
ON DIAGONALLY STRUCTURED MATRIX COMPUTATION

MOHAMMAD SAKIB MAHMUD
Bachelor of Science, Chittagong University of Engineering & Technology, 2015

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Mohammad Sakib Mahmud, 2019



ON DIAGONALLY STRUCTURED MATRIX COMPUTATION

MOHAMMAD SAKIB MAHMUD

Date of Defence: December 4, 2019

Dr. Shahadat Hossain Professor Ph.D.
Thesis Supervisor

Dr. Robert Bencokzi Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. Saurya Das Professor Ph.D.
Thesis Examination Committee
Member

Dr. Howard Cheng Associate Professor Ph.D.
Chair, Thesis Examination Com-
mittee



Dedication

To those who inspired it and will not read it - Anonymous

I dedicate this thesis to my beloved parents and siblings for always being there for me.

iii



Abstract

In this thesis, we have proposed efficient implementations of linear algebra kernels such

as matrix-vector and matrix-matrix multiplications by formulating arithmetic calculations

in terms of diagonals and thereby giving an orientation-neutral (column-/row-major lay-

out) computational scheme. Matrix elements are accessed with stride-1 and no indirect

referencing is involved. Access to the transposed matrix requires no additional effort. The

proposed storage scheme handles dense matrices and matrices with special structures such

as banded, symmetric in a uniform manner. Test results from numerical experiments with

OpenMP implementation are promising. We also show that, using our diagonal framework,

Java native arrays can yield superior computational performance. We present two alterna-

tive implementations for matrix-matrix multiplication operation in Java. The results from

numerical testing demonstrate the advantage of our proposed methods.

iv



Acknowledgments

At first, I want to express my sincere gratitude and appreciation towards my supervisor,

Dr. Shahadat Hossain for his continuous support, encouragement and for mentoring me

throughout my graduate study. I am grateful for all the opportunities I have had to learn

from him in the past two years. I would also like to thank my thesis committee members

Dr. Robert Bencokzi and Dr. Saurya Das for their insightful suggestions and constructive

feedback.

Next, I would like to thank Administrative Support Ms. Barb Hodgson for always

helping me with a smile. A big thanks goes to the University of Lethbridge, School of

Graduate Studies of Canada for funding my graduate program.

As the saying goes, you don’t need many friends, you only need good ones. I am blessed

to have some good friends. Here, I would like to thank my friends Parijat Purohit and Ashra-

ful Huq Suny for helping me before and after moving to Canada. It would be unfair not

to mention my co-workers and friends Chowdhury Nawrin Ferdous and Wali Mohammad

Abdullah for their intuitive suggestions and motivations throughout this journey.

Finally, I want to mention my family. I want to thank my beloved parents and siblings

for their unconditional support and always being there for me when I needed them the most.

There is no way I can repay their debt.

v



Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Objectives of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Introduction to Array-based Computing 4
2.1 Overview of Programming Languages Used in Implementations . . . . . . 4

2.1.1 Memory Management and Memory Allocation Scheme . . . . . . . 6
2.2 Brief Introduction to Matrices and Data Structures . . . . . . . . . . . . . . 8
2.3 Row-major Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Vector in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Java Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Compressed Row Storage (CRS) . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Diagonal Storage Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.1 Mapping Diagonal Elements for Dense Matrices . . . . . . . . . . 15
2.8 Banded Storage Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8.1 Mapping Diagonal Elements for Banded Matrices . . . . . . . . . . 18
2.9 Java Sparse Array (JSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 Jagged Diagonal Storage Format . . . . . . . . . . . . . . . . . . . . . . . 20

3 Parallel Implementation Approach 23
3.1 Serial Computing VS Parallel Computing . . . . . . . . . . . . . . . . . . 23
3.2 Parallel Computing Platform . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 OpenMP Programming Model . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Data Handling in OpenMP . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Specifying Parallel Tasks in OpenMP . . . . . . . . . . . . . . . . 26
3.3.3 OpenMP Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Synchronization in OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Performance Metrics for Parallel Program . . . . . . . . . . . . . . . . . . 30

3.5.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.2 Speedup (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Efficiency (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



CONTENTS

4 BLAS2 and BLAS3 Operations on Different Storage Schemes and Algorithms 33
4.1 Matrix-Vector Multiplication (Ax and ATx) on SMM . . . . . . . . . . . . 34
4.2 Matrix-Vector Multiplication (Ax and ATx) on Diagonal Storage Format . . 35

4.2.1 Computing Steps of Ax and ATx using Diagonal Storage Format . . 35
4.3 Matrix-Matrix Multiplication on SMM . . . . . . . . . . . . . . . . . . . . 37
4.4 Matrix-matrix Multiplication using Diagonal Storage Format . . . . . . . . 39
4.5 Banded Matrix-Matrix Multiplication . . . . . . . . . . . . . . . . . . . . 44
4.6 Computational Experience with Diagonally Structured Linear Algebra in

Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 Impact of Caching in Memory Hierarchy and Exploiting Locality . . . . . . 46
4.8 Parallelization Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Numerical Experiments 49
5.1 Data Sets for Numerical Test . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Test Environment and Benchmarking . . . . . . . . . . . . . . . . . . . . . 50
5.3 Memory Exceptions While Implementing the Algorithms . . . . . . . . . . 52
5.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Model A: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Model B: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.3 Model C: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion and Future Work 63

Bibliography 64

A Tables of Numerical Experiments 67
A.1 Performance of Dense Matrix-Vector Multiplication . . . . . . . . . . . . . 67
A.2 Performance Measure of Dense Matrix-Matrix Multiplication on AB . . . . 68
A.3 Performance Measure of Dense Matrix-Matrix Multiplication ATB . . . . . 68
A.4 Performance of Banded Matrix-matrix Multiplication using Diagonal Stor-

age on Java Jagged Array and Java 1-D array . . . . . . . . . . . . . . . . 69
A.5 Speedup Comparison of Java 1-D Array Diagonal, Jagged Array Diagonal

and Java Sparse Array relative to CRS . . . . . . . . . . . . . . . . . . . . 70
A.6 Speedup obtained by diagonal matrix-matrix multiplication method for banded

matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.7 Efficiency obtained by diagonal matrix-matrix multiplication method for

banded matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.8 Speedup obtained by diagonal matrix-matrix multiplication method for dense

matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.9 Efficiency obtained by diagonal matrix-matrix multiplication method for

dense matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vii



List of Tables

5.1 System Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Test Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Test Environment Specifications (Medusa) . . . . . . . . . . . . . . . . . . 51

A.1 Ax and ATx on SMM versus DMM . . . . . . . . . . . . . . . . . . . . . 67
A.2 V1 vs V5 vs V6 vs DIAS for AB . . . . . . . . . . . . . . . . . . . . . . . 68
A.3 V1 vs V5 vs V6 vs DIAS on ATB . . . . . . . . . . . . . . . . . . . . . . 68
A.4 1-D array diag vs Jagged array diag for dimension 8000 . . . . . . . . . . . 69
A.5 Speedup with respect to CRS for dimension 50000 with increasing bandwidth 70
A.6 Speedup data for matrix dimension 100000 with different chunk size . . . . 71
A.7 Efficiency data for matrix dimension 100000 with different chunk size . . . 72
A.8 Speedup data for various matrix sizes . . . . . . . . . . . . . . . . . . . . 73
A.9 Efficiency data for various matrix sizes . . . . . . . . . . . . . . . . . . . . 73

viii



List of Figures

2.1 C++ Language Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 A true 2-D array of fixed rank and extent. . . . . . . . . . . . . . . . . . . 11
2.3 A Sparse matrix with dimension 4 . . . . . . . . . . . . . . . . . . . . . . 13
2.4 A square matrix with dimension n . . . . . . . . . . . . . . . . . . . . . . 14
2.5 diag array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 A banded matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Diagonals representation of Banded Matrix . . . . . . . . . . . . . . . . . 18
2.8 A sparse matrix stored using JSA . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 A Java jagged array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Matrix-vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Matrix Matrix Multiplication By Diagonals . . . . . . . . . . . . . . . . . 40

5.1 SMM versus DMM on Ax and ATx . . . . . . . . . . . . . . . . . . . . . 54
5.2 The DIAS versus V 1i jk, V 5ki j and V 6 ik j on AB . . . . . . . . . . . . . . 55
5.3 The DIAS versus V 1i jk, V 5ki j and V 6 ik j on ATB . . . . . . . . . . . . . 56
5.4 Banded matrix-matrix multiplication on DIAS . . . . . . . . . . . . . . . . 57
5.5 Speedup for 3 methods with respect to CRS for dimension 50000 . . . . . 58
5.6 Efficiency for chunk size 15 with matrix dimension 100000 . . . . . . . . . 59
5.7 Speedup for chunk size 15 with matrix dimension 100000 . . . . . . . . . . 60
5.8 Speedup for dense matrices with varying input size . . . . . . . . . . . . . 61
5.9 Efficiency for dense matrices with varying input size . . . . . . . . . . . . 61

ix



Chapter 1

Introduction

Nowadays, researchers and engineers need access to software tools for intensive numerical

computing which often demands several special features such as flexibility, numerical pre-

cision, efficient object code, and high performance. Developing these numerical software

which supports extensibility and portability without sacrificing performance is often an ex-

pensive task and poses newer challenges to the developers. One of the ways to achieve this

goal is to a develop generic application that can be used in a wide range of application fields

and is able to run on heterogeneous computing platforms.

Resource constraints, high-performance systems, and scientific applications often re-

quire access to the low-level operations and efficient memory use. C++ is a programming

language that is performance driven, supports efficient memory use and efficient lower

level operations with a flexible set of facilities. This programming language was created

with the mindset of using programming techniques that deal with fundamental notions such

as resource management, abstraction, memory, modularity, and expression of algorithms.

On top of all these, another perk that comes with C++ is its widespread use in parallel

programming. Two of the most commonly used parallel programming platforms such as

OpenMP and CUDA is supported by C++.

Another programming language that we used in our implementations is Java. Java is

a pure object-oriented programming language that has gained rapid recognition as an ex-

cellent environment for software development due to its support for, among others, safety,

portability, and platform-independence. Despite its widespread popularity in cross-platform

1



1.2. CONTRIBUTIONS

and network-centric applications, the adoption of Java in the area of scientific computing

has not been as pervasive. It is a commonly held view that Java’s current specifications

and its implementation framework still pose challenges to achieve high performance on

important compute-intensive numerical calculations.

Matrices can represent a lot of information in an efficient and elegant way. Hence, there

are many real life applications of matrix computation such as in signal analysis, Markov

chain, etc. Also, numerical computation arising in solving partial differential equations

often gives rise to structured e.g banded, and sparse matrices. In this thesis, we focused

on performing experimental studies on a subset of matrix operations using a new storage

scheme, where the matrices are dense or structured in C++ and Java arrays. Additionally,

an existing sparse data structure such as Java sparse array has been used to demonstrate the

advantage of the newly proposed storage scheme in Java.

1.1 Objectives of this thesis

While undertaking this research project, our aim was to develop a unique orientation-

independent data structure that is algorithmically promising for the implementation of Basic

Linear Algebra Subprogram (BLAS) level-3 and BLAS level-2 operations. The challenges

we looked into to achieve the goal are as follows:

• Design and implementation of a data structure such that padding with redundant stor-

age can be avoided entirely and no additional book-keeping storage is required.

• Parallel implementation of the proposed algorithm.

• Assessing the implementation of the sequential and parallel algorithms by using com-

monly used performance measurement metrics.

1.2 Contributions

The main contributions of this research project are:

2



1.3. ORGANIZATION OF THE THESIS

1 We presented an orientation independent diagonal scheme for storing matrices by

diagonals which proves to be a good alternative for matrix operation on dense, and

structured matrices.

2 An OpenMP implementation of the proposed storage scheme in C++ to demonstrate

its potential for task-based dynamic multithreaded architectures [7] [15].

3 Implementation of diagonal storage framework using 1-D Java native array and jagged

array which yield superior computational performance.

4 Intense numerical computations were performed using computing systems with high

processing speed and hierarchical memory.

5 Part of the results achieved in this thesis has been reported in [22] and [2]. [22]

has been published in 23rd IEEE High Performance Extreme Computing Conference

(HPEC 2019) and [2] has been submitted for review.

1.3 Organization of the thesis

The rest of the thesis is structured as follows:

Chapter 2 discusses the existing matrix data structures and the data structure of storing

a matrix by diagonals that are proposed in this thesis.

