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ABSTRACT

This thesis investigas theecologyof wetlandsand associated classification
prairie and boreal environmeragAlberta, Canadausing remote sensintgchnology to
enhance classification of wetlanidsthe provinceObjectives of the thesis are divided
into two case studies, 1) examining hsatellite borneSynthetic Aperture Radar (SAR),
optical (RapidEye & SPOTgan be used to evaluate surface waterds in a prairie
pothole environmentShepard Sloughgnd 2) investigating a data fusion methodology
combining SAR, optical andidar datato characterize wetland vegetation and surface
water attributes in a boreal environment (UtikuRegional Study Aga (URSA).

Surface water extent and hydroperiod products were derived from SAR data, and
validated using optical imagery with high accuracies47%o overall)or both case
studiesHigh resolution LidaDigital Elevation ModelsPEM), Digital Surface Modls
(DSM), andCanopy Height Mode|lCHM) products provided the means for data fusmn
extractriparian vegetation communities and surface wateducingmodelaccuracies of
(R? 0.90)for URSA, and RMSE of 0.2m to 0.7m at Shepard Slough when compared to
field and optical validation daténtegration of Alberta and Canadian wetland
classifications systemssed to classify and determine economic value of wetligwols

the methodologproducedhematic mapselevant for policy and decision makéos

potental wetland monitoring and policy development
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1.00verview of Wetlands andWetland Regulation
1.1Introduction

Wetlands are areas of land that hold water, either temporarily or permanently, and
contain waterlogged and altered soils with water tolerant (hydrophytic) vegetation
adapted for life in saturated soil conditions (Government of Alberta 2013). These areas
play a crucial role in replenishing and storing groundwdigrctioning as natural water
reservoirsthat prevent flooding and reduce erosion, as well as filtering and purifying
water. Wetlands, especially in boreal regions, also store substantial anfozartson
and methane, and have exceptional biodiversity that provides habitat for roughly 1/3 of
Canadads species at risk (Stewart & Kantru
Government of Alberta 2013)hereforewetland ecosystenmmovide many ecosysm
services and have markedvironmental, social, and economic impacts.

Wet |l ands have become one of the worl dos
continue to decline in quantity and health due to the effects of climate change,
anthropogenic activities, art@nd cover change (Mitsch & GosseliBR0Q Daily 1997).

The global extent of wetlandsr the Wetland Extent Trends (WET) indestimats

wetland haveleclined between 641% in the 2 century (30% between 1972008),

and continue to rapidlgegrade ad declinein area Dixon et al. 2015 Therefore,

directly affecting wet area extents, riparian extent, hydrological regimes, biodiversity, and
the functioning of wetland ecosystems (DUC 2011, Russi et al. 2013). Costanza et al.
(2014) analyzed the globalonetary loss associated with degrading wetland ecosystem
services and area from 192011. Over thisime, monetary losses due to changes in
swamps and floodplains were estimated to be US$ 2.7 trillion in ecosystem services per

year, while changes in nsdres and mangroves were estimated at US$7.2 trillion per year.
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Even in water rich countries such as Canada, which has 1.2 million square
kil ometers of wet !l an (eGrdokebdlo20bFeclindhaed wor | d 6 s
degradation of these ecosystemas become a grave concern. In the province of Alberta,
approximately 70% of wetlands found in the settled areas of the province no longer exist,
mainly due to agricultural drainage and rapid urban development (Government of Alberta
2013, de Groot et al023). In less populated boreal regions, warmer temperatures and
reduced precipitation trends are causing drying of wetland surface and groundwater,
resulting in changes to hydrology and vegetation (e.g., Roulet 2000; Sto\2 @24
Klein et al. 2005; Rirdan et al. 2006; Smith et al. 2014). While policy makers have
sufficient scientific information to understand the need to take steps toward conservation,
the global extent of wetlands is immense. One of the technologies that can provide cost
and time eféctive solutions to mitigate these problems is remote sensing. Remote sensing
can be defined as the collection of data about an object from a distance (Jensen 2007).
This includes mechanical devices such as cameras and laser sensors attached to aircraft
ard satellites.

Satellite and airborne remote sensing of surface water allows for large scale
monitoring of wetland environments, especially isolated Northern wetland environments,
by detecting and measuring spatial variations in inundation areas totesttage or
discharge (eg. Smith et al. 19%8etroniro et al. 199%hang et al2004, Brackenridge et

al. 2005, Brackenridge et al. 2007).



