WO 36 4 1906 488 

July 26 Acquisition 
CAN 9 1 9701 648 
RRP 36 4 7577 542 
PEA 18 2 6891 573 
WHT 36 4 3545 590 
WO 36 4 2434 488 

 

Training pixels used for classification of the July 19 and 26 image data were also 

combined into a multitemporal training set in order to encompass/represent the temporal 

variability, observed between these two dates.  This resulted in approximately 2000 

pixels (1000 weed and 1000 crop) used as input to train the multitemporal series 

classifications. 

3.7.2 Classification Validation 

Classification accuracy assessment requires samples independent from the 

training set.  Elimination of leaves used for training from the manually defined leaves 

created an independent validation set (Table 3.8).  As classifications were run on a per 

plot basis, the validation sites could not be defined across treatments as was the case in 

training.  Class validations were tabulated as contingency tables using the post 

classification modules in ENVI/IDL.  Results are presented as overall classification 

accuracy, Kappa coefficient and errors of omission and commission, which were 

computed from contingency tables (Jensen, 1996).   
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The error of omission represents the probability of a reference pixel being 

correctly classified while commission error is the probability that a classified pixel 

actually belongs to that class.  Overall accuracy represents the percentage of pixels 

classified correctly in the entire validation set while the Kappa coefficient takes into 

account not only overall accuracy but also the omission and commission errors.  These 

standardized methods of accuracy assessment provide comparison between the two 

supervised methods as well as between single date, multitemporal and reduced waveband 

classification series. 

Table 3.8 Pixels used for validation of field plot classification output. 

Crop / Weed # Crop Pixels # Weed Pixels 
July 19 

CAN/RRP 10268 2839 
WHT/WO 1869 62 
PEA/WO 2804 268 

WHT/RRP 1301 2739 
CAN/WO 8222 27 
PEA/RRP 3763 3384 

July 26 
CAN/RRP 35008 5101 
WHT/WO 975 339 
PEA/WO 4101 358 

WHT/RRP 1887 4684 
CAN/WO 17379 292 
PEA/RRP 4451 5076 

 

3.8 Image Statistics 

 Selection of pixels for statistical analyses involved application of a random 

number to the data records, sorting based on these random numbers and selection of the 

first 1000 pixels for each species.  Twenty repetitions of ANOVA and SDA procedures 

were run using SAS statistical software (SAS Institute Inc., Cary, NC, USA), each with a 
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new set of randomly selected pixels.  These repetitions ensured that error caused by 

sample selection would be reduced, and therefore increase confidence in analysis results. 

3.8.1 Analysis of Variance 

The ANOVA procedure was used to identify significant differences amongst 

species reflectance in each waveband.  Significant difference was measured at the 95% 

confidence level with the p-value output from the SAS procedure.  A p-value of less than 

0.05 suggested that a significant difference existed amongst mean species reflectance at 

each waveband.  Plots (x = band, y = p-value) enabled visualization of the discriminatory 

bands and more importantly identified bands which had little discriminatory power. 

3.8.2 Stepwise Discriminant Analysis 

 In addition to ANOVA, SDA was run to identify bands of particular 

discriminatory power.  The SDA first began without variables in the discriminatory set.  

Through an iterative process, variables were either entered or removed from the set based 

on the reduction of the Wilk’s lambda statistic at a specific confidence level (0.05).  The 

process ran, continually adding or removing wavebands until no further entry or removal 

of variables caused a further reduction of Wilk’s lambda.  The final output was a list of 

wavebands ranked by discriminatory power amongst species. 

 Typically, the number of wavebands selected ranged from 20-30 (of the original 

61) depending on the classes tested in the model.  For selection of the most important 

wavebands, the Wilk’s lambda output was plotted (x = iteration, y= Wilk’s lambda value) 

and the iteration at which the plot began to plateau (delta Wilk’s lambda < 0.01 and 

<0.005) was identified (Figure 3.7).  The bands defined at these iterations were recorded 
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and counted over the twenty repetitions of the SDA to produce plots (x=band, y=count) 

of consistently selected discriminatory bands. 
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Figure 3.7 Reduction of Wilk’s lambda statistic for a single stepwise discriminant run of 
CAN vs. RRP.  The line begins to plateau at iteration 6 (delta <0.01) and iteration 9 (delta 
<0.005). 

 

3.8.3 Principal Components Analysis  

 PCA is a mathematical transformation in the spectral domain, and is typically 

used to produce uncorrelated output bands, segregate signal noise and reduce 

dimensionality of remotely sensed image data (Jensen, 1996).  The components are linear 

combinations of the original wavebands, created by transformation coefficients derived 

from the covariance matrix of the original image data.  These coefficients include 

eigenvalues which represent the half-lengths of the principal axes and eigenvectors which 

represent the orientation of the principal axis.  Eigenvalues of the transformation 

represent the amount of total variance contained within the component.  The component 
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with the highest eigenvalues therefore account for the most variance in spectral space and 

are considered to contain the most information.    

 Each component receives some contribution from all of the original image 

wavebands.  This contribution can be calculated through examination of the eigenvectors, 

as the magnitude of each element in the vector is directly proportional to the input 

wavebands’ contribution.  By calculating the percent contribution of the original bands to 

each component with the highest eigenvalues, bands from the original image data can be 

defined as containing the non-redundant information with respect to spectral 

discrimination.   

 PCA was run using the ENVI/IDL software package.  Prior to the analysis, the 

image data were masked to include only the crop/weed combinations of interest.  The 

percent contribution of each input band to the first three components were calculated 

(Equation 3.4) and plotted (x = band, y = % contribution).  The bands identified as 

contributing most to these components further aided selection of important bands for 

discriminating crop and weed species.  The % contribution was calculated as: 

      (3.4) 100*)/(%
61

1

22 ∑
=

=
i

b iionContributi

where i is the eigenvector element and b is the input band. 
 
 
3.9  Image Classification 

 Image classification procedures aim to generalize image data by defining classes 

and assigning each pixel to a class based on spectral characteristics.  In this study, two 

classification techniques (MLC and ANN) were evaluated for the potential to 

discriminate between single crop/weed species combinations.  The application of the 
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MCARI vegetation mask identified only vegetation pixels which further simplified the 

classification problem.  Because these two techniques are supervised, training data (see 

Section 3.6.1) were defined from the manually defined ROIs and subset with particular 

attention to representation of species spectral and spatial variability.   

3.9.1 Maximum Likelihood Classification 

 Three series of MLC were conducted using ENVI/IDL software. The ENVI MLC 

procedure does a calculation of the class covariance matrices of each species from 

training pixels.  Training statistics were computed for classification of single dates (July 

19 or 26) as well as multitemporally, in which training pixels were combined across the 

two acquisition dates and these covariance matrices were used in classification of 

weed/crop field plot image data from July 19 and 26.  A reduced number of bands, 

identified from the ANOVA, PCA and SDA were used as input to the MLC.  This set 

was run on the July 19 image data and was used to evaluate the effects of a reduction in 

spectral dimensionality on classification output.   