Chapter 3 focuses on the parallel implementation approach using OpenMP.

In Chapter 4, the implementation of different storage schemes using basic linear algebra

routine and algorithms are presented. In addition, the steps for multithreaded implementa-

tion of the proposed matrix data structure are presented here.

Chapter 5 begins with the experiments of numerical computation and presents the re-

sults.

The thesis is concluded in Chapter 6 by summarizing the findings from the numerical

experiments with a discussion on future research.

3



Chapter 2

Introduction to Array-based Computing

2.1 Overview of Programming Languages Used in Implementations

C++ is an object-oriented programming language that was created by Bjarne Stroustrup

during his Ph.D. thesis. It is an extension of the C programming language. C++ is recog-

nized as an intermediate-level language as it comprises of features from the low-level and

high-level programming language. It is widely used in client-server applications, embedded

systems, and application software.

C++ is a language that is purely compiled. Source code is translated directly into native

code or object code without converting into any intermediate form. This is one of the

reasons C++ can obtain high performance. Since code in a file can refer to each other,

all object files are linked together and any issue with the address is resolved at this step.

The next step is to translate the object code into machine code and one executable file

is generated. A C++ compiler takes a source code as an input and translates the source

code into object code. After that, all the object files are sent to a linker to correct any

missing addresses. The linker then converts the object codes into the machine code that is

an executable file .Figure 2.1 represents the architecture of C++.

On the other hand, Java programs use both a compiler and an interpreter. Java compiler

takes the source code as input and translates it into another simpler form called the byte-

code (bytecode files use .class extension). Bytecode is then interpreted by the Java Virtual

Machine (JVM) at run time and executed on the host system. This demonstrates one of the

key advantages of using Java which is platform independence. A bytecode Java program

4



2.1. OVERVIEW OF PROGRAMMING LANGUAGES USED IN IMPLEMENTATIONS

can be executed on multiple platforms such as Windows, Linux, or Mac operating systems

without altering the source code.

While the implementation architecture of C++ is known to be performance-driven be-

cause of its resource management, memory access control and object code generation,

Java’s implementation framework still poses challenges to gain high performance on compute-

intensive numerical calculations. Even though Java has been found accomplished in soft-

ware development due to its platform independence and extensive library features, some

of the issues identified in [9] for numerical calculation are yet needed to be satisfactorily

resolved.

Figure 2.1: C++ Language Architecture

5



2.1. OVERVIEW OF PROGRAMMING LANGUAGES USED IN IMPLEMENTATIONS

2.1.1 Memory Management and Memory Allocation Scheme

Memory management in computer science can be defined as the administration and

coordination of the memory system. Computer applications are significantly influenced by

the allocation and management of the system’s memory as poor memory management can

affect the robustness and speed of a program. This memory management issue is critical

in computers with deep memory hierarchy. More specifically, the widening gap between

processing and memory access speeds is an important performance bottleneck in numerical

calculations [14]. Hence a system’s overall performance can be optimized by using efficient

memory storage. Memory management combines the tasks of allocation and recycling.

Memory allocation can be of three types: static memory allocation, automatic memory

allocation and dynamic memory allocation.

Static memory allocation is also known as implicit memory allocation. In this type of

memory allocation, memory is allocated before program execution and the size is fixed

when the program is created.

Automatic memory allocation occurs for the local variables inside a block and is usually

stored on the stack. One of the pitfalls of this memory allocation is limited control over the

lifetime of the memory.

Dynamic memory allocation is known as explicit memory allocation. This approach

allows an application to request memory while the program is running. It comes with the

advantage of controlling the size and lifetime of the memory. Memory leak may occur if

memories are not freed at some point which demands efficient memory management. [4]

Memory management can be two types: manual memory management and dynamic

memory management.

In manual memory management, it is the programmer’s responsibility to recycle mem-

ory. This gets done usually by explicitly calling the heap management functions. No mem-

ory is recycled by the memory manager without explicit instruction from the programmer[1].

Manual memory management is used in C++, Pascal, Fortran etc. Some advantages of man-

6



2.1. OVERVIEW OF PROGRAMMING LANGUAGES USED IN IMPLEMENTATIONS

ual memory management are:

• Programmers can have precise control over memory usage.

• Allows the programmers to make performance optimization by choosing an alloca-

tion scheme that performs the best.

The disadvantages of manual memory management are:

• Repetitive bookkeeping of memory is required.

• Memory leak is pretty common in manual memory management. Memory leaks

occur when resources are never freed.

• Double frees may happen where a resource is freed more than once.

In dynamic memory management, the run time environment automatically reclaims

the memory after making sure that it can no longer be used. Objects that won’t be used

again are called garbage. Dynamic memory manager is also known as a garbage collector.

Many high-level programming languages use dynamic programming languages such as

Java, Python JavaScript etc. The advantages of dynamic memory management are:

• Programmer’s involvement in freeing up memory is not needed.

• Fewer memory management bugs.

• Clean module interfaces

Some of the pitfalls of dynamic memory management are:

• Memory may be retained just because it is reachable but won’t be used again. It can

be an issue when small, predictable memory usage is needed.

• Not available to certain programming languages.

7



2.2. BRIEF INTRODUCTION TO MATRICES AND DATA STRUCTURES

One of the advantages of using Java is that Java virtual machine (JVM) supports auto-

matic memory management. The idea is to destroy the objects that are no longer needed

and for this Java used a technique called ”mark and sweep”. The first step is to identify

the unused objects and mark them for garbage collection. In the second step,the marked

objects get deleted by the garbage collector and memory can be compacted optionally after

that [24]. In case of C++, it is the programmer’s burden to take care of the garbage collec-

tion. In spite of the extra work required to free up memory explicitly, many programmers

prefer manual memory management over garbage collector for the sake of control and per-

formance. In our implementation of diagonal storage scheme, all the memory usages are

predictable, therefore manual memory management seems to be a better fit than dynamic

memory management because in dynamic memory management unreferenced things can

be left in memory for some time before they are deleted.

2.2 Brief Introduction to Matrices and Data Structures

Matrix operation is a large and important area in scientific computing. Matrix multi-

plication is an example of an operation that is highly dependent on the details of the data

structures. In this thesis, we have experimented on matrix operations using two types of ma-

trices: dense matrix and sparse matrix. In numerical computing and computer science, one

of the frequently used matrices is dense matrix. Dense matrix is a matrix where most of the

elements are non-zero values. The storage orientation of dense matrices can be row-major

storage and column-major storage. The design and selection of storage format depends on

the intended application, the functions to be implemented and the structure of the matrix

[20]. In this thesis, dense matrix operations are performed on row-major layout and diag-

onal storage layout using C++ vector. Section 2.4 and Section 2.7 discuss these storage

formats in details respectively.

A Sparse matrix is a matrix where most of the elements are zero. J.H Wilkinson’s infor-

mally defined sparse matrix as any matrix with enough zeroes that it pays to take advantage

8



2.3. ROW-MAJOR LAYOUT

of them [6]. The number of zero-valued elements over the total number of elements defines

the sparsity of the matrix. While manipulating and storing sparse matrices for computing

tasks, algorithms and data structures should be deployed that can take advantage of the

sparse structure of the matrix. Operations using dense matrix can be slow and inefficient

when applied to a sparse data structure because of the memory and computation power

wasted on the zero values. So it is important to store only the non-zero values of sparse

matrices and this type of storage can significantly reduce the amount of time spent on the

arithmetic operations.

Sparse matrices can be of two types: structured and unstructured. A structured sparse

matrix is a matrix where non-zero elements form a regular pattern commonly around a small

number of diagonals. On the other hand, in an unstructured sparse matrix, non-zero values

are irregularly located. Compared to the dense matrix, operations with sparse matrix require

complex implementation because of only storing the non-zero entries and their respective

index in the full matrices. Consequently, storing the non-zero entries and their respective

index happens to bring more overhead. [33]

A significant number of storage scheme algorithms for sparse matrices exist [23]. In this

thesis, matrix operations for sparse matrices are performed using banded diagonal Storage

format (DIAS), Compressed Sparse Row (CSR), and Java Sparse Array (JSA). Section 2.6

Section 2.8, and Section 2.9 discuss these storage formats in details.

2.3 Row-major Layout

Computer memory is a linear one-dimensional structure and mapping multi-dimensional

data on it can be done in several ways [28]. The selection of memory layout has significant

impact on the performances of the code due to the memory and cache mechanism. One

of mostly used memory layout is the row-major layout. A matrix A ∈ IRm×n is usually

stored in two-dimensional vector or array. Each entry in the vector or array corresponds

to an element ai, j of the matrix and can accessed using row index i and column index j.

9



2.5. JAVA ARRAYS

When a matrix is stored linearly in row-major layout, the linear representation of element

ai, j of matrix A can be denoted by the equation i×n+ j where n is the number of columns

per row, i, j < n, and elements of matrix A are accessed in stride-1 pattern. If the matrix is

stored using column-major order, element ai, j of matrix A can be located using the equation

j×m+ i where m is the number of rows per column, i, j < n and elements are accessed in

stride-n pattern.

2.4 Vector in C++

The Standard Template Library (STL) is a C++ template class which supports common

data structures and algorithms. One of the four components of STL are containers. Con-

tainers or container classes are used to keep data or objects. Sequence container deploys

data structure that can be accessed in a sequential way. Vector is a sequence container

that represents array but unlike array, their size can change dynamically [23]. Some of the

important properties of a vector that have been exploited in this thesis are as follows:

• Any element of the vector can be accessed using its index in constant time.

• The size of a vector can be fixed using resize() function. The indices range from

lower index bound to higher index bound.

• Vector uses zero-based indexing. For a vector of fixed length n, index ranges from 0

to n-1.

• Syntax A[i] denotes the ith element of vector A and vector length can be determined

using the size() function.

The storage of a vector is managed dynamically and happens to allocate memory more

than what is needed. But in our algorithm, the problem size is known beforehand so mem-

ory complexity of vectors will be the same as arrays in this case.

10



2.5. JAVA ARRAYS

2.5 Java Arrays

Programming languages Fortran and C/C++ provide good support for the storage of

mathematical objects such as vector, matrix, and higher dimensional tensor via the com-

pound data type array. A d-dimensional array of type T is a data structure of rank or di-

mension d ≥ 1 where the jth dimension, j = 0,1, . . .d−1 has extent n j such that an object

of type T stored in the structure is uniquely identified by the d-tuple (i0, i1, . . . , id−1), i j ∈

{0,1, . . . ,n j}. The dimension d as well as the extent n j are fixed at compile time and remain

the same for the duration of the program’s execution.

Column

Row

Figure 2.2: A true 2-D array of fixed rank and extent.

Figure 2.2 displays a true 2-D array (rank 2 array) where each dimension has extent

5. The (object) type array in Java is an array of element type T where T can be any

primitive type or object type. If T is an object type array then we have an array of

arrays (2-D array). In this case, each array element is a reference (memory address) to an

object of type array. Storing references to element type allows for flexible shape (“jagged”

structure). On the other hand, references in the data structure allow aliasing prohibiting the

compiler to apply optimizing transformations to the code [9, 32]. The actual objects that

the references point to need not be contiguous in the linear memory thus limiting spatial

11



2.6. COMPRESSED ROW STORAGE (CRS)

locality in accessing the objects. Moreover, references induce indirection or pointer chasing

in accessing data. On the other hand, vector in C++ where elements are placed in contiguous

storage and each vector element contains a primitive data type instead of references.

Support for true multidimensional arrays in Java have been proposed via class library

(JAMA [8]), by direct translation to bytecode (Titanium [36]), and by enhancing the JVM

[30]. Direct translation to bytecode requires adding new language constructs and a source-

to-source translator. The class library approach can be implemented as a package for

multidimensional arrays e.g. JAMA. This approach is simplest to implement and ensures

portability. The third approach, an enhanced JVM, does not require a new class library

or changes to the language. Instead, it performs compiler analyses to determine a suitable

dense representation for multiarrays. A comprehensive discussion on the three approaches

to rectangular array support can be found in [31].

Unlike the aforementioned excellent research for the support of true multidimensional

arrays in Java, our proposal described in Section 3 of [2] focuses on data locality enhance-

ments by organizing numerical calculations in linear algebra kernel operations consistent

with an orientation-neutral data layout. [2]

2.6 Compressed Row Storage (CRS)

Compressed row storage format is one of the popular storage formats for storing sparse

matrices when the sparsity structure of the matrix is unknown and it is introduced by Gus-

tavson. Let assume that, we have a non-symmetric sparse matrix A, then CRS can be

created using three vectors which are: [13]

• val: This vector stores the nonzero entries of the sparse matrix.