1.2Wetlandsin Alberta

Wetlands come in many sizes and forms, generally developing where the water
table is abr near the surface allowing water to settle on the land surface promoting
development of soil conditions for hydrophytic vegetation (National Wetlands Working
Group 1998). Canada has over 150 million hectares of wetlands, occupying
approximately 14% ofhe land area of Canada, which is estimated to be 24% of the
wetlands in the world (Government of Canada 1991, Pole Star Geomatics Inc. 1996,
Environment Canada 2016flostCanadads wetl ands are found |
where rates of boreal forest digbancan 2008were found to be approximately 78%,
andamong the highest in the world (Komers and Stanojevic 28b3gal wetlands are
which are predominantly comprsef shallow ponds, treed fens and bogs on poorly
drained organic soilVith increasig disturbance and changing hydrological patterns,
accurate, high resolution classification of these boreal wetlands is required for
understanding rates of boreal wetland change, many of which have yet to be accurately
identified or mappedherefore theres a need to characterize baseline wetland areas for
the boreal regiorMany wetlands, especially in boreal regipegapotranspiration may
exceed precipitation, are sensitive to warming and drying trends that affect the hydrology
of a wetland and subseqily the vegetation successive cycles and diversity (Devito et
al. 2005, Petrone et al. 200Drying trends in many northern regions of Canada and the
USA have been observed over the pasty@@rs, where changes in ground and surface
water hydrology hee beenobservedthereby increasingegetation successigKettridge
et al. 2013)n some years and alterimgetland growth patternEStow et al. 2004,

Riordano et al. 2006, Petrone et al. 2007, Setitél. 2014.



The prairie pothole region of We€kentralNorth America encompasses an area
approximately 715,000kfrextending from Central Alberta, Canada south to the state of
lowa, USA. Prairie potholes are a result of glacial retreat during the last ice age,
approximately 12,000 years ago (Winter, 1989). ldvets within depressions created by
the glacial retreat are highly variable in size and permanency, but are generally
characterised as having less than 1m water depth at peak valuenanthropgenic
pressures of oil and gas industry, urban expansioncaadreater degree, highly
productive and diverse agriculture, all hydrologically affect the wetlands situated in the
prairie pothole region of Alberta. Many of the wetlands in the prairie pothole region are
often viewed as isolated (or closed) basira tnly connect within a hydrological system
during wet conditions, where the depression reachesfiodrdonditions and begins to
spill into adjacent depressions. This is described by Winter and Lal20088),, as the
Afill and spi | itmonitoeng df aatlandydrologiBal nappmndgne
large temporal and spatial scalesing remote sensing techniques has proven to be
challenging in the prairie pothole region, particuladasonadnd often ephemeral
wetlands.

As a wetland basin fills witepring snowmelor precipitation runoffit promotes
growth of dormant vegetation. Flora of a prairie wetland is a function of its water regime
and salinity where water depth and duration determines distribution and composition of
species (Kantrud et d989). Wetlands which are only flooded briefly in the spring are
dominated by grasses, sedges and forbs and characterised as seasonal or temporary
wetlands. In wetlantasinsdeep enough to have standing water throughout the entire
year, and through droughonditions, the central zone will be dominated by mid to tall

emergent species. Within a wetland zone, it may take a year or more to adjust to changing

4



environmental conditions or physical disturbance, which results in abnormal zonation
patterns that anmost evident after changes in water level (Kantrud et al. 1989). Many of
the wetlands in the prairie pothole region of Alberta are ephemeral, meaning they last for
only a short period of time, and are found in terrain affected by the water table nesar, at,
above the ground surface for a short period. As a result, ephemeral prairie ponds and
wetlands can be difficult to properly classify compared to wetlandsiteatore

permanent due to the dynamic vegetation cycles and soil conditions caused byt frequen
water stage changes.

A typical wetland environment can be divided into five vegetation zones based on
the topography in and surrounding the wetl@fidurel.1). These zones include upland,
shrubland, wet meadow, emergent, and submergent, each tdistiggt vegetation
communitieswhich are a function of the ground water levidlerefore vegetation zones
and species composition in many wetland environments are subject to change seasonally

and annually, whiclelates tahe type (classification) of @tland.

Upland: Shrub-land: Wet Meadow: Emergent: Sub-mergent:
Forested woody vegetation Low, woody vegetation Sedges, rushes Vegetation emerging Submerged and
including cottonwood such as willows and grasses from waters surface floating aquatic
and birch trees such as cattail vegetation

5 and bulrush

e b
%ﬂ:l 1\
2\

Ground-Water Level

Figure 1.1. Typical vegetation zones of a wetland in Alberta showing the transition from
upland woody vegetation to hydrophytic submergent vegetation based on Stewart and
Kantrud (1971, 1989) wetland descriptions.
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1.3Wetlands andClassification in Alberta, Canada