3.9.2 Artificial Neural Networks 

ANN models were developed using the same classification series as above (single 

date, multitemporal, and reduced bands).  Feed-forward ANN modelling was conducted 

using Predict® v3.11 (NeuralWare Inc., Pittsburgh, PA) software.  This involved: 1) 

selecting internal validation, training and internal test data subsets, 2) analyzing and 

transforming data, 3) selecting variables, 4) network construction and training, and 5) 

model verification. The ANN software partitioned the data from the training set into 

subsets as follows: 30% of these data were removed to form an internal validation set, 
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with the remaining 70% were further partitioned 70% / 30% into training and internal test 

sets, respectively.  The training set was used to develop ANN models and the internal test 

set to adjust ANN parameters during training. The 30% internal validation set was held 

separate during training, and then used as an initial evaluation of ANN model 

performance.   

Five networks were developed using the above procedure with the best model 

selected, based solely on internal validation performance.  This was then run over 20 

iterations which produced 20 (best of five) network models for each crop/weed 

combination.  These 20 networks were evaluated based on the following factors: 

 Network Architecture – The ANN models consist of three layers, the input, hidden 

and output (2 classes).  Each of the 20 models was evaluated such that the hidden 

layer contained approximately half of the number of nodes as the input layer.  Once 

these models were defined, the validation (internal and external) performance was 

investigated. 

 Validation Performance – Models with highest internal and external validation 

accuracies were identified.  The internal validation accuracy was set at a lower 

priority than the external validation because the independent external samples suggest 

a better representation of real world accuracy assessment.   

Once the best model of 20 was identified for each crop/weed combination, the 

field plot treatments were classified.  Each pixel within the plot image was fed into the 

network model with the output class used to reconstitute these data into a classified 

image.  The classed image was then validated based on manually defined regions 

independent of training.  
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CHAPTER 4   RESULTS 
 
4.1  Introduction 

 Initial investigation into segmentation methods was conducted on laboratory 

image data of greenhouse grown crop and weed plants.  Two objectives, segmentation of 

individual leaves through watershed transformation and segmentation of vegetation 

pixels from image background through hue thresholds, were investigated.  Upon 

acquisition of field-based weed and crop treatments, an extension on this technique using 

vegetation indices was investigated.  These segmentation methods identified vegetated 

pixels that could then be analyzed statistically and passed to the classification algorithms. 

 Descriptive statistics (mean and standard deviation) and ANOVA were run on 

image data acquired over field-based crop and weed treatments to characterize important 

areas of the EM spectrum for species discrimination.  The SDA and PCA were used to 

select a subset of wavebands to form a multispectral dataset for the reduced band 

classification series run on the July 19 image data. 

 Two supervised classification techniques (ANN and MLC) were evaluated for 

species identification accuracy through three series of classifications: single date, 

multitemporal and single date with a reduced number of wavebands.  The first series 

involved single date classifications using the entire 61 waveband image dataset and tested 

the accuracy of classification from a single image acquisition.  With two dates (July 19 

and 26) available, a second series of classifications were trained using data from both 

acquisitions. This multitemporal series provided an evaluation of classification accuracy, 

accounting for not only spatial, but also temporal variation in leaf reflectance 
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characteristics.  The third series of classifications investigated the need for a full 

hyperspectral dataset versus a subset of narrow wavebands representative of image data 

provided by a multispectral system.  Using a reduced subset of wavebands identified 

through statistical analyses, an evaluation of classification accuracy for July 19 image 

data was conducted.  Additional perspectives on results and implications to precision 

agriculture and SSHM are presented in Chapter 5. 

4.2  Segmentation of Laboratory Image Data 

 Image data acquired in a laboratory setting using greenhouse grown plants 

provided a means to evaluate two image segmentation methods; thresholding of the 

transformed hue colour component and watershed segmentation.  These image data 

included a wheat (WHT) plant, two canola (CAN) plants and several redroot pigweed 

(RRP) plants at various phenological stages (Figure 4.1).  The different leaf shape and 

size represented in these images provided an initial evaluation for the segmentation 

procedures. 

 

 

Figure 4.1 Laboratory acquired WHT and CAN (left) and RRP (right) image data used 
for testing segmentation procedures. 
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4.2.1 Hue Threshold 

The two laboratory images were converted to the hue colour component (Figure 

4.2a).  All pixels with hue values between 90-160° were assigned a value of 1 and the 

remaining pixels assigned a value of 0 (Figure 4.2b).  This threshold of the hue 

component produced some spurious pixels in areas where vegetation did not exist.  Using 

morphological erode and dilate filters removed spurious pixels then expanded leaf 

boundaries back to their original size (Figure 4.2c) (Haralick et al., 1987).    

The hue threshold procedure was accurate in identifying green plant matter in 

both crop and weed images.  Regardless of reflectance variability due to leaf angle, it was 

possible to identify foreground vegetation pixels.  WHT and RRP showed a high degree 

of leaf overlap, which confounded identification of single leaf segments.  The CAN 

plants, characterized by widely spread leaves, were segmented relatively well, though 

connecting petioles resulted in a single region being defined for the entire plant rather 

than a single leaf region. 
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Figure 4.2 Processing steps in creation of vegetation mask for both WHT/CAN and RRP 
treatments: (a) hue colour component; (b) 90-160° threshold image; (c) the result of the 
erode and dilate operators. 

 

4.2.2 Watershed Segmentation 

  The watershed segmentation algorithm was evaluated for potential in defining 

individual leaf segments from transformed hue image data acquired in the laboratory.  

This was a preliminary step to measuring leaf shape characteristics.  Over-segmentation 
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(excessive small segments within each leaf) for WHT, CAN and RRP was evident in the 

watershed output using the original 8-bit (256 grey-levels) images (Figure 4.3a).  Output 

from the 4-bit hue imagery (Figure 4.3b), resulted in the definition of larger regions for 

all three species such that fewer regions defined a single leaf.  Reducing the data range to 

3-bit (Figure 4.3c) further improved the segmentation results, as defined leaf regions 

were larger and less affected by local hue variation across the leaf surface, though 

defined segments extended past leaf boundaries.  Since the vegetation mask created by 

hue thresholding was accurate in detecting plant edges, optimal results were obtained in 

terms of individual leaf segmentation by applying the hue threshold mask to the 

watershed transformation output.   
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Figure 4.3 Watershed segmentation results of WHT/CAN and RRP treatments on: (a) 8-
bit; (b) 4-bit; (c) 3-bit hue bands. 
 

 This initial evaluation of the watershed segmentation showed that it was not well 

suited to defining individual leaf segments. Leaf overlap and over-segmentation made 

shape measurement impossible with this dataset, therefore this method was not 

investigated with field plot image data.   
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4.3 Segmentation of Field Image Data  

 Since encouraging results were obtained in defining vegetation pixels using 

thresholds, this method was further investigated on the field image data.  The availability 

of NIR wavebands in these data enabled evaluation of VI thresholding.  Through visual 

examination of 13 VIs, the MCARI (Daughtry et al., 2000) index provided the best 

separation between foreground (vegetation) and background (soil, litter) pixel values, and 

was consistent across the multiple weed/crop combination plots on the two image 

acquisition dates (July 19 and 26).   