• col ind: This vector stores the column index of the non-zero values that are in

vector val. For example, if val(k) = ai j, then col ind(k)=j

• row ptr: This vector stores the index of element in the val vector that starts a row,

12



2.7. DIAGONAL STORAGE FORMAT

that is, val(k) = ai j, then row ptr(i) ≤ k ≤ row ptr(i+ 1). By convention, the last

element row ptr(n+1) stores nnz where nnz denotes the number of non-zero elements.

An example can give us a better understanding of how CRS can be used to store a sparse

matrix. Lets assume, we have a matrix A ∈ IR4×4 with four non-zero elements.


0 0 0 0
5 8 0 0
0 0 3 0
0 6 0 0


Figure 2.3: A Sparse matrix with dimension 4

The vectors val, col ind and row ptr are as follows for 2.3:

val= [5,8,3,6],

row ptr= [0,0,2,3,4],

col ind= [0,1,2,1]

This storage is significant in saving storage as instead of n2 elements, we need only

2nnz+n+1 storage locations.

2.7 Diagonal Storage Format

Diagonal storage scheme also named DIAS is a novel storage scheme for storing matrix

elements diagonally in a consecutive linear memory layout reported in [22]. Since the

matrix is stored by diagonals, it can handle different kinds of matrices such as banded

matrices, triangular matrices, symmetric matrices and fully dense matrices. In this section,

we will describe how DIAS can be used for dense and banded matrices. The Diagonal

storage format use two arrays: diag array and value array for matrix storage when any

specific order such as main diagonal, superdiagonals and subdiagonals is not implied. If

the specific order of diagonal storage is known, then only value array is needed.

13



2.7. DIAGONAL STORAGE FORMAT

For the better understanding of diag and value array we can consider a small example.

Given a square matrix A ∈Rn×n, an element Ai j of matrix A can be accessed using the row

index i and column index j.


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


Figure 2.4: A square matrix with dimension n

Elements of the matrix in Fig. 2.4 are stored diagonally in 1-D array as follows:

(
k0 , k1 , k2 , k3 , k−1 , k−2 , k−3

)
Figure 2.5: diag array

where the dimension of the matrix is n = 4 and ki (−n+ 1 ≤ i ≤ n− 1) denotes ith

diagonal of a matrix. ki = 0 represents the main diagonal(i=0). For 0 < i ≤ n− 1, ki

represents ith superdiagonal and for −n+1≤ i < 0 represents the ith subdiagonal.

Matrix multiplication algorithms using DIAS are hard to understand and needed a

deeper level of intuition. With that being said, a useful feature of the diagonal storage

scheme is that transpose of a matrix is obtained in-place without additional storage. For

structured matrices such as banded and sparse matrix, diagonal storage scheme yields sub-

stantial savings in terms of storage and computation time [2]. In the next subsection, we

will illustrate how the diagonal elements can be accessed in diagonal storage for matrix

operations.

14



2.7. DIAGONAL STORAGE FORMAT

2.7.1 Mapping Diagonal Elements for Dense Matrices

The access to the elements of a specific diagonal requires some counting. To access the

diagonal elements of a specific diagonal, we need to identify the index of the first element

for that diagonal in the 1-D array. We run several iterations for that purpose.

Let’s assume that, k is a diagonal number and start index represents the index of first

element for kth diagonal in 1-D array. All the arrays have zero-base indexing. In this

example, we have used the array 2.4 from Section 2.7. We run 4 iterations and obtained the

following result for the main diagonal and superdiagonals.

k start index
0 0 = 0×n−0
1 4 = 1×n−0
2 7 = 2×n−1
3 9 = 3×n−3

←
−

= k×n− k(k−1)
2

The formula to identify the index of the first element of a main diagonal or superdiago-

nal can be written as:

start index = kn− k(k−1)
2

(2.1)

For the subdiagonals (−n+1≤ k < 0), the following results were obtained: The formula

k start index
-1 10 = 10+(1−1)×n−0
-2 13 = 10+(2−1)×n−1
-3 15 = 10+(3−1)×n−3

←
−

= n(n+1)
2 +(|k|−1)×n− |k|(|k|−1)

2

to identify the index of the first element of subdiagonals is as follows:

15



2.8. BANDED STORAGE FORMAT

start index =
n(n+1)

2
+(|k|−1)×n− |k|(|k|−1)

2
(2.2)

The formulas presented in Equation 2.1 and 2.2 were introduced by Nurgul N. Aimaiti

in her master’s thesis [1]. A better approach for calculating the start index of a diagonal

is recently posted in our published article [22]. The implementation of diagonal matrix

multiplication in C++ has also been found improved compared to the Java implementation

on which kth diagonal elements have been copied and returned by a function for the com-

putation purpose. Since we know that the number of elements in any kth diagonal is n− k,

this advantage of knowing the start index and length of the diagonals has been exploited

in our latest implementation to access the matrix elements directly and thus by improving

performance by getting rid of the copying part.

2.8 Banded Storage Format

A Banded matrix is a special form of sparse matrix. Banded matrix is a structured

matrix in which the non-zero entries are confined to a diagonal band, including the main

diagonal and zero or more diagonals on either side. The sum of the distance of the non-

zero diagonals from the main diagonal on the both sides of it is called the bandwidth.

Bandwidth can be expressed by the form : kl + ku + 1 where kl represents the number of

non-zero subdiagonals and ku represents the number of non-zero superdiagonals. [33]

Therefore, it seems natural to store only the non-zero entries and express computation

by diagonals. For unstructured sparse matrices, storage schemes such as compressed stor-

age by rows (CSR) and compressed storage by columns (CSC) need two additional arrays of

2n+1 to provide access to the non-zero elements. On the contrary, by exploiting the struc-

tural sparsity of non-zero elements, it is possible to access the non-zero elements along the

band directly and thus avoiding the need for auxiliary data structures.

16



2.8. BANDED STORAGE FORMAT

BLAS specifications provide a compact storage schemes for banded matrices that en-

ables cache-friendly access to the matrix elements. Intel Math Kernel Library (MKL) stores

banded matrices with upper bandwidth ku and lower bandwidth kl in an array ab with (kl +

ku + 1) ×n elements such that the (i, j) th element is accessed by the ab(ku + 1+ i− j, j)

for max(1, j− ku) ≤ i ≤ min(n, j + kl). Thus, this storage scheme incurs a padding of

O(kl
2)+O(ku

2). Therefore, the advantage of this compact storage is realized if kl,ku << n

Madsen et. al [27] describe a matrix multiplication algorithm, hence called the MKS

algorithm, in terms of diagonals which can be used to multiply banded matrices. Tsao and

Turnbull [35] discuss an implementation of MKS algorithm where a variant of MKL band

storage is used. Their numerical experiments show that for matrices with smaller bandwidth

MKS algorithm yields substantial saving both in terms of storage and time for computation.

A distributed memory ”Reduced System Conjugate Gradient” algorithm described in [18]

utilizes the band structure to compute products of the form CTCp where p is the search

direction. The computation is implemented as two matrix-vector products with matrices C

and CT; the matrix product CTC is never explicitly formed. [22]

Now we will explore the storage scheme for storing banded matrices diagonally that is

proposed in this thesis. The banded storage we propose here does not require any extraneous

storage. Moreover, the matrix is stored by diagonals so it can handle different kinds of

structured matrices such as banded matrices, triangular matrices, symmetric matrices and

diagonal matrices. Let A ∈ Rn×n be a banded matrix with lower bandwidth kl and upper

bandwidth ku if

j > ku + i implies ai j = 0 and i > kl + j implies ai j = 0.

. We denote by Ak =
{

ai j | j− i = k
}
, the kth super-diagonal, and by A−k =

{
ai j | i− j = k

}
,

the kth sub-diagonal of matrix A. The proposed diagonal storage use one dimensional array

of size n(kl + ku +1)− ku(ku+1)
2 − kl(kl+1)

2 , corresponding to the number of non-zero entries

along the band.

17



2.8. BANDED STORAGE FORMAT


a00 a01 a02 0
a10 a11 a12 a13

0 a21 a22 a23

0 0 a32 a33


Figure 2.6: A banded matrix

Fig. 2.6 displays a n×n banded matrix with lower bandwidth kl =1 and upper bandwidth

ku=2. This array represents the row-major of diagonal in the following order:sub diagonals,

main diagonal, and super diagonals. Instead of storing all the elements, we store the four

diagonals kl + ku +1.

The 1-D array in Fig. 2.7 displays the linear representation of how diagonals of a banded

matrix is stored.

(
a10 a21 a32 ; a00 a11 a22 a33 ; a01 a12 a23 ; a02 a13

)
Figure 2.7: Diagonals representation of Banded Matrix

where, for clarity, we use a semicolon (;) to show the boundary between two consecutive

diagonals.

2.8.1 Mapping Diagonal Elements for Banded Matrices

Since the number of elements in kth (sub or super) is n−k, a mapping for the elements of

a specific diagonal can be easily constructed by identifying the start index of that diagonal

in 1-D array. Each diagonal element in banded matrices can be accessed by the following

equations [1]:

1. The index of first element of k th superdiagonal can be given by the expression:

18



2.9. JAVA SPARSE ARRAY (JSA)

start index← kl(2n− kl−1)
2

+
k(2n− k−1)

2
+ k (2.3)

2. For subdiagonal elements, k < 0, take the absolute value of k, The index of first

element of k th subdiagonal can be given by the expression:

start index =
kl(2n− kl−1)

2
− |k|(2n−|k|−1)

2
(2.4)

2.9 Java Sparse Array (JSA)

JSA was proposed by Gundersen and Steihaug [19] and it exploits the Java’s flexible

definition of multidimensional arrays. In Java, a two-dimensional array is formed using

arrays of arrays. It either stores primitive types (float, double etc.) or objects. Both rectan-

gular and jagged array can be created using this definition.

As similar to CSR, JSA is a row oriented storage format. Two arrays are used by JSA,

elements of which is itself an array (object). One of these arrays, Value, stores arrays of

matrix entries-each row of the matrix is stored in a separated array. All the separate arrays

are the elements of Value array, thus forming an array of arrays. The second main array,

Index, stores arrays of column indices for the matrix elements, again one array per row.

Lets assume, we have a sparse matrix M with dimension 5 × 5 as follows:


∗ a01 ∗ ∗ ∗
∗ ∗ a12 ∗ a14

∗ ∗ a22 ∗ a24

a30 a31 ∗ a33 ∗
∗ ∗ ∗ a43 ∗



19



2.10. JAGGED DIAGONAL STORAGE FORMAT

1

2        4

2         4

0      1         3

3

Index

a01

a12         a14

a22     a24    
 

a40      a41         a43

a23

Value

Figure 2.8: A sparse matrix stored using JSA

The ∗ symbol indicated a zero entry in the matrix. The memory requirements to store a

sparse matrix in JSA is 2nnz+ 2n array locations. [26] Fig. 2.8 shows an example sparse

matrix stored using JSA.

2.10 Jagged Diagonal Storage Format

A jagged array is an array of array. Jagged array stores array instead of other data type

value. A Jagged array is initialized with two [][] square brackets. The first bracket specifies

the size of the array and the second bracket specifies the dimension of the array which is

going to be stored as values. A reasonable alternative to a 1-D array to store the diagonals

of a matrix is a Java array of arrays also referred to as Java jagged array first proposed and

used in this thesis. As the diagonals in a matrix can be of different lengths, a jagged array is

an appropriate data structure to store those unequal objects. The advantage of a Java array

of arrays becomes evident by noting that a diagonal object can be treated independently of

other diagonals.

Figure 2.9 displays the data structure for Java jagged array. In this format, each row

in the matrix has its element and index in a separate array. Storing references to element

20



2.10. JAGGED DIAGONAL STORAGE FORMAT

Figure 2.9: A Java jagged array

type allows for the flexible shape (“jagged” structure). On the other hand, references in the

data structure allow prohibiting the compiler to apply optimization transformation to the

code. The actual objects these references are pointing to need not to be contiguous in linear

memory thus limiting spatial locality in accessing the objects. Additionally, references

induce indirection or pointer chasing in accessing data [2]. The banded matrix of Figure

2.6 can be stored as a jagged array by the following Java declaration:

double[][] JADiag = {{ a00, a11, a22, a33 }

{ a01, a12, a23 }

{ a02, a13 }

{ a10, a21, a32 }}

Support for true multidimensional arrays in Java have been proposed via class library

(JAMA [8]), by direct translation to bytecode (Titanium [36]), and by enhancing the JVM

[30]. Unlike the aforementioned excellent research for support of true multidimensional ar-

rays in Java, in this thesis we focus on data locality enhancements by organizing numerical

21



2.10. JAGGED DIAGONAL STORAGE FORMAT

calculations in linear algebra kernel operations consistent with an orientation-neutral data

layout. [2]

All the data structures that we have discussed in this chapter will be used for implemen-

tations in Chapter 4.