The province of Alberta, located in Western Canada, has a population of over 4
million peopleand an area of approximately 661,000 square kilometers. Roughly 20 per
cent of Albertads sur f ac éan®0 peraceniofwhichcakee r e d
peatlands (Government of Alberta 2013, 2014). Natural regions in the province include:
grassland, parkland, boreal fordspthills, Rocky Mountain, and Canadian shield
ecosystems. Each region has distinct types of wetlaatisdh be divided into five broad
types: bogs, fens, marshes, swamps, and-spatlow wateir mostof which hare unique
biological characteristics and dynamic seasonal water eXtetetwart & Kantrud 1971,
National Wetlands Working Groul®997, Governmerdf Alberta 2015)Prior to June
2015, wetland classification and function was largely based on Stewart and Kantrud
(1971), which describes in detail different types of prairie pothole wetlands, specifically
vegetation, as indicators of wetland type andr@arency. The Stewart and Kantrud
classification system was used widely thro
oOwhited (private) Il ands to determine what
preservation when industrial and urlievelopmets impactwetlands Wetland policy
and classification in Alberta was modified in June 2015 to incorporate additional
literature This new classificatiosystem considers wider varieties of wetland forms that
includesthe importancef vegetation structur@nd water permanence on wetland
biodiversity, hydrology, and biological processes. As a result, Stewart and Kantrud
(1971), Ducks Unlimited (Smith et al. 1997), Alberta Wetland Inventory (AWI) (Halsey
et al. 20@), the feld ecosites guides to Alberta (@@ngham 1996; Beckingham and

Archibald 1996), and the Canadian Wetland Classification System (CWCS, National



Wetlands Working Group 1997), have all been incorporated into the new Alberta
Wetland Classification System (AWQ915.

There are five broad class of wetlands in the AWCS; marshes, swamps, bogs,
fens (bog and fen are forms of peatland), and shallow open waitguse(1.2). These
five different types (classes) are divided into form (vegetation), salinity, water
permanence (relating to classesad#®d in Stewart and Kantrud 1971, not applicable to

Fen or Bog), and alkalinity (peatlands on{yable1.1).

Marsh Wetland Swamp

Peatland (Bog & Fen) Shallow OperAWater Wetland

Figure 1.2. Wetland classes found throughout Alberta in prairie, nwatl, and
boreal environments. a) depicting a typical marsh environment with flooded vegetation
and open water; b) swamp with woody vegetation and distinct riparian zone transitions; c)
peatland environment in northern Canadénwumerous bogs; d) largalkaline shallow
open water wetland with abrupt vegetation boundaries and dynamic water extent changes.
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Table 1.1. The five types of wetlands found in Alberta with corresponding characteristics
and associated Stewart and Kantrud (1971) permanency dassififor Marsh,
ShallowOpen Water, and Swamp wetlands.

Wetland Vegetation Form S&K (1971) Water Salinity Acidity -Alkalinity
Class Permanence
Bog 1-Wooded, - Freshwater Acidic
Coniferous
2-Shrubby
3-Graminoid.
Fen 1-Wooded, - Freshwater to 1 -poor (pH < 5.5)
coniferous slightly 2-moderate rict{pH
2-Shrubby brackish 5.57)
3-Gramhoid 3-extreme rich(pH
>7.0)
Marsh Graminoid Temporary () Freshwater to -
Seasonal (Ill) brackish
Semipermanent (1V)
Swamp  1-wooded Temporary () 1-Freshwater -
coniferous Seasonal (Ill) to slightly
2-wooded, brackish
mixedwood 2-moderately
3-woode, brackish to
deciduous subsaline
4-shrubby
Shallow  Submergd and/or Seasonal (llI) 1-Freshwater -
Open floating aquatic Semipermanent (1V) to moderately
Water vegetation, or bare Permanent (V) brackish
Intermitent (VI, Saline) 2-
combinations
of subsaline,
freshwater and
slightly
brackish

In Alberta mashesare the dominant wetland typEhe dominant plant community

zone in marshes is determined by ptent community foad in the deepest portion of a

wetland(Stewart & Kantrud 1971)herefore marsh and shallow open water wetlands

may not exhibit the wetland type every year due to varying weather or anthropogenic

drainageconditions. As such, data from numerous monthgars must be used in the

classification of these wetland types (Government of Alberta 2015). Marshes are divided

into seven different types based on vegetation z(figarel.3). Each of these

vegetation zones are subject to highly variable water levelgherefore vegetation
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growth and succession. Fen zones are occasionally found along the margins of brackish,
saline ponds and lakes on gently sloped terrain where ground water is on or near the
ground surface, represented by a normal emergent vegephdse and an open water

phase that gradually merges with other vegetation zones (Stewart & Kantrud 1971).
These alkali fen zones can also be found in conjunction with temporary and seasonal
wetlands that experience frequent agricultural tilling or prgéohdrought conditions.