4.3.1 MCARI Threshold 

 Defining the minimum MCARI value for vegetation was achieved through 

manual identification of vegetation pixels in the image data.  The lowest observed 

MCARI value for sunlit and shadowed vegetation pixels in the images was 0.1.  Leaf 

edge pixels affected by background mixing showed a MCARI value lower than 0.1 and 

was defined as the minimum value for the threshold.  Assigning all pixels with values ≥ 

0.1 as foreground (set to 1) and all others as background (set to 0), created the vegetation 

mask (Figure 4.4).  
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Figure 4.4 MCARI threshold technique for segmenting vegetation ((a) CAN/RRP and (d) 
WHT/RRP) from background.  MCARI vegetation index is calculated (b,e) and a value 
of 1 was applied to all pixels with a value of > 0.1 to create a mask of only vegetation 
pixels (c, f). 

 

 MCARI thresholding efficiently defined vegetated pixels and this method was 

applied to all field-based image data acquisitions prior to classification as it eliminated 

the requirement of training for background classes.  It is believed that processing 

efficiency was improved as only vegetation pixels were passed to the classification 

procedures.  Prior to testing classification procedures, descriptive statistics (mean and 

standard deviation), ANOVA, SDA and PCA were run on image data acquired over field-

based crop and weed treatments to characterize important areas of the EM spectrum for 

species discrimination. 
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4.4  Image Statistics 

 The mean reflectance of training pixels extracted from both the July 19 and 26 

acquisition dates are shown in Figures 4.5 and 4.6, respectively.  The greatest spectral 

difference was observed between the monocotyledon (WHT, WO) and dicotyledon 

(CAN, PEA, RRP) species, especially in the NIR region where reflectance differed by 

>10%.  On the later date (July 26), WHT differed from WO in the visible portion of the 

EM spectrum, but mean reflectance in the NIR region was similar, suggesting that this 

monocotyledon combination may be difficult to classify based solely on spectral 

reflectance characteristics.  CAN and PEA reflectance were also similar to RRP, though 

differences in the red-edge and NIR regions (700-1000 nm) were observed on July 19 

between the respective crop and weed spectra and between PEA and RRP on July 26.  

The dotted lines in Figure 4.5 and 4.6 represent ±1 standard deviation from the 

reflectance mean and show the high variance in sampled populations.  These variances 

about the mean of the training classes identified the complexity of separation between 

weed and crop species.   

 

  60



 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Wavelength (nm)

R
ef

le
ct

an
ce

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Wavelength (nm)

R
ef

le
ct

an
ce

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Wavelength (nm)

R
ef

le
ct

an
ce

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Wavelength (nm)

R
ef

le
ct

an
ce

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Wavelength (nm)

R
ef

le
ct

an
ce

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Wavelength (nm)

R
ef

le
ct

an
ce

 

Figure 4.5 Mean reflectance of crop (CAN=orange, PEA=green, WHT=cyan) and weed 
(RRP=red, WO=blue) classes drawn from July 19 training data (Dotted Lines = ±1 
Standard Deviation). 
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Figure 4.6 Mean reflectance of crop (CAN=orange, PEA=green, WHT=cyan) and weed 
(RRP=red, WO=blue) classes drawn from July 26 training data (Dotted Lines = ±1 
Standard Deviation). 
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 ANOVA statistics provided a method of testing for significant differences in the 

reflectance spectra between each crop/weed combination across all wavebands.  Twenty 

repetitions (randomly selected subsets of 1000 pixels/species) of ANOVA were plotted 

for July 19 (Figure 4.7) and 26 (Figure 4.8).  A probability value of <0.05 for a particular 

waveband indicated a significant difference (with 95% confidence) between the 

reflectance means of crop and weed species.  For both acquisition dates, WHT and RRP 

reflectance means differed significantly over the entire measured wavelength domain 

(400-1000 nm).   Significant differences were also observed for WHT and WO species on 

both dates except in the wavebands >800 nm on July 19, which was unexpected given the 

similarity in the species mean reflectance plots (Figure 4.5 and 4.6).   The ANOVA 

results for PEA and CAN show that reflectance of the crop species were similar to the 

two weed species with the exception of those wavebands on either side of the green peak 

(510-530 nm and 570-590 nm).  Sections of the NIR (700-800 nm and 850-900 nm) were 

not significantly different between the two broadleaf crops (PEA and CAN) and the RRP 

class, though differences were observed between WO and the two broad-leaf crops (with 

the exception of 690 nm).  
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Figure 4.7 ANOVA probability values (over 20 repetitions) plotted by waveband for 
crop/weed combinations on July 19 acquisition date. Grey sections indicate wavelengths 
where no significant difference exists between weed/crop combinations. 

 
 
 On the later acquisition date (July 26) reflectance at 550 nm differed significantly 

between all weed crop combinations except CAN/WO.  Similar to July 19, CAN and 

RRP reflectance did not show differences on either side of the green peak.  In the case of 

CAN and WO and PEA and RRP, with few exceptions (550 nm and 700-730 nm 

respectively) reflectance differs significantly. In PEA and WO, reflectance differed 

significantly at 550 nm and also in the region 640-660 nm.   
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Figure 4.8 ANOVA probability values (over 20 repetitions) plotted by waveband for 
crop/weed combinations on July 26 acquisition date. Grey sections indicate wavelengths 
where no significant difference exists between weed/crop combinations. 

 
4.5 Discriminatory Wavebands 

 SDA and PCA were used for identification of particular wavebands of importance 

in discrimination of crop and weed classes.  Once selected, this subset of wavebands was 

used in the reduced band series of classifications run on the July 19 acquisitions.   

4.5.1 Stepwise Discriminant Analysis 

 The SDA procedure identified the importance of each waveband for 

discrimination of crop and weed species.  The selected wavebands of importance 
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constitute a subset of the original bands reducing the spectral dimensionality of image 

data needed for species discrimination.  The SDA was run 20 times for each crop/weed 

combination using a different set of randomly selected pixels (1000 per class) each time.  

Output consisted of a ranked list of discriminatory wavebands, selected based on how 

their addition to the set reduced the Wilk’s lambda statistic.   