22



Chapter 3

Parallel Implementation Approach

The importance of parallelization in accelerating numerical computation has been well re-

ceived for decades. With the increasing amount of data and with the availability of parallel

platforms, parallel computing is a necessity in the computing world right now. Lately, sig-

nificant progress has made in parallel computation such as reducing turnaround time from

the development of a microprocessor to a parallel machine based on the microprocessor

and ensuring a longer life cycle for parallel applications. These progress display significant

promise in the future application of parallel programming.

3.1 Serial Computing VS Parallel Computing

In general, software are written for serial computation. Serial computing is a type of

computing where instructions are executed sequentially one after another on a single pro-

cessor.

On the other hand, in parallel computing, a computational problem is solved by using

multiple compute resources at the same time. A compute resource can be a single com-

puter with multiple processors or a group of such computers connected by a network. The

following steps can be followed to solve a problem in parallel: [5]

• The First step is to break the problem into separate parts that can be solved concur-

rently.

• Each part is further broken down into a series of instructions.

23



3.3. OPENMP PROGRAMMING MODEL

• Instructions from different parts can be executed in parallel on different processors.

• An overall synchronization mechanism is implemented.

3.2 Parallel Computing Platform

Parallel programming demands for the synchronization of concurrent tasks or commu-

nication of intermediate results. In shared address space architecture, memory and data

are accessible to all the processors.As a result, shared address space machines focus on

expressing construct for the concurrency and synchronization as well as reducing the asso-

ciated overheads.The Shared address space programming model varies depending on how

data is shared among the processors, concurrency model and support for synchronization.

Two of the most used shared address space models are as follows:

• Directive based programming model

• Threaded programming model

In this thesis, we have experimented with directive-based programming model. Thread

based programming models are popular among the system programmers rather than ap-

plication programmers. This is because thread-based API such as Pthreads are consid-

ered as low-level primitives. A Large class of applications can be efficiently supported by

higher-level directives and manipulation of the threads by the programmers is not required.

OpenMP is such a directive-based API (Application Program Interface) that supports shared

memory multiprocessing. OpenMP provides support for concurrency, data handling, and

synchronization. OpenMP API can be used with C, C++, and Fortran. In the following

section, we will discuss the OpenMP programming model. [3]

3.3 OpenMP Programming Model

One of the basic OpenMP directives in C and C++ is #pragma compiler directives. The

directive consists of a directive name followed by a clause list. OpenMP programs run

24



3.3. OPENMP PROGRAMMING MODEL

sequentially until the parallel directive is invoked. This directive creates a group of threads

once invoked. The number of threads can be specified at runtime using OpenMP functions

or set in the directives using an environment variable. The following code snippet shows

the parallel directive prototype:

# pragma omp p a r a l l e l [ c l a u s e l i s t ]

/∗ s t r u c t u r e d b l o c k ∗ /

The thread that encounters parallel directive is known as master thread and is assigned

thread id 0. OpenMP model hides the low-level details and allows the programmers to:

• Specify the parallel region. Each thread created by the directive executes the same

parallel region.

• Specify concurrent tasks or in other words parallelizing the loop.

• Specify the scope of variables in the parallel region which is also known as data

handling.

• Specify how workloads are divided among threads. This is called scheduling.

• Specify if the threads need to be synchronized

3.3.1 Data Handling in OpenMP

Manipulation of data by threads plays a vital role in program performance. OpenMP

supports various data classes such as private, shared, lastprivate and firstprivate [3]. These

classes are explained as follows:

• The clause private (variable list) defines that the set of variables specified local to

each thread and threads can not access each other’s data.

• The clause firstprivate (variable list) is same as private clause, but in this case vari-

ables can be initialized to corresponding values before the parallel directive and first-

25



3.3. OPENMP PROGRAMMING MODEL

private can be used to bring in that value from the outside context into the parallel

region.

• The clause lastprivate (variable list) is special case of private clause. lastprivate

clause can be used to transfer values from the parallel region to the outside context.

• The shared (variable list) indicates the set of variables that are shared across the

threads and there will be one copy for each variable. Shared variables need to be

handled with care such that data race doesn’t happen. Data race happens when two

threads access the same memory without proper synchronization.

• Reduction is one way of improving the performance of parallel applications by re-

moving the synchronization point from a for loop. The OpenMP reduction clause

allows threads to keep local count for a specific operation and combine the local

solution into a single solution at the end of the loop.

3.3.2 Specifying Parallel Tasks in OpenMP

To specify concurrency across iteration and tasks, parallel directive can be associated

with other directives. OpenMP supports two directives for concurrency across iteration and

tasks. They are as follows:

• For directive

• sections directive

The For Directive

The for directive in OpenMP is used to assign the parallel iteration space across threads.

The for directive prototype in OpenMP is as follows:

# pragma omp f o r [ c l a u s e l i s t ]

/∗ f o r l oop ∗ /

26



3.3. OPENMP PROGRAMMING MODEL

The clause list in this context comprises private, firstprivate, lastprivate, reduction,

schedule, nowait and ordered clauses. The first four clauses are related to data handling

and the semantics are the same as in the parallel directive. In this thesis, we have used the

for directive to split the diagonals among the threads.

3.3.3 OpenMP Scheduling

OpenMP scheduling clause deals with assigning iteration space to threads. There are

four scheduling classes in OpenMP: static, dynamic, guided and runtime [3]. Choosing the

right schedule can significantly affect the performance of a parallel program.

Static Schedule

The general prototype for static scheduling class is schedule(static[,chunk-size]).

Static scheduling breaks the iteration space equal to size chunk-size and maps the iteration

space among the threads in a round-robin fashion. If the chunk-size is not specified then the

iteration space is split into number of chunks equal to the number of threads available.

Dynamic Schedule

Execution time may vary depending on several reasons such as non-uniform proces-

sor load, heterogeneous computing resources, etc. OpenMP dynamic scheduling class can

resolve this issue. The general form of this class is schedule(dynamic[,chunk-size].

The iteration space is split into chunks based on the chunk-size. Whenever a thread be-

comes idle it gets assigned to threads and this solves the problem of temporal imbalances in

static scheduling. Since the number of diagonals in a matrix are of different sizes, we have

used dynamic schedule in this thesis to take care of the load imbalance. If no chunk-size is

specified, then by default the chunk-size is 1.

27



3.4. SYNCHRONIZATION IN OPENMP

Guided Scheduling

Guided scheduling is the same as dynamic scheduling. The chunk-size starts large and

decreases with the computation to better handle the load imbalance. The chunk-size is re-

duced at an exponential rate as each chunk is dispatched to a thread. The general prototype

for guided scheduling is schedule([, chunk-size]). With small chunk-size, guided

scheduling works better compared to the performance with bigger chunk-size.

Runtime Scheduling

If it is needed to delay scheduling decisions until runtime, then runtime scheduling class

can be used. Since selecting a scheduling class depends on several reasons such as proces-

sor loads and computing resources, the scheduling can be set to runtime to pick the best

scheduling class based on the impact of various scheduling classes. OpenMP environment

variable OMP SCHEDULE sets the scheduling class and the chunk size in this case. If no

scheduling technique is specified with the omp for directive, then the scheduling technique

is implementation-dependent.

3.4 Synchronization in OpenMP

Coordinating the execution of multiple threads in parallel programming is an important

aspect. The POSIX threads also known as Pthreads API supports conditions variables and

mutual exclusion flags. OpenMP provides a handful of synchronization directives in an

easy to use API. We will discuss the following directives and their use in this section [3].

• The barrier directive

• The critical and atomic directives

• The ordered directive

28



3.4. SYNCHRONIZATION IN OPENMP

The barrier Directive

The barrier directive works as a synchronization point. The syntax for barrier directive

in OpenMP is as follows:

# pragma omp b a r r i e r

Whenever a barrier directive is reached, all the threads in a group must wait until other

threads are done execution and then release. In case the barrier directive is used with

nested parallel directive, then the barrier directive pairs with parallel directive that is fol-

lowed by it. Some overheads are associated with applying barrier directive.

The critical and atomic directives

If there is a need for the serial execution of the code segment within the parallel region,

then the critical and atomic directive can be used. The syntax for the critical section is the

following:

# pragma omp c r i t i c a l [ name ]

s t r u c t u r e d b l o c k

Whenever a critical directive is encountered, only one thread enters the critical region

specified by a name and all the other threads must wait until it is done before entering the

critical section. If name of the critical section is unspecified, then it maps to a default name

that is same for all unnamed critical sections. OpenMP has another similar directive called

the atomic directive. It is used for the small updates in memory location and the atomic

directive ensures that the memory location update is performed as a single operation.

The ordered Directive

The ordered directive can be used for a desired execution order of a parallel loop in a

way the serial version would execute it. The syntax of this directive is as follows:

# pragma omp o r d e r e d

s t r u c t u r e d b l o c k

29



3.5. PERFORMANCE METRICS FOR PARALLEL PROGRAM

The ordered directive works as a serialization point since only one thread can enter the

ordered block after all the threads have exited. So overhead will be higher if a large portion

of a loop is enclosed within the ordered directive.

3.5 Performance Metrics for Parallel Program

Various performance metrics can be used to do the performance analysis of a parallel

program. To identify the best algorithm, it is important to study the performance of a

parallel program. The performance metrics used in this thesis will be discussed in the

following subsections.

3.5.1 Execution Time

Execution time can be of two types: serial runtime and parallel runtime. The Serial

runtime of a program refers to the time spent between the beginning and end of its execution

on a single processor. Serial runtime is denoted by Ts. The Parallel runtime of a program

is the time elapsed from the moment the parallel computation starts to the moment the last

processing element finishes execution [3] . Parallel runtime is denoted by Tp

3.5.2 Speedup (S)

Speedup is a commonly used metric to analyze the performance of a parallel program

since it captures how much performance gain is achieved for parallel implementation over

serial implementation. Speedup is the ratio of runtime for best sequential algorithm over

the runtime of a parallel algorithm executed on p processors. Speedup is denoted by symbol

S and can be expressed mathematically as follows:

S =
T s

T p
(3.1)

where Ts denotes the serial runtime of best sequential algorithm and Tp denotes the

parallel runtime.

30



3.5. PERFORMANCE METRICS FOR PARALLEL PROGRAM

While improving the performance of a system, it usually happens that we speed up one

part of a system and the overall system performance depends on how important this part

was and how much it sped up. Let’s assume that, we have a system and executing some

applications on the system requires time Told . Also, suppose that some part of the system

needs a fraction α of this time and its performance is improved by a factor of k. So, the

component required time α×Told before and now it need time α×Told
k . The overall execution

time would thus be

Tnew = (1−α)Told +
(αTold

k
)

= Told[(1−α)+
α

k
]

From this we can compute speedup S = Told
Tnew

and this is known as Amdahl’s law. [11]

The insight from Amdahl’s law is that generally, the speedup is in proportion to the number

of processing elements and can not be more than the number of processing elements, p. In

a special case, speedup can be more than the number of processing elements, p and this is

known as super-linear speedup.

3.5.3 Efficiency (E)

Efficiency is another metric to analyze the performance of a parallel program. In an

ideal scenario, speedup can be equal to the number of processing elements, p. But in real

systems, this ideal behavior is not achieved since processing elements spend a fraction

of time in idling and communicating. Efficiency is a measure of the part of the time for

which processing element is usefully employed. Efficiency can be defined as the ratio of

speedup to the number of processing elements. Efficiency is denoted by the symbol E and

mathematically given by:

E =
S
p

(3.2)

31



3.5. PERFORMANCE METRICS FOR PARALLEL PROGRAM

where S denotes speedup and p denotes the number of processing elements. Parallel

efficiency can not be more than 1.