Rich fens are alkali, whereas poor fens are acidic and generally seen most commonly in

boreal regions.

Class | Class 11 Class 1 Class IV
Ephemeral Temporary Seasonal Semi-permanent
Pond Pond Pond or Lake Pond or Lake

Low-prairie

Shallow-
marsh
zone

Deep-marsh

Zone zone

$/ Wet-meadow Zone
Shallow-marsh zone

Wet-meadow Zone

Low-prairie zone o
Low-prairie zone

Low-prairie zone

ClassV Class VI Class VIl
Permanent Alkali Fen
Pond or Lake Pond or Lake Pond

Permanent
open-water
zone

Intermittent
Alkali Zone

Shallow-marsh zone
Wet-meadow Zone

Deep-marsh zone

Shallow-marsh zone
Wet-meadow Zone Low-prairie zone
Low-prairie zone

Wet-meadow Zone
Low-prairie zone

Figure 1.3. Marsh wetland classifications and spatial relation of associated wetland
riparian zones of prairie pothole wetlandslapted from Stewart & Kantrud 1971.

While there are seven marsh wetland classes, the most common marsh
environments in the prairie pothole region of Alberta are temporary, seasonal, semi
permanent and permaneiitiplel.2). Vegetation and soil charaatgics are generally

the best wetland class indicators, but the hydroperiod of these four marsh wetland types is
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quite indicative of how permanent the wetland is both seasonally and anaudlly,
dictates vegetation vigor and biodiversity (Stewart & Kahtt@71, 1989, Government of
Alberta 2015)

Table 1.2. Four commonly found marsh environments based on the Stewart and Kantrud
(1971) wetland classification system, with corresponding hydroperiod and vegetation

characteristics.
Wetland Type Hydroperiod Plant Community Zone
(S&K)
Temporary () Surface water present for shor Wet meadow
period of time after snowmelt o
heavy rainfall
Seasonal (Ill) Surface water present througho Shallow wetland
growing season, typically dry by
end of summer
Semipermanent Surface water is present for mo Deep wetland
(V) or all of the year, except in
drought conditions
Permanent (V) Surface water present througho Open water
the year

Climatic cycles affecting water level fluctuation are typically accompanied by
changes in vegetatioiG@latowitsch et al. 1996Basing wetland classification on a single
visit, or on information collected from a single year or time of year, provides only a single
climatic snapshot of a wetland, which fails to reflect its dynamicgases (Gvernment
of Alberta2015). Perhaps one of the most important aspects of wetland classification is
understanding and anticipating how wetlands change seasonally, especially in the
growing season, which refleatsost ofthe vegetation growth and dgmic water level
rise. One of the more quantitative methods for understanding wetland change and the
impacts of changing climate and disturbance on wetlands is to monitor surface water
extents where vegetation growth in each zone is related to surfaee @sent during the
growing season.

The length of growing season is measurefiast freedays starting from the

estimated seeding date (10 days after the average daily temperature is above 5°C), until
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fall frost (minimum daily temperature is 0°C) ortilDctober 3%, whichever comes
first. This provides a measure of the period during which plant growth can occur
uninterrupted by frost and provides a way to compare growing conditions within the
province (Chetner 2003

Quantifying changes in wetlandasystems can be difficult and logistically
complex, but is necessary to monitor wetland change and make informed conservation
decisiongChasmer et al. 2®). Globally, changes in the surfae@ater extent over the
past 15 to 30 years are highly variableoauign regions, including instancegshrinkage
and expansion observed within a singkershed (Prigent et al. 2012, Pekedle2016).
Persistence of surface water i$emted by both human and climatactors (Vorosmarty
et al. 2000), whermostcontinental regions show a net gain in surface water attributed to
reservoir construction, whereas net loss is more geographically concentrated to North
America, the Middle East, and Central Asia. Ldagn climate studies shofrequency
and severity oflroughtconditions, where climate change is implicated (Lutz et al. 2014),
resulting in a net loss of surface water being observed in certain regions (MacDonald et
al. 2010, Pekel et al. 2016).

Efficient environmentainapping ananonitoring of wetlandand wetlad
hydrologyon large temporal and spatial ssalsing remote sensing techniques has
proven challengingn the prairie pothole region, particuladye tothe dynamic wet area
extent of the shallow and often ephemeral wetlahberefore, there is a neegldevelop
remote sensing methods to quantify wetland physical and functional changes on broad
temporal and spatial scales to appropriately identify wetland types (classify), and monitor

open water and riparian changes to preserve wetland environments
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1.4ThesisObjectives