 Two subsets of wavebands were selected from the ranked output list for each 

crop/weed combination.  The first set included wavebands that reduced the Wilk’s 

lambda by greater than 0.005, the second set reduced the Wilk’s lambda by greater than 

0.01.  The number of times each waveband was selected (frequency of selection) over the 

20 independent runs identified wavelengths that were consistently important in crop/weed 

discrimination for the July 19 acquisition (Figures 4.9 and 4.10).   
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Figure 4.9 Count of selected discriminatory bands (over 20 repetitions) plotted by 
waveband for crop/RRP combinations on July 19 acquisition date.  Black bars represent 
delta Wilk’s lambda 0.01; white bars represent delta Wilk’s lambda 0.005. 
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Figure 4.10 Count of selected discriminatory bands (over 20 repetitions) plotted by 
waveband for crop/WO combinations on July 19 acquisition date.  Black bars represent 
delta Wilk’s lambda 0.01; white bars represent delta Wilk’s lambda 0.005. 
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 The SDA of the dicotyledon crop/weed combinations (CAN/RRP and PEA/RRP) 

identified several wavebands situated in the visible spectrum (480, 550, 600, 640, 650, 

660 and 670 nm) to be frequently selected, while those in the NIR portion of the 

spectrum were selected less frequently.  The CAN/WO and PEA/WO combinations 

showed wavebands in the red, red-edge and NIR (620, 670, 720, 860 nm) regions to be of 

discriminatory importance while very few wavebands in the blue and green regions of the 

visible range were selected.   The results for the monocotyledon WHT/WO combination 

showed wavebands in the range 400, 460-480, 670-700, 830 and 920 nm to be important 

in terms of discriminatory power.  These same wavebands along with 840, 930, 940 and 

950 nm were identified as important for the discrimination of WHT and RRP.    

4.5.2 Principal Component Analysis 

 PCA was run 20 times for each crop/weed combination on image data acquired 

July 19.  Calculation of the percent (%) contribution of each original waveband to the 

transformed component identified those wavebands containing the most information and 

therefore deemed most useful or important for species differentiation.  Plotting the 

relative contribution of each original waveband to the first three components identified 

several regions of spectral importance (Figure 4.11).   
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Figure 4.11 Percent contribution of original wavebands to PCA components C1 (solid 
black), C2 (dashed black) and C3 (dashed grey) of first 5 repetitions for crop/weed 
combinations on July 19 acquisition date.  The % of total variance accounted for by each 
C (average of 5 repetitions) is shown with cumulative variance for each weed/crop 
combination. 
 

 Eigenvalues from these analyses showed approximately 97% of the variance in 

the original datasets was accounted for in the first three components.  The contributions 

from the original wavebands were very similar among the first five repetitions, though 

slight differences can be observed in component 2 and to a greater extent in component 3.  

The first component accounted for 89-94% of the total variance in the data and was 

  70



 

loaded heavily in the NIR region with 720-900 nm given similar representation for all 

crop/weed combinations.  The second component represented 3-5% of the remaining 

variance in the data.  In all comparisons, a high contribution was observed in the green 

(520-570 nm), red edge (680-740 nm) and again in the NIR (900-1000 nm).  The 

crop/WO combinations showed a slightly higher contribution (~1%) at the green peak 

(550 nm) compared to the crop/RRP combinations.  The third component accounted for 

very little variance from the original dataset (1-3%), with contributions in the blue-green 

edge (490-510 nm), red (640-660 nm), red-edge(720-750 nm) and NIR (950-1000 nm) 

for all combinations except PEA/RRP.  This latter crop/weed combination did not show 

the blue-green and red peaks but high contribution through the visible range peaking in 

the green (550 nm) was observed.  Differences again can be seen between the RRP and 

WO combinations as the WO had a lower contribution in the visible range and higher 

contribution in the red-edge (720-750 nm), while RRP was loaded evenly and somewhat 

higher in the visible spectrum. 

4.5.3 Waveband Selection 

 Through identification of discriminatory wavebands using SDA and PCA, a 

subset of seven wavebands was selected from the original 61.  The wavebands were 

selected with a single multispectral (seven band) system in mind and centered at 480, 

550, 600, 670, 720, 840 and 930 nm.  This subset of narrow (10 nm) wavebands 

representing a multispectral acquisition was used as input for the reduced waveband 

series of classifications presented later in this chapter (Section 4.6.3). 
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4.6 Image Classification 

 Two image classification methods were tested for accuracy in defining crop and 

weed pixels within the acquired data.  The first, MLC evaluates the feasibility of using 

statistical methods to separate the crop/weed spectra.  The second, ANNs, which model 

the biological neurons in the brain, has no prior assumptions of the dataset (i.e. 

multivariate normality) and is suited to handle very large quantities of data efficiently 

(Atkinson and Tatnall, 1997).  The identification of plant species within the acquired 

image data is a preliminary step for mapping weed locations within the field, and 

constitutes an essential component for implementation of site-specific herbicide 

management techniques.   

 Prior to classification, image data were segmented using MCARI thresholding 

(Section 4.3.1) and only pixels identified as vegetation were passed to the classification 

algorithm.  Three series of classifications were run, which included training and 

validation, over a single date (Appendices B, C), multitemporal (Appendices D, E) and 

with a reduced subset of seven narrow wavebands representative of a multispectral 

acquisition. 

4.6.1 Single Date Classification 

 Initial classifications were run with the full image dataset input to the 

classification algorithms.  This provided a test of classification accuracy for the two 

methods (MLC and ANN) with a single image acquisition. Due to insufficient emergence 

of WO, the July 19 classification result for the CAN/WO and WHT/WO combinations 

are not presented.  Plant growth over the 5-day period between the two imaging dates 

provided adequate WO samples for analysis of all weed/crop combinations on the later 
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date (July 26).  Results from both the MLC and ANN classification validations are 

presented in Tables 4.1 and 4.2.  

 Overall accuracies of greater than 80% were obtained with the MLC except in 

two cases (WHT/WO and PEA/WO on July 26).  This overall accuracy seems 

encouraging however, the Kappa coefficients indicate some problems. The highest Kappa 

value occurred for the July 19 PEA/RRP classification (0.82) while the Kappa values for 

other crop/weed combinations ranged from 0.06 to 0.65.  These values indicate confusion 

between classes, which can be assessed through individual class omission and 

commission errors.  The July 19 classifications provided lower errors (3-14% and 3-19% 

commission and omission) for the crop classes with generally higher weed class error (5 

to 48%).  The July 26 validation did not show the same trend as both crop and weed 

classes had high classification errors, especially in the crop/WO combinations.  When 

considering overall accuracy and Kappa statistic, the best results were observed in 

classification of the PEA/RRP combination (for both acquisition dates), with the later 

date showing slightly lower class accuracy (Figure 4.12). 

a ba b

 
Figure 4.12 Single date MLC classification output of PEA (green) and RRP (red) on (a) 
July 19 and (b) July 26 image data. 
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Table 4.1 MLC classification accuracy assessment with 61 wavebands input to 
classification for (a) July 19 and (b) July 26 image acquisitions. 

a Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 3.1 19.2 41.8 9.3 82.9 0.59 
PEA/WO 2.4 5.9 47.7 32.1 91.8 0.56 

WHT/RRP 14.2 4.6 12.2 35.1 85.5 0.65 
PEA/RRP 12.3 3.7 4.7 15.1 90.9 0.82 

 

b Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 1.4 18.8 56.0 7.7 82.6 0.49 
WHT/WO 6.6 32.8 51.7 13.6 72.1 0.43 
PEA/WO 4.8 49.0 88.9 29.6 52.6 0.06 

WHT/RRP 26.0 38.5 14.0 8.8 82.7 0.56 
CAN/WO 0.2 9.3 86.0 11.0 90.6 0.22 
PEA/RRP 21.5 14.8 13.5 20.5 82.2 0.64 

 
 