32



Chapter 4

BLAS2 and BLAS3 Operations on
Different Storage Schemes and
Algorithms

In this chapter, we are going to explore Basic Linear Algebra Subroutine (BLAS) opera-

tions using different storage schemes discussed in Chapter 2. BLAS are the routines that

provide support for vector and matrix operations. Level 2 BLAS includes matrix-vector

operations and Level 3 BLAS includes matrix-matrix operations. We will use the following

abbreviated forms for matrix operations in this chapter:

• Ax: multiplying a matrix by a vector

• ATx: multiplying transpose of a matrix by a vector

• AB: multiplying a matrix by a matrix

• ATB: multiplying transpose of a matrix by a matrix

We also denoted Standard Matrix Multiplication as SMM and Diagonal Matrix Multi-

plication Routine as DMM. These abbreviations carry the same meaning in the following

chapter as well.

In the following sections of this chapter, we will discuss four linear algebra routines:

Ax, ATx, AB and ATB for dense matrices using algorithms that take into consideration

the row-major orientation on Standard Matrix Multiplication (SMM) and diagonal storage

(DIAS) on Diagonal Matrix Multiplication (DMM). For banded matrices, the same routines

33



4.1. MATRIX-VECTOR MULTIPLICATION (AX AND ATX) ON SMM

were applied on Diagonal Storage (DIAS) and Java Jagged Array (JJA). Since the support

for banded matrix operations in BLAS specification is available at level-2 only, a naive

approach would be to use the GBMV (General Band Matrix-Vector) routine n times. As a

result, the performance of matrix multiplication may suffer due to difficulty in exploiting

data reuse or systems with deep memory hierarchy. We demonstrated an algorithm in terms

of diagonal to multiply band matrices. In the last section, we will discuss the task-based

parallel implementation of these routines using OpenMP.

4.1 Matrix-Vector Multiplication (Ax and ATx) on SMM

To define the multiplication between a matrix A and vector x, we need to see vector

x as a column vector. For general matrix-vector multiplication, the number of columns in

A must be equal to the number of rows in vector x. So if A εRm×n and x εRn×1 then

result vector y = Ax is a column vector with dimension m×1 [10]. The general formula for

matrix-vector is the following:


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn




x1

x2
...

xn

=


a11x1 +a12x2 + · · ·+a1nxn

a21x1 +a22x2 + · · ·+a2nxn
...

am1x1 +am2x2 + · · ·+amnxn


Figure 4.1: Matrix-vector multiplication

In Fig. 4.1, it is clear that matrix-vector multiplication takes the dot product of x with

each row of matrix A. The general algorithm to compute y = Ax is as follows:

Sometimes working with a different form of a given matrix that contains the same infor-

mation is required. Transpose of a matrix is a fairly common operation in linear algebra and

it has numerous applications in mathematical computations such as providing the notion of

sizes and angles [29]. In transpose product, y = ATx, the rows and columns of matrix A

34



4.2. MATRIX-VECTOR MULTIPLICATION (AX AND ATX) ON DIAGONAL
STORAGE FORMAT

Algorithm 1 Standard matrix-vector multiplication
Input Data: One-dimensional array valA in which the elements of matrix
A is stored in row-major layout and a vector x of size n.
Output Data: A column vector y of size n.

1: procedure MULTIPLY()
2: for i← 0 to n−1 do
3: y[i]← 0
4: for j← 0 to n−1 do
5: y[j]← y[j] + valA[i × n + j] × x[j]
6: end for
7: end for
8: end procedure

are switched and the elements of matrix A are accessed in a stride-n pattern instead of the

stride-1 pattern.

4.2 Matrix-Vector Multiplication (Ax and ATx) on Diagonal Storage

Format

If a n× n matrix A is stored diagonally and a vector x of size n is taken then matrix-

vector multiplication can be performed using the following algorithm:

In Algorithm 2, we are storing the elements of matrix A diagonally in n 1-D array

named valA and to get the start index of a specific diagonal we are using the index formula

in chapter 2.

4.2.1 Computing Steps of Ax and ATx using Diagonal Storage Format

The computing steps of Algorithm 2 are as follows:

• Total number of elements on each diagonal can be defined by n− k. |k| denotes the

absolute value of kth diagonal.

• DiagStore() function: This function receives a 2-D matrix of size n×n as its argument

and stores the elements of the matrix into an 1-D array or vector in main-super-sub

35



4.2. MATRIX-VECTOR MULTIPLICATION (AX AND ATX) ON DIAGONAL
STORAGE FORMAT

Algorithm 2 Matrix Vector Multiplication
Input: valA, diag, vector x of size n
Output: vector y of size n

1: procedure MULTIPLY( )
2: for d← 0 to diag index.size()−1 do
3: k← diag index[d]
4: if k >= 0 then
5: i← k
6: j← 0
7: start index← (k*n)-(k*(k-1))/2
8: stop index← start index + n - k -1
9: for start index to stop index do

10: y[j]← y[j]+valA[start index] × x[i]
11: i← i+1
12: j← j+1
13: end for
14: end if
15: if k < 0 then
16: i← 0
17: j← abs(k)
18: start index← n*(n+1)/2 + (j-1)*n-(j*(j-1))/2
19: for start index to stop index do
20: y[j]← y[j]+valA[start index] × x[i]
21: i← i+1
22: j← j+1
23: end for
24: end if
25: end for
26: end procedure

36



4.3. MATRIX-MATRIX MULTIPLICATION ON SMM

diagonal order. For a given matrix A, a matrix element is expressed by the form ai, j

where i corresponds to row index and j corresponds to column index,then the mth

component of kth main diagonal or superdiagonal can be accessed by the following

equations:

ak(m) = am,k+m

and the mth component of kth subdiagonal can be accessed by the equation:

ak(m) = ak+m,m

• multiply() function: This functions represents the implementation of matrix-vector

multiplication using diagonal storage. It receives the dimension of matrix A that is

n, the diagonally stored vectorized format of matrix A and a vector x of size n as its

arguments. The key here is to access ith element on kth diagonal in a stride-1 pattern

using the index formulas on step 7 and multiply that element with the ith element of

vector x using Step 18 of Algorithm 2. The result is stored in the ith position of vector

y. Accessing the elements in stride-1 pattern will improve cache performance.

For the transpose matrix-vector operation, the structure of the algorithm is the same

as y=Ax except for the following changes in the algorithm:

Line 4: i = k, j = 0 becomes i = 0, j = k

Line 14 : i = 0, j = k becomes i = k, j = 0

4.3 Matrix-Matrix Multiplication on SMM

Consider the numeric algebra kernel operation of matrix-matrix multiplication (MM) of

the form:

37



4.3. MATRIX-MATRIX MULTIPLICATION ON SMM

C← AB

and

C← ATB

where A, B, C are square matrices of dimension n. Usually, matrix-matrix multiplica-

tion is implemented using three nested loops and the loops are identified by their indices i,

j, and k. A simple algorithm for matrix multiplication is presented in Algorithm 3 :

Algorithm 3 Standard matrix-matrix multiplication
Input Data: Two square matrices A and B of size n
Output Data: Matrix C of size n

1: procedure MULTIPLY()
2: for i← 0 to n−1 do
3: y[i]← 0
4: for j← 0 to n−1 do
5: for k← 0 to n−1 do
6: C[i][j]← C[i][j] + A[i][k] × B[k][j]
7: end for
8: end for
9: end for

10: end procedure

If we permute the loop indices with some minor changes in code, we get six functionally

similar version of matrix multiplication. Each version performs the same number of addi-

tion and multiplication operations. But the innermost loop iterations make the difference in

the number of accesses and the locality. These versions can be grouped into three classes

such as Partial row and partial column-oriented (V1, V2), Pure column-oriented (V3, V4),

Pure row-oriented (V5,V6) [12].

• V1: The loop order for version one is (i, j,k). Each row of matrix A is accessed in

stride-1 pattern and each column of matrix B is accessed in the stride of n.

38



4.4. MATRIX-MATRIX MULTIPLICATION USING DIAGONAL STORAGE FORMAT

• V2: For version two the loop order is ( j, i,k). The access pattern for this version is

the same as V1.

• V3: The loop order for version three is ( j,k, i). Hence, each column of matrix A

and Matrix C is scanned in the stride of n pattern. In this case, spatial locality will

decrease compared to the V1 and V2 because of loop interchanging.

• V4: The loop order for version four is (k ji). The access pattern for elements in the

matrices is the same as V3.

• V5: The loop order for version five is (k, i, j). The innermost loop scans each row of

matrix B and C in a stride-1 pattern which will result in good spatial locality.

• V6: For version six, the loop order is (i,k, j). The scanning pattern for the rows of

matrix B and C is the same as V5.

In terms of spatial locality, V5 and V6 happen to perform better than the other versions

because matrix B and C are both scanned row-wise in the stride-1 pattern. In this thesis, we

have compared our proposed storage scheme with V5 and V6.

Transpose of a matrix is a new matrix where the rows and columns of the original matrix

are flipped. For C = ATB, the step 4 in Algorithm 3 becomes

C[i][j]← C[i][j] + A[k][i] × B[k][j].

4.4 Matrix-matrix Multiplication using Diagonal Storage Format

Materials in sections 4.4− 4.6 discuss diagonally structured linear algebra borrowed

heavily from [22][2] In this section, we will describe the algorithm matrix-matrix multi-

plication by diagonals for dense matrices. We will use the following figure as a running

example to illustrate our algorithm [22].

39



4.4. MATRIX-MATRIX MULTIPLICATION USING DIAGONAL STORAGE FORMAT


c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

←


c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

+


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33




b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33


Figure 4.2: Matrix Matrix Multiplication By Diagonals

and the pseudocode for the algorithm is as follows:

Algorithm 4 Matrix Matrix Multiplication by Diagonals

1: procedure MULTIPLYDIAG( )
2:

3: for k← 0 to n-1 do
4: for i← k+1 to n-1 do
5: ck(; i− k)← ck(; i− k)+ai×bk−i(;k)
6: ck(i− k;)← ck(i− k;)+ak−i(;k)×bi
7: end for
8: for i← 0 to k do
9: ck← ck +ai(;k− i)×bk−i(i;)

10: end for
11: end for
12: for k← 1 to n-1 do
13: for i← k+1 to n-1 do
14: c−k(i− k;)← ck(i− k;)+a−i×bi−k(;k)
15: c−k(; i− k)← c−k(; i− k)+ai−k(k;)×b−i
16: end for
17: for i← 0 to k do
18: c−k← c−k +a−i(k− i;)×bi−k(; i)
19: end for
20: end for
21: end procedure

The key observations in developing the algorithm for computing kth super/sub diagonal

of result matrix C is to identify the part of argument matrices A and B that contribute to the

calculation. Specifically, the last k rows of matrix A and the first k columns of matrix B

40



4.4. MATRIX-MATRIX MULTIPLICATION USING DIAGONAL STORAGE FORMAT

can be ignored. To illustrate our algorithm we will consider computing diagonal C3 for the

matrix multiplication operation of size 4 as shown in Fig. 4.2. Diagonal C3 has only one

element which is c03. The segments of matrices A and B that take part in computing c03 is

shown below: 
a00 a01 a02 a03

. . . .

. . . .

. . . .




. . . b03

. . . b13

. . . b23

. . . b33



We can express the computation in terms of diagonals:

C3←C3 +A0×B3+A1×B2+A2×B1+A3×B0

In the above, the diagonals for argument matrices B and C are written in ”math sans

serif font” to reflect the fact that in respective diagonals the last k (k=3 here) elements of

matrix A and first k (k=3 here) elements of matrix B have been removed. Therefore, each

of the diagonals is a vector of length one. It is evident that the standard inner product of

row 0 of matrix A and column 3 of matrix B produces the same result as multiplication

by diagonals. It is important to note that, in pair of multiplying diagonals the indices of

the diagonals add to the index of the diagonal of matrix C being computed. Next, we will

show that multiplication of diagonals, indicated by symbol ×, is point-wise or Hadamard

multiplication [21]. Now we will show an example for computing diagonal C0. We denote

by Ak = {ai j| j− i = k} the kth super-diagonal and A−k = ai j|i− j = k the kth sub-diagonal.

According to this observation, we identify diagonal pairs Ai, B j such that i+ j = 0 [22].