The main objectives of this reseamteto examine howidar, optical and radar
data can be combined usidgta fusiortechniquego assist in the production aigh
resolution wetland classification modelsd geospatial layems Alberta, Canada.
The workis dividedalongtwo case study objectives:
1) Examire use ofC-band HH) SARintensity decibel thresholding for surface water
extractionin a prairie pothole environmeng develop a time seridsr marshand
shallowopen water wedndhydroperiod classificatiarBurface water extent and
permanence is evaluatedaccordance with the current Alberta Wetland Classification
System (2015).
2) Developinga decisiortree data fusion wetlandassification methodology fdioreal
wetlandsbased on hydroperiod and associated riparian vegetation community attributes
using multitemporal, multimode data from Lidar (Optech Titan), Synthetic Aperture
Radar (RADARSAT2, single & quad polarisation), and optical (SPOT) sensors with
similar acquidion datesWetland classificatiofollows a combination ofriteria
according to the Alberta Wetland Classification System, and the Canadian Wetland

Classification System
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1.5Thesis Organisation

This thesis is divided intbve chapters. Chaptéwo discusses technical details of
Optical, Light Detection and Ranging (Lidar), and Synthetic Aperture Radar (SAR)
remote sensing sensors relevant to research at both Shepard Slough and Utikuma Region
Study Area (URSA) study sited.review of literature incluohg image filtering,
classification and surface water extraction is also discussed. Ctraptpresents
threshold water extraction of prairie pothole marsh wetlands at Shepard Slough using
SAR time series to examine surface water permanence and weyldnaogperiods.
Chapterfour presents decisietree driven idar’SAR/opticaldata fusion for boreal
wetland classification at URSA. Chapfefe concludes the thesis, summarising the major
findings and discussing the relevance of the research to curreahaetblicy in Alberta,
providing potential directions for future resear€he study examines two end member

regions that represent a large portion of wetlands in Alberta.
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2.0RemoteSensingTechnical Details andWetland Applications
2.1 Remote Sensing bWetlands

Remote sensing is defined as the acquisition of data about an object without
touching it usingimagingsensors from a distance (Jensen30Remote sensing is a
valuable technology that can provide cost and-&ffiective solutions to mitigatide
logistical spatialand temporal difficulties associated wittonitoringof largeareas
Wetlands are among the most difficult ecosystenthtracterizaising remote sensing
data due to their high spatial heterogeneity and temporal variability (\Aticldt al.
2004, Wright & Gallant 2007, Bourgedthavez et al. 2009, Klemas 2011). Sizes and
shapes of wetlands are highly variableddepend on numerous environmental and
climatic factors. Diversity of plant species, growth rates and physical structure (e
open water, submerged, floating, emergent, woody shrubs, and fares3o highly
spatiallyvariable.

Monitoring and inventory of wetland using satellite remote sensing has many
advantages and is distinctly advantageous due to repeat coveragétizepthiait can
monitor wetlands sesonally or yearly. In additiomemote sensing is cheaper than field
methods, covers very large areas and may (in the case of Landsat, Advanced Very High
Resolution Radiometer (AVHRR) and Moderate Resolution Imagingt®padiometer
(MODIS), and air photoshave a longermrecord for which changes and letegm trends in
wetlands canRemote sensing technologies can supply the following information: (1)
extent of wetlands, (2) identify the wetland ecosystem type h@pcterise the general
wetland land cover type, (4) identify satergent and emergent wetlands, and (5)

hydrological regimealetails using multiple spectral analysis of remote sensor data.
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The use of high spatial resolution digital image data in theititad®on of
riparian structure as part of terrestrial ecosystem monitoring, should be actively pursued,
with further research focused on advancing segmentation and-obgtied
classification approaches to improve classification accuracies (JohamseP0€ex7,

Moffet and Gorelick 2013\Wetland classification can be difficult because of confusion

with other wetland classes in the same spatial area, as well as spectral confusion with
other land cover classes among different types of wetlands -$fatiral data shows

only marginally improved classification of wetland when defining broad classes of
wetlands, treed wetlands and upland forests. However-teatporal data improves the
classification of wetlands in localised biodiversity as a spectrabnssp especially in
combination with supplementary data such as soil data, ecological data, and elevation and
topography data derived from ground validatiodar data (Ozesmi and Bauer 2002;
Chasmer et al. 2014).