 ANN classification accuracies were markedly improved over the MLC as can be 

observed from the overall accuracies and Kappa coefficients (Table 4.2 a, b).  The weed 

class commission errors for July 19 were high (PEA/WO, CAN/RRP) but not as high as 

those observed in the MLC.  The July 26 classifications produced less encouraging 

results than those obtained on July 19.  The highest weed class errors occurred in 

commission of PEA and CAN pixels to the WO class on July 26.  
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Table 4.2 ANN classification accuracy assessment with 61 bands input to classification 
for (a) July 19 and (b) July 26 image acquisitions. 

a Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 1.6 5.5 17.3 5.5 94.5 0.85 
PEA/WO 0.7 4.4 33.2 6.7 95.4 0.75 

WHT/RRP 5.8 11.0 20.8 11.5 88.8 0.75 
PEA/RRP 5.4 6.0 6.7 5.9 94.0 0.88 

 

b Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 1.6 6.1 31.7 10.5 93.4 0.74 
WHT/WO 11.2 25.4 48.8 29.1 73.7 0.41 
PEA/WO 1.4 22.5 74.7 13.1 78.2 0.30 

WHT/RRP 25.1 8.2 3.6 12.4 88.8 0.74 
CAN/WO 0.2 9.9 87.0 12.6 90.1 0.20 
PEA/RRP 18.2 15.1 13.7 16.6 84.1 0.68 

 

 Spatially mis-classification was not random.  Generally, RRP was better classified 

by MLC (Figure 4.13e, 4.14e) with darker/shadowed CAN and WHT pixels classified 

incorrectly (Figure 4.13b, 4.14b).  Crop species were classified more accurately using the 

ANN technique as error occurred along leaf edges (Figure 4.13c) with the darker pixels 

in RRP being incorrectly classified (Figure 4.13f, 4.14f). 
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Figure 4.13 MLC (b,e) and ANN (c,f) classification output of July 19 CAN (yellow) 
(a,b,c)/RRP (red) (d,e,f) treatment. 
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Figure 4.14 MLC (b,e) and ANN (c,f) classification output of July 19 WHT (cyan) 
(a,b,c)/RRP (red) (d,e,f) treatment. 

 
 Mis-classification was similar in the crop/WO classifications for both MLC and 

ANN techniques.  WO was classed well (Figure 4.15 e and f, 4.16 e and f) with mis-

classification occurring mainly with respect to PEA tendrils (Figure 4.15 b and c) and 

CAN petioles and leaf veins (Figure 4.16 b and c). 
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Figure 4.15 MLC (b,e) and ANN (c,f) classification output of July 19 PEA (green) 
(a,b,c)/WO (orange) (d,e,f) treatment. 
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Figure 4.16 MLC (b,e) and ANN (c,f) classification output of July 26 CAN (yellow) 
(a,b,c)/WO (orange) (d,e,f) treatment. 

 

 Overall, the crop/RRP classifications were less prone to error than the crop/WO in 

both the MLC and ANN output.  Higher classification accuracy was also obtained on the 

earlier plant stage (July 19), a trend observed with both classification methods (Tables 

4.1 and 4.2).   
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4.6.2 Multitemporal Classification 

 The two dates of image acquisition provided an opportunity to evaluate the ability 

of the classification algorithms to account for not only spatial reflectance variation but 

also variability of spectral reflectance in the temporal domain.  This series of 

classifications used both July 19 and 26 data for training of the MLC and ANNs.  Once 

the models were built, crop/weed combinations on each date were classified. 

 In examining the MLC class validation (Table 4.3 a, b) the overall accuracies 

were again misleading as evaluation of the Kappa coefficients and class omission and 

commission errors indicate the classification complexity.  Excluding the PEA/RRP 

combination, generally poor results were obtained with commission error on both July 19 

(16-67%) and 26 (22-93%) and omission errors on July 19 (16-49%) being high for the 

weed classes.  Crop omission error was also high (20-66%) for all combinations on the 

later acquisition date.  The best results occurred with the July 19 PEA/RRP combination 

(91% overall and a Kappa of 0.82) followed by WHT/RRP (85% overall and a Kappa of 

0.64) (Figure 4.17a, b).  Similar to the single date MLC classifications, the earlier date 

showed higher class accuracies than those from July 26. 
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a ba b

 

Figure 4.17 Multitemporal MLC classification output of crop (PEA=green, WHT=cyan) 
and weed (RRP=red) combinations acquired on July 19. 

 

Table 4.3 Classification accuracy assessment for multitemporal classifications of MLC 
for (a) July 19 and (b) July 26. 

a Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 5.4 24.0 48.5 15.7 77.8 0.48 
PEA/WO 2.7 13.2 67.3 33.2 85.1 0.38 

WHT/RRP 13.1 6.6 16.3 32.9 84.9 0.64 
PEA/RRP 10.9 5.6 6.7 12.8 91.0 0.82 

 

b Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 0.1 43.9 75.1 2.6 61.4 0.24 
WHT/WO 2.9 62.0 64.8 3.2 53.2 0.22 
PEA/WO 4.3 49.0 88.4 26.0 52.8 0.07 

WHT/RRP 22.1 66.0 21.5 3.9 78.3 0.37 
CAN/WO 0.0 21.5 92.8 1.4 78.8 0.11 
PEA/RRP 16.1 19.7 16.1 13.6 83.6 0.67 

 

 Following the trend observed in the single date classifications, the ANN overall 

accuracies were again better (3-30%) than the MLC, with July 19 (Figure 4.18) out 

performing July 26.  High commission errors (26-70%) were observed for both dates in 

the weed class with the exception of the WHT/RRP and PEA/RRP combinations.  The 
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crop errors were low for all combinations between both dates, except for WHT/RRP 

which exhibited 21% and 29% commission error on July 19 and 26, respectively.  The 

WHT/WO classifications, which proved difficult in the single date analyses, improved 

with the use of the ANN method and multitemporal data (85% overall and a Kappa of 

0.61).  As was observed with the multitemporal MLC classifications, the best results were 

achieved with the PEA/RRP on both dates.  The crop/RRP classifications were generally 

better than the crop/WO combinations.   

a c dba c db

 

Figure 4.18 Multitemporal ANN classification output of crop (CAN=canola, PEA=green, 
WHT=cyan) and weed (RRP=red, WO=orange) combinations acquired on July 19. 
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Table 4.4 Classification accuracy assessment for ANNs multitemporal classifications for 
(a) July 19 and (b) July 26. 

a Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 2.8 8.6 25.5 9.7 91.2 0.76 
PEA/WO 0.4 10.2 52.8 4.1 90.3 0.58 

WHT/RRP 21.2 14.0 7.0 11.0 88.0 0.73 
PEA/RRP 9.4 8.3 9.3 10.6 90.6 0.81 

b Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 2.1 8.4 40.0 13.4 90.9 0.66 
WHT/WO 8.7 11.6 27.6 26.5 84.6 0.61 
PEA/WO 2.7 15.2 70.4 27.6 83.8 0.34 

WHT/RRP 29.5 9.9 4.5 15.2 86.4 0.69 
CAN/WO 0.5 7.6 85.7 24.9 92.1 0.22 
PEA/RRP 11.7 15.4 13.0 9.9 87.5 0.74 

 

4.6.3 Reduced Waveband Classification  

 Because multispectral data are less costly to acquire and can be processed more 

efficiently, a final series of classifications examined the need for hyperspectral image 

data as opposed to a smaller subset of wavebands.  Evaluation of the information content 

of each waveband (PCA) as well as the discriminatory power (SDA) from each provided 

an opportunity to reduce spectral dimensionality used in this classification series (Section 

4.5).  This reduced set of wavebands (480, 550, 600, 670, 720, 840 and 930 nm) were 

used to classify the July 19 acquisitions (Figure 4.19). 