The computation is followed :

41



4.4. MATRIX-MATRIX MULTIPLICATION USING DIAGONAL STORAGE FORMAT


c00 . . .
. c11 . .
. . c22 .
. . . c33

←


c00 . . .
. c11 . .
. . c22 .
. . . c33

+


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33




b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33


+(A0×B0)

+(A1×B−1)+(A−1×B1)

+(A−2×B2)+(A2×B−2)

+(A3×B−3)+(A−3×B3)


c00

c11

c22

c33

 ←


c00

c11

c22

c33

+


a00

a11

a22

a33

×


b00

b11

b22

b33



+


a01

a12

a23

0

×


b10

b21

b32

0

+


0

a10

a21

a32

×


b10

b21

b32

0



+


a02

a13

0
0

×


b20

b31

0
0

+


0
0

a20

a31

×


0
0

b02

b13



+


a03

0
0
0

×


b30

0
0
0

+


0
0
0

a30

×


0
0
0

b03



In the above illustration, zeros appearing in the shorter diagonal are used for clarity

only.

The above discussion is captured in the following theorem as reported in [22] [2]:

42



4.4. MATRIX-MATRIX MULTIPLICATION USING DIAGONAL STORAGE FORMAT

Theorem 4.1. In the matrix-matrix multiplication operation C←C+AB for A,B,C ε Rn × n

performed by diagonals, the kth diagonal for k ≥ 0 is given by

Ck =
n−1

∑
j=0

A j×Bk− j +
n−1

∑
j=k+1

Ak− j×B j (4.1)

and for k ≤ 0

Ck =
n−1

∑
j=0

Ak+ j×B− j +
n−1

∑
j=k+1

A− j×Bk+ j (4.2)

The proof of this theorem is based on induction.

These above steps can be computed using the following functions:

• getIndex() function: This function returns the index of the start element for kth diag-

onal.

• DiagStore() function: This function receives a 2-D dense matrix as its argument and

converts it into 1-D array or vector. Conversion of 2-D matrix into 1-D vector in-

cludes storing by the diagonals (main diagonal-super diagonal-sub diagonal) order.

For a given matrix A, a matrix element is expressed by the form ai, j where i corre-

sponds to row index and j corresponds to column index,then the mth component of

kth main diagonal or superdiagonal can be accessed by the following equations:

ak(m) = am,k+m

and the mth component of kth subdiagonal can be accessed by the equation:

ak(m) = ak+m,m

43



4.5. BANDED MATRIX-MATRIX MULTIPLICATION

• multiplyDiag() function: This function contains the implementation of DIAS algo-

rithm to output C=AB. It receives array dimension n, two 1-D array or vectors (A,B)

which are already stored by the diagonals using DiagStore() function.

4.5 Banded Matrix-Matrix Multiplication

In banded matrix-matrix multiplication, any of the argument matrices can be banded.

Therefore, it is a special case of general matrix-matrix multiplication by diagonals.

Let, lA, lB, lC and uA,uB,uC denote respectively, the lower-bandwidth and the upper-

bandwidth for matrices A, B and C. It can be shown that lC = min(lA + lB,n− 1) and uC

= min(uA +uB,n−1). So the special case of banded matrix multiplication can be done by

stating that the diagonals that fall within the bandwidth of the respective matrices will be

accessed only. For instance, to compute Ck for 0≤ k≤min(uA+uB,n−1) can be expressed

using 4.1

Ck =
n−1

∑
j=0

A j×Bk− j +
n−1

∑
j=k+1

Ak− j×B j (4.3)

For sub-expression ∑
n−1
j=0 A j×Bk− j, it must be j ≤ uA and

 k− j ≤ uB, k ≥ j

j− k ≤ lB, k < j

The conditions for the other sub-expression are followed,

{
j ≤ uB, j− k ≤ lA, k < j

In a similar way, the sub-diagonals for the banded multiplication can be derived from

4.2 .

The pseudocode for banded matrix-matrix multiplication is followed:

44



4.6. COMPUTATIONAL EXPERIENCE WITH DIAGONALLY STRUCTURED
LINEAR ALGEBRA IN JAVA

Algorithm 5 Banded Matrix Matrix Multiplication by Diagonals

1: procedure MULTIPLYBAND( )
2:

3: for k← 0 to uC do
4: for i← k+1 to min(uB,k+ lA) do
5: ck(; i− k)← ck(; i− k)+ai×bk−i(k;)
6: ck(i− k;)← ck(i− k;)+ak−i(;k)∗bi
7: end for
8: for i← max(0,k−uB) to min(k,uA) do
9: ck← ck +ai(;k− i)×bk−i(i;)

10: end for
11: end for
12: for k← 1 to lC do
13: for i← k+1 to n-1 do
14: c−k(i− k;)← ck(i− k;)+a−i×bi−k(;k)
15: c−k(; i− k)← c−k(; i− k)+ai−k(k;)×b−i
16: end for
17: for i← max(0,k− lB) to min(k, lA) do
18: c−k← c−k +a−i(k− i;)∗bi−k(; i)
19: end for
20: end for
21: end procedure

The computing steps for banded matrix multiplication are same as the computing steps

for general matrix-matrix multiplication by diagonals.

4.6 Computational Experience with Diagonally Structured Linear Al-

gebra in Java

Even though Java is fairly popular in the developing world, it is a commonly believed

that Java’s current specification and its implementation framework still pose challenges to

achieve high performance on important compute intensive numerical calculations. With the

introduction of Just-In-Time (JIT) compiler technology, Java Virtual Machine (JVM) has

45



4.7. IMPACT OF CACHING IN MEMORY HIERARCHY AND EXPLOITING
LOCALITY

increasingly been successful in closing the performance disparity with other mainstream

compiled languages [9].

One of the classic bottlenecks between computer processors and memory is that com-

puter processors process data at a much higher rate than the rate at which current memory

technology can deliver data. This gap in processor and memory speed is not likely to go

down in the near future [17]. Modern computer systems employ multiple levels of storage

devices in a hierarchical manner, with devices that are faster and have smaller capacity are

organized closer to the processor. A device at a specific level thus acts as a staging post

or cache for the next faster device. Cache-friendly algorithms tend to reference data items

that are located close to the ones (in storage devices) that were referenced recently (spatial

locality1) or multiple references to the same data items within a short time period. The

impact of hierarchical memory on performance is profoundly evident in compute-intensive

numerical calculations e.g., matrix-matrix multiplication where cache-efficient reference to

matrix data depends on the layout of data in memory for improved temporal locality and

the reordering of the calculations for improved spatial locality [34].

In this thesis, we enable cache-friendly access to data by using diagonally structured

storage and computation for matrix-matrix multiplication. We provide two alternative im-

plementations using 1-D Java native array and jagged array, and use the computational

framework of [22] to organize the underlying arithmetic calculations. [2]

4.7 Impact of Caching in Memory Hierarchy and Exploiting Locality

A cache can defined as a smaller, faster memory that acts as a staging area for slower,

larger memory. The process of using a cache is known as caching.

The basic concept of memory hierarchy is that faster storage device at level k acts as a

cache for slower storage device at level k+ 1. Storage device at level k is partitioned into

a number of blocks that are the same size as the blocks in storage device at level k + 1.

1Corei7 cache line can contain 8 doubles so that once the line is brought in, the next 7 adjacent double
values are served from the faster cache.

46



4.8. PARALLELIZATION STEPS

Storage device at level k contains copies of a subset of blocks from level k + 1. Data is

copied between level k and k+1. When a program needs a data object d from level k+1,

at first it looks for d in one of tha blocks cached at level k. If d is found at level k, then

this event is called a cache hit. If d is not found at level l, then what we have is called a

cache miss. When a cache miss occurs, data block that contains d is copied to level k from

level k+1. After it has been copied from level k+1 to level k, it stays there in expectation

of later accesses. Here, the advantage of locality comes in. In temporal locality, same

data object are more likely to be referenced multiple times. Once the data object has been

copied into cache on the first miss, it is expected that number of subsequent hits will occur

on the same data object. As the cache is faster than the storage at next lower level, these

subsequent hits will serve faster than the original miss. In spatial locality, subsequent data

objects of d within a block are likely to be referenced and the cost of copying a block will be

amortized by this [11]. The matrix operations in terms of diagonals exploit spatial locality

by accessing the required elements of a diagonal in stride-1 pattern.

4.8 Parallelization Steps

The algorithms we discussed above were implemented for task-based dynamic multi-

threaded architecture using OpenMP. To develop a algorithm in parallel, there are two basic

stages:

• Developing a decomposition and mapping strategy

• Exploit this technique among the nodes

In the above discussion, decomposition refers to splitting the computations to be per-

formed among a specific number of threads. One of the commonly used decomposition

techniques is data decomposition. Data decomposition consists of two steps,

• Partitioning the data on which the computations are performed.

47



4.8. PARALLELIZATION STEPS

• Using this data partition to create partitioning of the computations into tasks.

The partitioning can be done in numerous ways. For parallel implementation of matrix

operations by diagonals we have used the concept of data decomposition. Our parallel

implementation of matrix operations by diagonals comprises of the following the steps:

Step 1 The algorithm for matrix multiplication by diagonals contains nested loops. Only

the outer-most loop was parallelized using OpenMP. In each iteration, each thread is

assigned a specific diagonal to compute.

Step 2 Each process multiplies the required elements to compute its assigned local diagonal.

Since a kth diagonal can have n− k elements, so each process will performing n×

(n− k) computations.

Step 3 A matrix of dimension n× n has 2n− 1 diagonals. So we are partitioning 2n− 1

diagonals over p processes and we can use maximum of 2n− 1 processes. This can

be expressed as follows:
2n−1

p

48



Chapter 5

Numerical Experiments

In this chapter, we will present the test results from the computational study of different

storage schemes and matrix multiplication algorithms discussed in Chapter 2 and Chapter

4 respectively.. First, we will briefly discuss the test data set followed by the computing

system employed for all numerical testings. Next, we will outline the benchmarking and

the test results will be presented graphically in the rest of the chapter.

5.1 Data Sets for Numerical Test

We performed our numerical experiments on real matrices. The elements of the matrices

(full and sparse) are generated randomly using a user-defined function. A random seed

is passed to the function to generate a random number. We have also used C++ rand()

function to generate random numbers for computation. The data types we experimented

with are single-precision and double-precision floating-point numbers. All the matrices are

square, with the same number of rows and columns, and non-symmetric.

• Dense Matrix

The input matrices are initially generated in a 2-D format. Then the matrix elements

are stored in a 1-D array using a row-major layout for standard matrix multiplication. For

diagonal storage scheme, the matrix entries were stored in a 1-D array with specific diagonal

order (main-super-sub)

• Banded Matrix

49



5.2. TEST ENVIRONMENT AND BENCHMARKING

In case of banded matrix, only the elements within a predefined bandwidth are stored

diagonally using a 1-D array in a specific order ((sub-main-super).

5.2 Test Environment and Benchmarking

The execution time performance measure for matrix operations was measured using the

OpenMP function omp get wtime(). This function returns the execution time in seconds.

The difference between two values returned by the two different calls to omp get wtime()

function, one before the respective function call and the other at the end was used to com-

pute the total execution time. We ran the programs multiple times to get the average execu-

tion time. To time the for loop for benchmarking results, we considered taking time from

where it begins, to where it ends. Table 5.1 displays the computing system employed for

all numerical testing. Table 5.3 and Table 5.2 displays the hardware specs for the numerical

computing. All the parallel implementations of the algorithms were tested using the test

environment presented in Table 5.2. Table 5.3 was used to obtain sequential computing

results.

Table 5.1: System Info

Operating System: CentOS

GCC version : 4.4.7

Linux version: 2.6.32

OpenMP Version : 3.0

50



5.2. TEST ENVIRONMENT AND BENCHMARKING

Table 5.2: Test Hardware Specifications

Processor Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
CPU Cores(s) 4

L1 d and L1 i cache 32KB
L2 cache 256KB
L3 cache 8192KB

CPU MHz 3400.132

Table 5.3: Test Environment Specifications (Medusa)

Processor Model: AMD Opteron(tm) Processor 4284

Thread(s) : 16

Thread(s) per core: 2

Core(s) per socket: 4

Socket(s): 2

CPU MHz: 1400.00

L1d cache: 16K

L1i cache: 64K

L2 cache: 2048K

L3 cache: 6144K

We have used Table 5.3 to perform experiments on the parallel implementation and

Table 5.2 was used to run experiments on the sequential implementation. In Table A.2, each

CPU has 4 cores and there are 2 threads per core. So we get to experiment with 16 threads

on our parallel implementation of the algorithms. It also includes separate d-cache (data

cache) and i-cache (instruction cache) for L1 so that the processor can read instruction and

processor at the same time without making conflict between data accesses and instruction

51



5.4. NUMERICAL EXPERIMENTS

accesses.