Water levelsand extentslso fluctuate dily, seasonally, and annually, which
confounds spectral classification. Furthermore, many wetland plant species are
spectrally similar to one another, which makes separation of unique signatures difficult
(Wright & Gallant 2007, BourgeaGhavez 2009)Larger scale, accurate monitoring
and classification of wetland type is fundamental for understanding and quantifying the
changing wetland environments in order to make informed political decisions regarding
wetland management, preservation and inventoryp®ater et al. 2014, Chasmer et al.
2016). Satellites are therefore the most commonly used remote sensing platform to map

large wetland ecosysteraad(Ozesmi & Bauer 2002).
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2.2Remote Sensing for Water Mask Generation

Remote sensing provides methodsgtantify changes to these areas over broad
spatial areas within the last century, where changes can be tied to ecosystem function
usingin situvalidation methods. Therefore, there is a need to develop remote sensing
methods to quantify wetland physicaldafiunctional changes on broad temporal and
spatial scales to appropriately identify wetland types (classify), and monitor open water
and riparian changee preserve wetland environments. Water resource assessments,
flooding and wetlandbenefit from accuate water mask mapping and monitorgaj
characterizing wetland conditioAccuratedelineation and classification of open water
wetland and watercourse riparian areas is an important aspect of remote sensing
applications in hydrologye@.Marsh et al. 209, Brisco et al. 2011Brisco 2015Crasto
et al 2015 ). Water resources monitoring, ecological studies, and infrastructure
management are greatly enhanced by remote sensing applications with spatial and
temporal data such &sdar (Light detecting antanging), SAR $yntheticAperture
Radar), optical (SPOT, LANDSAT, RapidEye), all of which can be used for water
masking (Ozesmi & Bauer 2008awaya et al. 200Brisco et al. 2009Ferguson et al.

2009 Maxa & Bolstad 2009, Crasto et al. 201Bgyond welands, water masks are also
important for understanding water resources, ecology, and risk/disaster management, all
of which benefit from accurate, spatial and temporal water area surface maps.

Direct mapping of surface watelevationand area changes Wwitadarand Lidar
sensors heae also been examined (eg. Alsdorf 2000, Alsdorf et al. 2003, Frappart et al.
2005, Frappart et al. 2006, White et al. 2014, Brisco et al. 2015, 2017), suggesting that
both water extent, and vegetation associated with floodargpe accurately described.

Hodgson et al. (1987) also indicate that wetlands are best defined using remote sensing
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imagery acquired in the spring, when the water table is high and shows the most contrast
between land and water.

The best wavelength forstiriminationof water from land is in the nearfrared
and middleinfrared regions at wavelengths between-2800nm(Jensen 200). Water
bodies will appear dark because neatlythe incident radiant flux is absorbed by the
water, in contrast to land,hich appears bright due to reflectifvom vegetation and bare
soil in these wavelengthsedsen 200). The automatic extraction of waterbodies from
satellite images is well document€dne such methodor exampleis the Normalized
Difference Water IndexNDWI) used to extract water basedtbe ratio of the difference
between the green and the NIR badnsded bythe sum of those two bands (Mcfeeters,
1996).

Water masks are geographical layers that can be derived from many types of
remote sensing dathat indicate areas of water versus land. Different approaches are
taken when extracting water masks, which is dependent on the type of sensor being used.
Optical satellitebased open water classification is an established techrégueayaet al.

2003, and, under appropriate conditions, could provide an excellent comparative dataset
for Lidar-based approaches bymbining spectral, textural, and topographic information
that has increased the classification accuracy for the majority vegetation struesgesc
(Johansen et a2007). Optical passive methods rely on reflectance over water,
predominantly the absorption of multispectral wavelengths, whereas radaidandely

on directional scattering that occurs away from the sensor, or from directapecul
reflectance back to the sensor. Surface texture properties are also important when
extracting water masks, as the surface properties interact directly with emitted energy of

the sensors. Therefore, water can be identified by its spectral reflectapteat data,
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whereas the amount of reflectance from a body of water is usediforor radar data
water mask extraction (Brisco et al. 20Chasmer et al. 201€rasto et al2015). While
both methods differ, and are reliant on sensor specific infwmahe combination of
water masks from the different sensors can be capitalised upon in datgifusigration

of multiple types and sources of dataghancing the accuracy of final products and
useful for validation purposes. Synthetic Aperture R§8AR) is recognised as an
important source of data for monitoring surface water, and is therefore used for many
wetland and flood applications. SAR is not subject to sungiamt,penetrate through
cloud and smoke covemndcan collect datat night, makng it a reliable source of data

for monitoring water bodies (Brisco et al. 2008, 2009).