 Similar results were obtained for both MLC and ANN classification techniques 

with the latter showing a slight (1-3%) improvement in overall accuracy (Table 4.5 a, b).  

Continuing the trend observed in the previous series of classifications, the highest 

accuracies were obtained with the PEA/RRP combination (92%) and the commission 

error for weed classes were generally high for both MLC (8-47%) and ANNs (6-41%).  
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The reduction of information input to the classification algorithms produced an 

improvement in MLC accuracy of CAN/RRP (9% overall and 0.18 Kappa) with a 

decrease of 1-2% in overall accuracy in the other crop/weed combinations.  Using ANNs, 

the full hyperspectral dataset provided 1-2% higher overall classification accuracy.  

Generally, the reduction of the original 61 wavebands to 7 provided similar classification 

results (spatially and contingency tables) in crop/weed combinations. 

a c d

he f g

ba c d

he f g

b

 
Figure 4.19 MLC (a,b,c,d) and ANN (e,f,g,h) reduced waveband classification output of 
crop (CAN=yellow, WHT=cyan, PEA=green) and weed (RRP=red, WO=orange) 
combinations acquired on July 19, 2005. 
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Table 4.5 Crop/weed (July 19 only) classification accuracy assessment for the reduced set 
of wavebands input to (a) MLC and (b) ANN algorithms. 

a Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 2.7 7.1 16.2 11.7 91.9 0.78 
PEA/WO 0.9 9.6 46.9 13.8 90.1 0.56 

WHT/RRP 5.3 15.2 22.0 15.5 84.7 0.68 
PEA/RRP 8.9 10.0 7.5 11.7 89.2 0.79 

b Crop Class Error Weed Class Error Overall 

 
Commission 

(%) 
Omission 

(%) 
Commission 

(%) 
Omission 

(%) 
Accuracy 

(%) 
Kappa 

 
CAN/RRP 2.9 7.2 22.5 10.1 92.2 0.78 
PEA/WO 0.9 6.1 41.3 8.6 93.7 0.68 

WHT/RRP 21.9 12.8 6.4 11.6 88.0 0.73 
PEA/RRP 8.8 6.6 7.5 10.0 91.8 0.84 
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CHAPTER 5 DISCUSSION AND CONCLUSIONS 
 
5.1  Introduction 

 The following section discusses results obtained through segmentation 

procedures, single date, reduced band and multitemporal classification series.  The 

implications of these findings in relation to SSHM techniques are presented.  Finally a 

summary of this study, with major findings and future research directions, concludes the 

chapter.  

5.2  Segmentation 

 Segmentation of ground-based image data prior to classification is an efficient 

means of simplifying the classification problem.  Through the prior elimination of 

background pixels, only foreground classes need be identified.  This effectively reduces 

the number of classes required for image generalization and in turn, simplifies the 

complexity of the classification problem.  Elimination of background pixels also 

increases processing efficiency, especially in cases where vegetated ground cover is low, 

as only pixels of interest require further analysis.   

 Thresholding of the transformed hue colour component provided an initial test for 

separating vegetated pixels in laboratory acquired image data.  This procedure, found to 

be robust in defining vegetated pixels with varied illumination conditions, has proven 

useful in many studies involving RGB colour image data (Cheng et al., 2001; Burks et 

al., 2000b, 2005).  The processing involved in this method (colour transformation, 

threshold and post-morphological operator application) may be limiting in real-time 

applications where computational efficiency is key to successful operation.  Extension of 
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reflectance measurement into the NIR region of the EM spectrum (through hyperspectral 

image acquisition) provided an opportunity to utilize specific vegetation indices in the 

threshold-based segmentation.  The selected VI (MCARI) was designed to be responsive 

to both chlorophyll variation and resistant to non-photosynthetic material effects 

(Daughtry et al., 2000; Haboudane et al., 2002).  The spectral reflectance in the MCARI 

wavelength regions (560, 670 and 700 nm) were different between vegetation 

(foreground) and soil or litter (background), providing separation in spectral space, which 

lends itself well to segmentation by threshold techniques.  This MCARI threshold 

procedure may be more computationally efficient than hue transformation thresholding as 

only two procedures (MCARI calculation and thresholding) were required to identify a 

vegetation pixel in the image data.  No post-filtering was required to eliminate spurious 

pixels in the threshold output.  The MCARI method also provided consistent results in 

defining leaf matter under full sun or shaded scenarios and thus is deemed very useful in 

defining pixels of vegetation from high spatial resolution image data. 

 Watershed segmentation provided an opportunity for identification of not only 

vegetated pixels in acquired image data, but also aggregation of these pixels into 

individual leaf segments.  This definition of leaf segments is the first step in utilizing 

structural/shape characteristics for discrimination between species.  The watershed 

segmentation was not able to define individual plant leaves.  The high variability of pixel 

values caused extensive over-segmentation using the 255 grey-level hue colour 

component.  Over-segmentation was reduced through quantizing the data range of pixel 

values but still did not provide a consistent method for segmenting individual leaves.  

Since these initial tests on laboratory image data provided less than encouraging results, 
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especially in terms of automated leaf segment detection, further evaluation of this 

algorithm was not undertaken.   

 Image segmentation methods for extraction of leaf shape and species 

identification based on spatial characteristics were hindered by variability in leaf 

illumination and leaf occlusion as species ground cover increased.  These limitations 

were similar to those found by others in leaf shape measurement research (Chapron et al., 

1999; Cheng et al., 2001; Brown and Noble, 2005).  Since leaf shape could not be 

extracted consistently with automated methods, focus shifted to pixel-based classification 

using spectral reflectance characteristics.  Though individual leaves could not be 

segmented, benefits of using an initial segmentation for defining vegetated pixels were 

two-fold.  Image classification was simplified through elimination of background classes 

(soil and litter) and image processing efficiency was increased, as only pixels of interest 

were passed to the classification procedure.   