5.3 Memory Exceptions While Implementing the Algorithms

We implemented the algorithms using C++ and Java. For dense matrix-matrix multipli-

cation in C++, we can use row and column dimension up to 16,000 before the total memory

is exhausted. In Java, after using the -Xmx flag to specify the maximum heap memory,

the matrix dimension comes down to 8,000 before JVM runs out of heap memory. For

the sparse matrices, we experimented with dimension 100000 and since we are storing the

non-zero elements only, memory seems not be an issue in this case.

5.4 Numerical Experiments

In this section, we will present the experimental results for basic linear algebra rou-

tines (BLAS) discussed in Chapter 4 for different storage schemes presented in Chapter

2. Speedup and Efficiency for parallel implementation were computed respectively using

equation (3.1) and equation (3.2) in Chapter 3. We have three computational models to

present the results that are:

Model A: Dense Matrix Operations

• Ax and ATx on SMM versus DMM

• AB and ATB on SMM versus DMM

The first computational model compares the test results for dense matrix operations

using standard method that takes the linear layout(row-major) of a 2-D array into consider-

ation versus dense matrix operations using diagonal multiplication method.

Model B: Banded Matrix Operation on Java Arrays

• Banded Matrix-Matrix Multiplication on DIAS using Java jagged array versus 1-D

diag array.

52



5.4. NUMERICAL EXPERIMENTS

• Speedup comparison of Java 1-D array diagonal, jagged array diagonal, and Java

sparse array (JSA).

In the second computational model, our first numerical experiment compares the per-

formance of banded matrix-matrix multiplication using diagonal storage schemes for Java

jagged array versus 1-D diag array. 1-D array diag stores the diagonals by using Java native

arrays and Java jagged array stores the diagonals using Java array of arrays. In the sec-

ond numerical experiment, we present the performance comparison of 1-D array diagonal,

jagged array diagonal, and JSA, relative to CSR storage (CSR clocked the longest time

in our experiments) for banded matrix-matrix multiplication. JSA, in general, outperforms

CSR has also been observed in [25] which supports our approach of measuring performance

relative to CSR.

Model C: Parallel Benchmarking

• Speedup and Efficiency obtained by diagonal matrix-matrix multiplication method

for banded matrices.

• Speedup and Efficiency obtained by diagonal matrix-matrix multiplication method

for dense matrices.

In our final model, we present the performance metrics of the diagonal multiplication

method for banded matrices and dense matrices using the parallel performance metrics

discussed in Chapter 3.

5.4.1 Model A:

In our first numerical experiment of Model A, we present the execution time perfor-

mance measure for the standard multiplication method and diagonal multiplication method

on Ax. We experimented with float data types and the execution time was measured in

milliseconds.

53



5.4. NUMERICAL EXPERIMENTS

Figure 5.1: SMM versus DMM on Ax and ATx

As can be seen in Figure 5.1, for matrix-vector multiplication, SMM and DMM are

performing nearly the same. But in case of ATx, the performance of SMM has degraded

whereas the performance of DMM is nearly same as the performance of DMM on Ax. This

is because if we use diagonal storage format, then transpose of a matrix can be obtained

in-place without any extra storage and matrix elements are accessed in stride-1 pattern that

results in good cache performance. This can be done by switching the superdiagonals and

the subdiagonals of the matrix.

In our second numerical experiment of Model A, we compare the DIAS against the

V 1, V 5 and V 6 from Chapter 4 on AB and ATB. Execution time was measured in seconds

and float datatype was used in the experiments. As discussed in Chapter 4, out of the

six loop orderings, loop i− k− j and k− i− j (pure row oriented) produce the best timing

followed by i− j−k and j− i−k (partial row/column oriented). Pure column-oriented loop

orderings ( jki and k ji) happens to perform the worst because in this case as matrix entries

are accessed in the stride of n pattern which results in more cache misses than the other

versions. A Cache miss is a state where the data requested for processing by a component

54



5.4. NUMERICAL EXPERIMENTS

or application is not found in the cache memory. It causes execution delays by requiring the

program or application to fetch the data from other cache levels or the main memory [11].

Figure 5.2: The DIAS versus V 1i jk, V 5ki j and V 6 ik j on AB

From Figure 5.2, we can see that partial (row/column) oriented version (i− j− k) is

performing the worst. Our diagonal multiplication algorithm is performing nearly same the

pure row oriented versions (i− j− k and k− i− j) which implies that the diagonal multi-

plication algorithm is more efficient than the pure column-oriented and partial row/column

oriented version for C = AB. This is because accessing elements in a row-major order is

faster than accessing elements in a column-major order.

In Figure 5.3, as consistent with the result observed in Figure 5.2, partial row/column

oriented version(−i− j− k) is the least efficient while diagonal multiplication algorithm is

performing slightly better than pure row-oriented version (i− j− k and k− i− j). It is also

noticeable that execution times for matrix multiplications and transpose matrix multiplica-

tion are similar in case of diagonal multiplication method.

55



5.4. NUMERICAL EXPERIMENTS

Figure 5.3: The DIAS versus V 1i jk, V 5ki j and V 6 ik j on ATB

5.4.2 Model B:

In the first numerical experiment of Model B, we present the execution time perfor-

mance measure between Java jagged array versus 1-D diag array for banded matrix-matrix

multiplication using diagonal storage. Execution time was measured in seconds and double

datatype was used in the experiments.

56



5.4. NUMERICAL EXPERIMENTS

Figure 5.4: Banded matrix-matrix multiplication on DIAS

In Figure 5.4, we plot the time (in seconds) taken by matrix-matrix multiplication for

8000× 8000 real (double) matrices with varying bandwidths (kb = 501, . . . ,13001), until

JVM out-of-memory exception is encountered. As we can see in the figure, jagged array

implementation performs better than the 1-D array. This is a bit unexpected as 1-D arrays

are free of reference indirection costs associated with jagged arrays. The Same behavior is

also observed in a recent paper [16] on a benchmark application (3-D Poisson solver using

Fast Fourier Transform). On an open JVM system, the 1-D array storage is found to be

almost 2 times slower than the jagged array storage. Index calculation overhead must be

the reason for higher running time [2].

In our second numerical experiment of Model B, we computed speedup for three data

structures: Java 1-D array diagonal, jagged array diagonal, and Java sparse array (JSA) with

respect to Compressed Sparse Row (CSR) format. The speedup was computed using the

57



5.4. NUMERICAL EXPERIMENTS

following expression:

Speedup =
Te

TCSR
(5.1)

where Te denotes the execution time required by Java 1-D array diagonal, jagged array

diagonal, and Java sparse array (JSA) respectively and TCSR denotes the execution time re-

quired by Compressed Sparse Row (CSR) format. Execution time was measured in seconds

and double datatype was used in the experiments.

Figure 5.5: Speedup for 3 methods with respect to CRS for dimension 50000

In Figure 5.5 as can be seen, diagonal storage schemes perform the best (more than a

factor of 2x) followed by the JSA. Also jagged array diag performs better than 1-D array

diag and the similar result has been found in Figure 5.4.

5.4.3 Model C:

The following figures present the speedup and efficiency obtained by diagonal matrix

multiplication algorithm for banded matrix with n = 100000 and p=16 threads for varying

58



5.4. NUMERICAL EXPERIMENTS

bandwidth. We have experimented with different OpenMP schedules discussed in Chapter

3 for different chunk size. dynamic schedule with chunk size 15 gives the best result that

is presented here. We have used Equation 3.1 and Equation 3.2 from Chapter 3 to compute

the speedup and efficiency. Execution time was measured in seconds and float datatype

was used in the experiments.

Figure 5.6: Efficiency for chunk size 15 with matrix dimension 100000

59



5.4. NUMERICAL EXPERIMENTS

Figure 5.7: Speedup for chunk size 15 with matrix dimension 100000

In Figure 5.6 and Figure 5.7, we plot the efficiency and speedup while changing the

number of threads employed and keeping the problem size fixed. As we can see from the

graph, efficiency and speedup increase with the bandwidth increasing and they peak be-

tween 800 and 1600 after which the performance degrades. This is because with bandwidth

increasing more work becomes available to be parallelized and parallel overhead has more

chances to become amortized with the increasing number of threads [22].

Next, we plot the speedup and efficiency for dense matrices while changing the number

of threads employed along with the problem size. Figure 5.8 and Figure 5.9 respectively

present the speedup and efficiency for dense matrices:

60



5.4. NUMERICAL EXPERIMENTS

Figure 5.8: Speedup for dense matrices with varying input size

Figure 5.9: Efficiency for dense matrices with varying input size

In the above experiments, execution time was measured in seconds and float datatype

was used in the experiments. As can be seen in the above figures, if we increase the number

61



5.4. NUMERICAL EXPERIMENTS

of threads for a fixed problem size, speedup increases and efficiency decreases. But if we

increase the problem size while keeping the number of threads fixed, both speedup and

efficiency increase.

Based on the above discussion, we can come to the conclusion that the implemented

parallel program is scalable even though we are parallelizing the outer for-loop only.

Details of all the computational experiments in this chapter are presented in Appendix

A.

62



Chapter 6

Conclusion and Future Work

In this thesis, we have presented a novel data structure that stores the matrix elements

diagonally and matrix-matrix or matrix-vector multiplication algorithms that work by diag-

onals. This approach gives us an orientation independent framework. The storage scheme

provides stride-1 access to the matrix elements which a key factor in achieving high perfor-

mance. The transpose of a matrix requires no additional effort or data structure. Numerical

experiments in Chapter 5 demonstrate that the methods presented in this thesis can be easily

parallelized and show nice scalability.

Additionally, we have proposed two other implementations for the linear algebraic ker-

nel operations of matrix-matrix multiplication and the focus was on the enhancement of

locality reference using Java native arrays. This research approach is significant due to

Java’s lack of support for true rectangular arrays which makes it inconvenient for numerical

computing. The results from the numerical testing demonstrate that diagonally structured

storage and computation show great promise for efficient linear kernel operations using

Java.

The methods we have presented in this thesis can be extended to further research projects

such as GPU acceleration of diagonally structured linear algebra kernels and a block algo-

rithm for dense matrix-matrix multiplication by diagonals.

63



Bibliography

[1] Nuerrennisahan Nurgul Aimaiti. A computational study of sparse or structured matrix
operations, msc thesis, deaprtment of mathematics and computer science, university
of lethbridge, alberta, canada, 2018.

[2] Nuerrennisahan (Nurgul) Aimaiti, Shahadat Hossain, and Mohammad Sakib Mah-
mud. Computational experience with diagonally structured linear algebra in java.
Submitted in 2019.

[3] Anshul G. Ananth G. and Vipin K George K. Introduction to Parallel Computing.
Pearson Education Limited, USA, 2nd edition, 2016.

[4] Richard John Anthony. Chapter 4 - the resource view. In Systems Programming, pages
203 – 276. Morgan Kaufmann, Boston, 2016.

[5] Blaise Barney. Parallel Computing. Online:https://computing.llnl.gov/
tutorials/parallel_comp/y, (Accessed:2019-09-28).

[6] Ake Bj̈orck. 6. Direct Methods for Sparse Problems, pages 215–268. 1996.

[7] Guy E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97,
March 1996.

[8] Ronald F Boisvert, Jack J. Dongarra, Roldan Pozo, Karin A Remington, and
GW Stewart. Developing numerical libraries in java. Concurrency: Practice and
Experience, 10(11-13):1117–1129, 1998.

[9] Ronald F Boisvert, José Moreira, Michael Philippsen, and Roldan Pozo. Java and
numerical computing. Computing in Science & Engineering, 3(2):18, 2001.

[10] Stephen Boyd and Lieven Vandenberghe. Introduction to Applied Linear Algebra.
Cambridge University Press, New York, NY, USA, 2018.

[11] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Addison-Wesley Publishing Company, USA, 2nd edition, 2010.

[12] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Addison-Wesley Publishing Company, USA, 3rd edition, 2016.

[13] Aydin Bulu, John Gilbert, and Viral Shah. Implementing Sparse Matrices for Graph
Algorithms, pages 287–314. 01 2011.

[14] Carlos Carvalho. The gap between processor and memory speeds. 01 2002.

64



BIBLIOGRAPHY

[15] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. In-
troduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[16] Francisco Heron de Carvalho Junior and Cenez Araújo Rezende. Performance eval-
uation of virtual execution environments for intensive computing on usual represen-
tations of multidimensional arrays. Science of Computer Programming, 132:29–49,
2016.

[17] Jack Dongarra and Aad J van der Steen. High-performance computing systems: Status
and outlook. Acta Numerica, 21:379–474, 2012.