2.3 Optical Sensors

Aerial photography is one of the earliest and simplest remote sensing technologies
that developed significantvényof WanldWanlg t he e a
reconnaissance missions. Before airplanes, cameras were attached to balloons and
pigeons, or set up on high oblique angles from mountaintops. Aerial photographs are
generally either oblique (sidleoking) or vertical (looking straightadvn) dependent on
the orientation of the camera relative to the grojdetsen 200. The camera systems
are passive optical sensors, commonly sensitive to light from 0.3pum to 0.9um
wavelengths covering the visible, ultraviolet (UV) and Aefnared (NIR)that use lenses
to form an image in the focal plarfeanchromatic film is sensitive to UV and visible
portions of the spectrum, producing black and white images which are the most common
type of film used for aerial photography due to the high resolati@mage and contrast

between objects within the image. Air photo interpretation (feature identification) and
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photogrammetry (precise locations and height) are the two main interpretation methods of
aerial photography. The strength of aerial photograptheisast temporal record of high
guality images that are useful for change detection studies, such as wetland delineation
(Scarpace et al. 1981, Barrette et al. 20809 historic imagerycan be acquired often at
little or no cost. Where images in a fligine are taken sequentially with-80% overlap
between images, two images can be placed side by side and viewed stereoscopically in 3
dimensions, using a stereoscope. This practice is used to gain depth and terrain
information enhancing interpretation the scene, enabling extraction of features such as
perched lakes or tree line in mountainous regions, and vegetation structural attributes.
These aerial photographs are often useful supplementary information for temporal studies
using more sophisticatesnsors as a source of validation.

LANDSAT (USGS/NASA) and SPOTQentre national d'études spatiales
(CNES))are both optical sensors and the major satellite systems that was widely used for
wetl and studies beginning ihenmeansfermu® 806s an
temporal water studies includingaack and Messind 997, Pietroniro et al(199),
Gowardet al.(2006, Feyisaet al.(2014), Yamazaki et ali2015, Mueller et al.(2016.
SPOT was first launched in 1986 and was the first satflkiesed on earth resources to
have pointable optics, increasing the stereoscopic image capahilitiesa wide range of
environmental applications such as water and land resource manadeangr8POT
studies includeRutchey and Vilchek (1994 & 199%orgette and Shuey (199 Dandsat
TM band 5 is the mostsefulband for identifying wetlands due to its ability to
discriminatebetweenvegetation andifferences in surfacgoil moisture. Whereas bands
3, 4,when combined with barlprovide thebest comimation of bands to detect

wetlands (Ozesmi 8auer 2002 While Landsatis an older satellit¢comprised of 8
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satellites)and one of the first satellite systems used for wetland mapping, the wavelength
of Landsabands can be found similarly in other neod sensors such as SPOT and
RapidEye (Planet LabsT&ble2.1). The ranges of electromagnetic radiation vary to some
degree between sensors, but also between Landsat series satellites. Optical remote sensing
can range in spatial resolution, but typicdllgher pixel resolution is found on more
recent systems as the technology has advanced.

Table 2.1 Typical spectral bands (blue, greeed, NIR), and some unique bands

(Red Edge, SWIR) with associated wavelengths, of SPOT, LANDSAT, RapidEye and
Worldview optical satellite systems, with respective pixel resolutions.

Sensor Wavelength (nm)

Band SPOT Landsat- RapidEye Worldview
6-7 7 34

Blue 455525 450520 440510 450510
Green 530590 520600 520590 510580
Red 625695 630690 630685 655690
Red Edg - - 690730 705745
NIR 760890 770900 760850 780920

SWIR - 1550 - 11952365

1750
Resolution (m) 6 30 5 0.30t0 1.24

RapidEye (Plandnc. (USA)) is a constellation dive multispectral earth
observation satellites launched in 800hesesatellteshavethe capacity to provide large
area images with frequent visine, atrelatively highspatialresolution (56.5m) that
includesthe Red Edge ban@®90-730nm)(Table2.1), which is sensitive to changes in
chlorophyll content (Tyc et al. 200%ndallows better estimation of the ground cover
andvegetationHaboudane et al. 2002, Vinal and Gitelson, 2005). While RapidEye data
is primarily used for agricultural purposes, Tetteh et al. (2015) show RapidEye imagery is

also suitable for water identifation, accomplished by isolating certain bands, similar to
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methods used with other optical sensors (green and NIR), with an overall accuracy of

95% and 0.889 kappa value.

Worldview 3and4 (DigitalGlobe Inc.) are constellation earth observation
satellitedaunched in 2014 and 2016 respectively. Worldview has enhanced resolution
(0.30m panchromatic, 1.24m MS) andldayrevisit time aimed to offer precise images
for change detectigrand detecting and monitoring disast®¥rldview 4 has 29 bands
for enfanced mapping of snow, clouds and atmospheric peioetras well as typical
spectral bandsT@ble2.1). New and enhanced applications for the high resolution and
wide rangeof bands includes land classifications, bathymetry and feature
extraction/changdetection, with superior haze penetration reducing the amount of
atmospheric interferencane et al. 2014 Lane et al. (2014) achieved an overall
classification accuracy of 86.5% and 0.85 Kappa coefficient farl&ses of aquatic
and wetland habitatssing a hybrid unsupervised approadtile the use of
Worldview datas well documentedwater and land classification stud{&hasmer et al.