5.3  Image Statistics 

 The very high spatial resolution of the acquired image data was beneficial in 

identifying pure vegetated pixels and reduced the possibility for mixed targets (vegetation 

and background) in a single pixel.  The observed variability in spectral reflectance is 

inherent to high spatial resolution image data due to bi-directional reflectance effects.  In 

lower resolution data, the variability is “diluted out” of the pixel values and as spatial 

resolution increases, greater variability exists in the data with finer target features being 

resolved.  This variability of reflectance targets of the same class may cause problems in 

separation of crop/weed mixtures based on spectral characteristics. 
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 Through comparison of reflectance values on both field acquisition dates, 

reflectance characteristics of the selected species changed in the six day span between 

measurements.  This reinforces the importance of timely (at specific plant stages) 

remotely sensed data collection if crop/weed discrimination is to be successful.   

 Analysis of differences between crop and weed species spectra identified several 

trends that can be attributed to differences in leaf internal structure (monotcotyledon and 

dicotyledon).  In the WHT/WO comparison, there was no reflectance difference observed 

in the NIR region, a region in which reflectance characteristics are mainly affected by 

leaf structural (morphological) components including protein, starch and oils (Curran, 

1989).   

 In a comparison of the dicotyledon crops (CAN, PEA) with the monocotyledon 

weed species (WO), reflectance differed in all wavebands from the red edge (700-780 

nm) and NIR (790-1000 nm).  The NIR portion of the EM spectrum reflected can be 

defined as a key wavelength range for defining plant species with differences in leaf 

structure, as was observed between monocotyledon and dicotyledon species.  Basic 

descriptive statistics such as image mean and standard deviation characterized some 

differences between species, but definitive conclusions were hindered by overall data 

variance.  Statistical analyses including ANOVA, PCA and SDA provided a means of 

defining specific wavelengths of importance for species discrimination. 

 Several studies have identified important wavebands for spectral characterization 

of plant species.  Lewis (2002) conducted a study for characterization of arid zone plants 

in Australia; identifying wavebands centered at 420, 460, 545, 550, 555, 580, 704, 710, 

760, 780, 800, 850, 900 nm to be the most important for discrimination.  More recently, 
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12 hyperspectral bands (centered at 495, 525, 550, 568, 668, 682, 696, 720, 845, 920, 

982, 1025 nm) were identified as important for agricultural crop/crop discrimination 

studies (Thenkabail et al., 2004). 

 Through PCA, several important spectral regions were identified, the most 

important being the NIR, as was observed in the descriptive statistics.  Secondly, the 

blue-green, green and red edge regions contained discriminatory information for 

crop/weed species.  A slightly different contribution was observed ( ~1 %) between RRP 

and WO combinations, particularly in the red-edge region, which may again be attributed 

to differences in leaf structure (monocotyledon or dicotyledon).  This analysis identified 

specific areas of the EM spectrum (480-500, 550, 600-670, 720-750 and 760-1000 nm) 

that were used in construction of resultant components.  These spectral regions 

correspond to past studies conducted by Lewis (2002) and Thenkabail et al. (2004). 

 A second analysis (SDA) was used for identification of specific narrow 

wavebands from the hyperspectral dataset with significant reflectance differences 

between species.  Trends were observed that can be attributed to leaf structural 

characteristics as the comparison of dicotyledon (CAN/RRP, PEA/RRP) species tended 

to shift importance with selected wavebands occurring in the visible range.  The NIR 

region of the EM spectrum was more important than the visible portion for dicotyledon 

and monocotyledon (CAN/WO, PEA/WO) combinations.  This result was consistent with 

observed trends from PCA and ANOVA and suggests that the full hyperspectral dataset 

may not be needed to spectrally discriminate these species.  To this end, through review 

of past studies as well as statistical analyses conducted, a selection of specific wavebands 

from the original image data was identified. 
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 In selection of a reduced set of bands for this study, an important aspect to 

consider was the utility of these results for the end user.  Since hyperspectral ground-

based remote sensing systems are costly and as yet not readily available, a theoretical 

limit to the number of wavelengths was set.  To test the efficiency of this theoretical 

multispectral sensor, a single set of bands were tested for discrimination of all crop and 

weed combinations, in essence providing a sensor-specific evaluation across the different 

classification problems.  The wavebands, selected with primary importance given to PCA 

and SDA results and coincident to past studies (Lewis, 2002; Thenkabail et al., 2004), 

were centered at 480, 550, 600, 670, 720, 840 and 930 nm (10 nm bandwidth).  This 

subset, representative of data from a multispectral system, provided the opportunity to 

evaluate the benefits of spectral dimensionality input to classification algorithms for 

species discrimination.  

5.4  Classification 

 Several series of classifications were evaluated for discriminating between single 

weed/crop combinations.  These included classification of image data trained over a 

single date, over multiple dates and with a reduced number of bands identified as being 

important through PCA and SDA techniques. 

 The single date series of classifications set a baseline evaluation of the capability 

of MLC and ANN algorithms to address the species discrimination problem when only a 

single image is acquired, and from class validation this initial test provided relatively 

encouraging results.  The multitemporal classifications enabled assessment of weed and 

crop discrimination, accounting for not only spatial reflectance variation but also 

variation in reflectance characteristics over time.  This procedure would lend itself better 

  89



 

to real world or end-use application as training data for these methods, which account for 

spectral variation over the optimal herbicide application periods, could be built into the 

processing procedure.  Higher class accuracies were observed with multitemporally 

trained ANNs (84-92%), with improvements in accuracies up to 13% (July 19) and 31% 

(July 26) compared to MLC.  MLC was hindered somewhat by the addition of the second 

date and was not well suited to this type of application.   

Classification with a reduced set of bands enabled assessment of a multispectral 

camera system to discriminate between crop and weed species.  Classification results 

were again encouraging as accuracies observed with ANNs were similar to those 

obtained with the full hyperspectral dataset, with a reduction in classification accuracy of 

only 1-2% with seven wavebands.  The reduction of band dimensionality improved MLC 

CAN/RRP classification accuracy by 9% and generally improved crop commission and 

weed class omission errors.  This could be attributed to the fact that statistical classifiers 

have potential for “confusion” if highly correlated data are used to train the classification 

procedure (Lillisand and Kiefer, 1987).  Reduction of spectral dimensionality eliminated 

duplicate or similar information presented to the classifiers and resulted in a general 

improvement of the MLC output.  The single and multitemporal date ANN model 

development involved assessment of all input bands for information content and a 

reduced number of bands were selected in the software from the 61 band input set.  Using 

a reduced set of bands deemed important in PCA and SDA, rather than letting the 

software select its own, may not have been the best procedure for spectral dimensionality 

reduction in the network models.  Even with these very few wavebands selected (seven), 

classification accuracy differences (61 vs 7 bands) in the ANN models was very small (1-
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2%).  This effect on class accuracy was negligible and attention must be given to the cost 

savings of multispectral over hyperspectral data acquisition as well as potential 

computational efficiency gains.  MLC and to a lesser extent ANN classification using 

fewer bands will result in less computational overhead (Lillisand and Kiefer, 1987) which 

is important when envisioning end-use procedures applied to a real-time herbicide 

application system.   

The overall accuracies obtained for the different crop/weed combinations were 

encouraging, especially in terms of classifying RRP in the different crops.  The PEA/RRP 

combination was consistently well classified (> 82%) through all series of classifications 

and suggested that these two species are easily separated in the spectral domain.  