[18] Lori A. Freitag and James M. Ortega. The rscg algorithm on distributed memory
architectures. Technical report, Charlottesville, VA, USA, 1992.

[19] Geir Gundersen and Trond Steihaug. Data structures in java for matrix computations.
Concurrency and computation: Practice and Experience, 16(8):799–815, 2004.

[20] Gier Gundersen. The use of java arrays in matrix computation, candidatus scientarium
(master of science) thesis, 2002.

[21] Roger A Horn. Topics in Matrix Analysis. Cambridge University Press, New York,
NY, USA, 1986.

[22] Shahadat Hossain and Mohammad Sakib Mahmud. On computing with diagonally
structured matrices. In Proceedings of The Twenty Third IEEE High Performance
Extreme Computing Conference (HPEC 2019). IEEE, 2019.

[23] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-
Wesley Professional, 2nd edition, 2012.

[24] Daniel Leuck and Patrick Niemeyer. Learning Java. O’Reilly Media, Inc., 2013.

[25] Mikel Lujan, Anila Usman, Patrick Hardie, TL Freeman, and John R Gurd. Storage
formats for sparse matrices in java. In International Conference on Computational
Science, pages 364–371. Springer, 2005.

[26] Mikel Lujn, Anila Usman, Patrick Hardie, Len Freeman, and John Gurd. Storage
formats for sparse matrices in java. volume 3514, pages 364–371, 05 2005.

[27] Niel K. Madsen, Garry H. Rodrigue, and Jack I. Karush. Matrix multiplication by
diagonals on a vector/parallel processor. Information Processing Letters, 5(2):41 –
45, 1976.

[28] Memory layout of multi-dimensional arrays. Online:https://eli.
thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays,
(Accessed:2019-09-24).

[29] Carl D. Meyer, editor. Matrix Analysis and Applied Linear Algebra. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

65



BIBLIOGRAPHY

[30] José E Moreira, Samuel P Midkiff, and Manish Gupta. From flop to megaflops: Java
for technical computing. ACM Transactions on Programming Languages and Systems
(TOPLAS), 22(2):265–295, 2000.

[31] Jose E Moreira, Samuel P Midkiff, and Manish Gupta. Supporting multidimensional
arrays in java. Concurrency and Computation: Practice and Experience, 15(3-5):317–
340, 2003.

[32] Igor Pechtchanski and Vivek Sarkar. Immutability specification and its applications.
Concurrency and Computation: Practice and Experience, 17(5-6):639–662, 2005.

[33] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[34] Thomas Stricker and T Cross. Global address space, non-uniform bandwidth: A
memory system performance characterization of parallel systems. In Proceedings
Third International Symposium on High-Performance Computer Architecture, pages
168–179. IEEE, 1997.

[35] A. Tsao and T. Turnbull. A comparison of algorithms for banded matrix multiplica-
tion. Technical report, Supercomputing Research Centre, 1993.

[36] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind
Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, et al. Tita-
nium: a high-performance java dialect. Concurrency and Computation: Practice and
Experience, 10(11-13):825–836, 1998.

66



Appendix A

Tables of Numerical Experiments

In this appendix, we present the numerical details of computational results associated with
Chapter 4 and Chapter 5. Execution time was measured in seconds and milliseconds. Ma-
trix dimension was started at a predetermined number and was increased gradually until
memory exception occurred. Speedup and Efficiency for parallel implementation of the
algorithms was computed respectively using equation (3.1) and equation (3.2) in Chapter 3
and the number of threads deployed for parallel implementation varies from 2 to 16. SMM
stands for standard multiplication method and DMM stands for diagonal multiplication
method as referred in Chapter 4. V1 refers to the partial row/column-oriented (i− j− k) ,
V5 (k− i− j) and V6 (i− k− j) refers to the pure row-oriented versions of matrix-matrix
multiplication already discussed in Chapter 4.

A.1 Performance of Dense Matrix-Vector Multiplication

Table A.1: Ax and ATx on SMM versus DMM

Matrix Dimension (n)
Execution Time (ms)

Ax (SMM) Ax(DMM) ATx (SMM) ATx (DMM)
9000 188 218 875 250

10000 250 281 1090 281
11000 313 344 1312 375
12000 375 437 1593 406
13000 438 500 1906 500
14000 531 563 2125 594
15000 563 656 2562 688
16000 656 750 4750 750
17000 750 813 3625 844
18000 843 938 4090 938

Table A.1 represents the numerical details for matrix-vector multiplication using SMM
and DMM. Execution time was measured in milliseconds (ms) and matrix dimension varies

67



A.3. PERFORMANCE MEASURE OF DENSE MATRIX-MATRIX MULTIPLICATION
ATB

from ( 9000, . . . ,18000).

A.2 Performance Measure of Dense Matrix-Matrix Multiplication on
AB

Table A.2: V1 vs V5 vs V6 vs DIAS for AB

Matrix Dimension (n)
Execution Time (s)

AB (ijk) AB(ikj) AB(kij) AB (DMM)
1000 2.38 1.5 1.5 1.63
2000 52.38 12.06 12.39 13.25
3000 202.25 40.88 41.56 42.87
4000 493.63 97 97.43 99.01
5000 1113.96 190.88 193.50 193
6000 1970 325.5 329.06 333.93

Table A.2 represents the numerical details for dense matrix-matrix multiplication (AB)
using V1,V5,V6, and DMM. Execution time was measured in seconds and matrix dimen-
sion varies from ( 1000, . . . ,6000).

A.3 Performance Measure of Dense Matrix-Matrix Multiplication ATB

Table A.3: V1 vs V5 vs V6 vs DIAS on ATB

Matrix Dimension (n)
Execution Time (s)

ATB (ijk) ATB(ikj) ATB(kij) ATB (DMM)
1000 2.38 1.5 1.5 1.63
2000 52.38 12.06 12.39 13.25
3000 202.25 40.88 41.56 42.87
4000 493.63 97 97.43 99.01
5000 1113.96 190.88 193.50 193
6000 1970 325.5 329.06 333.93

Table A.3 represents the numerical details for ATB using V1,V5,V6, and DMM. Exe-
cution time was measured in seconds and matrix dimension varies from ( 1000, . . . ,6000).

68



A.4. PERFORMANCE OF BANDED MATRIX-MATRIX MULTIPLICATION USING
DIAGONAL STORAGE ON JAVA JAGGED ARRAY AND JAVA 1-D ARRAY

A.4 Performance of Banded Matrix-matrix Multiplication using Di-
agonal Storage on Java Jagged Array and Java 1-D array

Table A.4: 1-D array diag vs Jagged array diag for dimension 8000

Bandwidth
Execution Time (s)

1-D Array Diag Jagged Array Diag
501 2.89 2.30

1001 11.20 8.94
2001 41.60 29.69
3001 90.83 72.47
4001 149.62 119.92
5001 222.83 153.17
6001 299.93 207.83
7001 394.16 298.42
8001 461.954 362.03
9001 555.58 386.41

10001 601.28 417.31
11001 659.72 456.27
12001 703.32 491.35
13001 743.86 601.57
14001 Out of Memory 631.09

In Table A.4, Matrix elements were stored using Java native arrays and Java jagged
arrays. Matrix dimension in this above experiment was set at 8000 × 8000 and bandwidth
varies from (kb = 501, . . . ,13001), until JVM out-of-memory exception is encountered.
Execution time was measured in seconds.

69



A.6. SPEEDUP OBTAINED BY DIAGONAL MATRIX-MATRIX MULTIPLICATION
METHOD FOR BANDED MATRICES

A.5 Speedup Comparison of Java 1-D Array Diagonal, Jagged Array
Diagonal and Java Sparse Array relative to CRS

Table A.5: Speedup with respect to CRS for dimension 50000 with increasing bandwidth

Bandwidth 1-D Array Diag Jagged Array Diag JSA

201 1.52 1.78 1.07
401 1.54 1.80 1.06
601 1.52 1.86 1.08
801 1.51 1.84 1.06

1001 1.57 2.17 1.06
1201 1.63 1.99 1.09

Table A.5 represents the performance comparison among three data structures that are
Java 1-D array diag, Java jagged array diag and Java sparse array with respect to CRS.
The matrix size used in the above experiment was 50000 × 50000 and the bandwidth was
increased in a step of 200.

A.6 Speedup obtained by diagonal matrix-matrix multiplication method
for banded matrices

70



A.6. SPEEDUP OBTAINED BY DIAGONAL MATRIX-MATRIX MULTIPLICATION
METHOD FOR BANDED MATRICES

Table A.6: Speedup data for matrix dimension 100000 with different chunk size

B is denoted as bandwidth

Dimension Chunk size Number of Threads
Speedup

B=101 B= 201 B= 801

100000 15

2 1.73 1.74 1.83
4 3.13 3.50 3.52
6 3.13 3.91 4.70
8 3.19 4.50 5.92

10 3.19 4.45 7.12
12 3.19 4.50 8.29
14 2.68 4.47 9.39
16 3.30 4.50 10.00

100000 30

2 1.81 1.80 1.84
4 1.78 3.26 3.62
6 1.79 3.13 4.64
8 1.78 3.16 5.72

10 1.78 2.84 6.78
12 1.82 2.97 8.21
14 1.78 2.80 9.22
16 1.80 2.82 9.27

100000 60

2 1.04 1.67 1.81
4 1.08 1.68 3.38
6 1.12 1.68 4.63
8 1.13 1.68 5.28

10 1.04 1.68 5.36
12 1.10 1.68 5.31
14 1.05 1.65 5.30
16 1.03 1.67 5.33

71



A.7. EFFICIENCY OBTAINED BY DIAGONAL MATRIX-MATRIX
MULTIPLICATION METHOD FOR BANDED MATRICES

We experimented with matrix dimension 100000 with different chunk sizes while vary-
ing bandwidth from 101 to 801. Number of threads was increased with a step of 2. Chunk
size 15 yields the best result that is what we presented in Chapter 5.

A.7 Efficiency obtained by diagonal matrix-matrix multiplication method
for banded matrices

Table A.7: Efficiency data for matrix dimension 100000 with different chunk size

B is denoted as bandwidth

Dimension Chunk size Number of Threads
Efficiency

B=101 B= 201 B= 801

100000 15

2 0.84 0.89 0.91
4 0.78 0.88 0.88
6 0.52 0.65 0.78
8 0.40 0.56 0.74

10 0.32 0.44 0.71
12 0.26 0.38 0.69
14 0.19 0.32 0.67
16 0.21 0.28 0.63

100000 30

2 0.90 0.90 0.92
4 0.45 0.82 0.90
6 0.30 0.52 0.77
8 0.22 0.39 0.72

10 0.18 0.31 0.68
12 0.15 0.25 0.68
14 0.13 0.23 0.65
16 0.11 0.18 0.58

100000 60

2 0.52 0.84 0.91
4 0.27 0.42 0.85
6 0.19 0.28 0.77
8 0.13 0.21 0.66

10 0.10 0.17 0.54
12 0.09 0.12 0.44
14 0.07 0.10 0.38
16 0.06 0.10 0.33

72



A.9. EFFICIENCY OBTAINED BY DIAGONAL MATRIX-MATRIX
MULTIPLICATION METHOD FOR DENSE MATRICES

We experimented with matrix dimension 100000 with different chunk sizes while vary-
ing bandwidth from 101 to 801. Number of threads was increased with a step of 2. Chunk
size 15 yields the best result that is what we presented in Chapter 5.

A.8 Speedup obtained by diagonal matrix-matrix multiplication method
for dense matrices

Table A.8: Speedup data for various matrix sizes

Number of Threads
Dimension

1024 2048 4096 8192
2 0.67 0.69 0.70 0.70
4 0.88 0.91 0.94 0.94
6 1.44 1.52 1.57 1.59
8 2.32 2.55 2.68 2.76

16 2.76 4.31 4.55 4.8

Table A.8 represents the parallel speedup obtained by diagonal multiplication method
for dense matrices.

A.9 Efficiency obtained by diagonal matrix-matrix multiplication method
for dense matrices

Table A.9: Efficiency data for various matrix sizes

Number of Threads
Dimension

1024 2048 4096 8192
2 0.67 0.69 0.70 0.70
4 0.44 0.46 0.47 0.48
6 0.36 0.38 0.39 0.40
8 0.28 0.32 0.34 0.34

16 0.17 0.27 0.28 0.25

Table A.9 represents the parallel efficiency obtained by diagonal multiplication method
for dense matrices.

73