Unfortunately, classifying WO in the selected crops was difficult as can be observed in 

lower Kappa coefficients.  Throughout most classification series the commission error 

was highest compared to other class error types (weed omission and crop 

commission/omission).  Commission error represents pixels belonging to the crop class 

being labelled as weeds.  In terms of site-specific herbicide application systems, this type 

of error would result in more herbicide being applied than was actually needed.  The 

reverse case (weeds mis-labelled as crop) could be considerably more troublesome as this 

would result in missed herbicide applications and potential loss in yield due to continued 

weed competition.  The error of commission may be considered the less severe because 

the cost of extra herbicide would overcome the loss of yield in the reverse scenario.   

Spatially the classification error did not appear to be random and trends emerged 

as the two classification techniques used seemed to favour specific classes.  MLC 

consistently classified the RRP well with error typically occurring in dark/shadowed crop 
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pixels.  ANN generally classified the crop species better than MLC with classification 

error occurring in weed pixels at the upper and lower end (shadow) of reflectance value 

range.  Both techniques provided similar results in classification of the CAN/WO and 

PEA/WO combinations. 

From the validated classification results it can be stated that the ANN 

classification models out performed the MLC.  Furthermore, these models are much more 

efficient in terms of computational overhead than statistical classifiers.  This suggests that 

ANN classification techniques are better suited to real-time SSHM. 

5.5  Site Specific Herbicide Management 

 Seeding crop/weed combinations to field plots with image acquisition in-field 

resembles image data that could be collected in a SSHM system.  Detection and mapping 

of weed species in-field without artificial lighting increases classification complexity due 

to variable illumination conditions.  Through selection of supervised classification 

methods which can be trained to account for this variability, identification of certain crop 

and weed species can be obtained with considerable accuracy (> 83%).  The examination 

of plant stage effects on spectral reflectance is another critical factor for implementation 

of SSHM.  In order to detect weed species, the temporal reflectance variability in plant 

species must be characterized and trained into the classification method.  Potential exists 

for classification algorithms to be trained over multiple dates, with this investigation 

showing that species differentiation is possible if training data can encompass the 

complete variability of spectral reflectance throughout the optimal herbicide application 

timeframe.   
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 The availability of ground-based hyperspectral image data provided a means for 

evaluation of not only high spectral, but also very high spatial information.  This 

hyperspectral system is not proposed as being applied directly to a SSHM system but 

rather as a useful research tool, providing substantial information in the image data 

acquired.  The initial band reduction results show a negligible difference in classification 

accuracy when a subset of the total hyperspectral data cube is classified.  The reduction 

of bands and subsequent classification suggests a multispectral sensor would provide 

similar classification accuracies and therefore a full hyperspectral dataset is not 

necessarily required for crop/weed discrimination.   

5.6  Conclusions 

 This study, which investigated species reflectance differences, segmentation, and 

image classification techniques for discrimination of field grown crop/weed species 

combinations, shows potential for the use of remotely sensed data for high resolution 

herbicide prescription maps.  Classification of these image data provides a means of 

mapping weed location and density within a field, an integral step in successful 

application of SSHM techniques. 

Segmentation of foreground and background pixels from imagery was presented 

as an initial step in eliminating background pixels and in turn classifying only pixels of 

interest.  Through visual analysis, the MCARI showed excellent results in terms of 

consistency in identification of vegetated pixels. 

Classification using MLC and ANNs proved useful for discrimination of single 

weed/crop mixtures over both image acquisition dates.  Generally the crop/RRP 

combinations achieved higher accuracies than the crop/WO with best results obtained in 
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classification of the PEA/RRP combination.  The earlier plant stage (July 19) showed 

consistently better classification results than the latter July 26 acquisition, suggesting that 

optimal species discrimination can be obtained at early plant growth stages.  Since 

observed reflectance characteristics varied as a function of plant stage, both classification 

techniques were evaluated for their ability to account for temporal variability.  ANN 

models, with their efficiency in handling complex feature space, provided better results 

than MLC in the multitemporal series of classifications. Therefore creation of a single 

classification model trained to encompass the variability of spectral reflectance 

throughout the optimal herbicide application timeframe is possible. 

The identification of important spectral bands for species discrimination was 

achieved through PCA and SDA with seven wavebands selected from the original 61 

waveband dataset.  This waveband reduction slightly lowered ANN overall accuracies 

(less than 3%), with most crop/weed combinations and suggested that a seven band 

multispectral sensor may be adequate in discrimination between two plant species. 

5.7  Future Research 

Very high resolution image data can be prone to spectral variability caused by leaf 

angle and orientation effects as well as atmospheric illumination changes.  In this study, 

image data were collected only on clear sunny days through hours of peak incoming solar 

radiation to reduce the radiation variability.  Typical application of herbicides to 

agricultural systems would be throughout the entire day and would require constant 

calibration for accurate reflectance measurements throughout this period.  Further 

research must focus on effects of differential illumination conditions as well as 

maintaining consistency in the image data acquired.  The possibility of multiple weeds 
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growing within the same field was also an issue that was not examined and further study 

is required to address this scenario which represents real-world application of SSHM 

techniques. 

 The movement towards successful application of SSHM techniques will only be 

achieved through investigation of new emergent technologies.  Though these 

technologies are by no means cost effective for direct SSHM implementation, new 

procedures and evaluation of these advancements is essential to SSHM development.  

Investigation into species discrimination and application of remotely sensed data for 

mapping weed location and density today, leads to end-use application tomorrow.  As 

imaging systems and processing technology become more widely available and cost 

effective with proven research behind them, acceptance and implementation will surely 

follow. 
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APPENDIX A 
 
8° Hemispherical spectral reflectance coefficients for 12” x 12” Spectralon panel (SRT-
99-120).   
 
 

  Wavelength (nm) Reflectance Coefficient 

400 .987 
450 .987 
500 .988 
550 .988 
600 .988 
650 .987 
700 .987 
750 .987 
800 .990 
850 .989 
900 .991 
950 .989 
1000 .988 
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APPENDIX B 
 
Single date MLC crop (CAN=yellow, PEA=green, WHT=cyan) and weed (RRP=red, 
WO=orange) classification output of July 19 and July 26 image data. 
 
 
 July 19

July 26

July 19

July 26
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APPENDIX C 
 
Single date ANN crop (CAN=yellow, PEA=green, WHT=cyan) and weed (RRP=red, 
WO=orange) classification output of July 19 and July 26 image data. 
 
 July 19

July 26

July 19

July 26
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APPENDIX D 
 
Multitemporal MLC crop (CAN=yellow, PEA=green, WHT=cyan) and weed (RRP=red, 
WO=orange) classification output of July 19 and July 26 image data. 
 
 
 
 
 

July 19

July 26

July 19

July 26
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APPENDIX E 
 
Multitemporal ANN crop (CAN=yellow, PEA=green, WHT=cyan) and weed (RRP=red, 
WO=orange) classification output of July 19 and 26 image data. 
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July 26

July 19

July 26
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