2019 is less documented compared to other optical sensors

Optical sensors have been utilisedrianyremote ensing studies investigating
feature extraction and change detection in wide variety applications and landscapes.
Wetland studies generally use a combination of sensors to increase accuracy of wetland
classification, specificallpptical data, whreaccur&ies are increased aombined with
other optical or active sensors (Lidar, Radar) in data fusionhawebver 40years of
continuous acquisitions. While optical data such as LANDAT and SP@dhezn used

widely to map wet areas and accurately delineatier body boundaries, atmospheric

21



effects such as haze, clouds and snwikieh can beproblematic when trying to

construct longerm monitoring programs over large areas (White et al. 2015).

2.4Light Detecting and Ranging (Lidar)

Lidar is an ative satellite, airborne, or 4gitu sensor that provides topographic
and bathymetric (dependent on sensor) information that can be used to determine wetland
basins and water level at a certain tildescrete pulsescanningairbornelLidar systems
can attan a return spacing of less than &md is increasingly being collected and used for
wetland studies due to the high resolution and wealth of topographic information that can
be extracted, such as slope, aspect and elevaliommon Lidar systems used for
topographic mappingmit laser pulses inearinfrared at avavelength of 1064nm due to
ND YAG (neodymiumdoped yttrium aluminium garnet) crystal availability, and ease of
manufacture\Wehr and Lohr 199®Boland et al. 2004). For bathymetric mapping blue
green lasers centered at approximately 532 nm (achieved through frequency doubling) are
used due to increased water penetration capabilities (Mikhail et al. 2001).

Contemporary Differential Global Positioning System (DGRF®)re2.1)
technology uses (dast) two Global Navigation Satellite Sys®e(@®NSS) GPS and
GLONASS. The GNSS, a terrestredhticbase statiomeceiver and aovingreceiver
located on an aircraft simultaneously record the position of the aiticrafighout data
collection. GNSSlata are pogprocessed with the known location of the base station to
determine the exact | ocation aduradybfe5 ai rcr a
cm (Goulden and Hopkinsd010). An Inertial measurement unit (IMU) measures the
orientation déthe Lidar antenna at the time a pulse is both transmitted and received by

using three primary axes: x = in flight aircraft axis (roll axis); y = horizontally
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perpendicular to x (pitch axis); z = vertical axis perpendicular to x (yaw or heading axis)

(Hopkinson 2006).

e e e . .
Laser Scanner |

| Ranging Unit _<}:> Scanner |

LASER
FOOTPRINT

Control-, Monitoring- '
and Recording-Units |

DGPS IMU

Figure 2.1 Typical components and instrument interaction in an ALS system (Wehr and
Lohr 1999).

The aircrafiMU containsthree gyroscopes, which measure movement of the aircraft
(orientation), as well as three accelerometers, which measumgravitational
acceleration and vibration. The result is an output file detailing the aircraft position
including latitude, longitude, arelevation relative to the ellipsqids well as sensor
orientation including roll, pitch, yaw and headin@ll of which areéndexed by GPS time
(Jenser2007).

Lidar data provides measuremeat the 3D canopy, understory, and ground
surface topographyyhich are important for understanding if any morphological changes
have occurred in elevatidprovided temporatlata is available derivation of vegetation
structural characteristics, spectral chagastics, and for extractingater levels of
standing water (Toyra et al. 2Q@3hasmer et al. 201 €rasto et al. 2014 and 201Byin

et al. 2017. The morphology fothe ground surface and vegetation structural
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characteristics are important for hydrologyoductivity, photosynthesigreenhouse gas
fluxes, and can be mapped using a digital elevation model (DEM) derived from Lidar
data.There is a need to further dgpe automated Lidalbasedand multitemporal
boundary delineation and water classificatiespeciallyas highresolution, largarea
coveragalata becomes increasingly available (Crasto et al 2015). The merit of using
Lidar for hydrological researdk the ability to map surface morphology at a high
resolution and under a wide range of lasdrface conditions (Hopkinson aRdetroniro
2008 Hopkinson et al. 2011). The utility of Lidar for topographic and vegetation canopy
representation is well establesthbut more work is needed to evaluate the utility of Lidar
over channel, lake, and wetland surfaces (Hopkinson et al. 2005; Hopkinson et al. 2011,
Crasto et al. 2015).

Contemporary Lidar systems emit pulses, referred to gsulse repetition
frequeng (PRF) (JenseB007), at rates up to 1IMHz. PRF has increased from <1KHz
duringt h e e ar toygurrdnOs@sterdssthat have a PRF ranging from 200 to 1000
KHz; approximatelythree orders of magnitude in increased speed and data capture in 20
years. Rangeeasurementsan be determined by tleguationst / 2 x ¢, wher e ¢
distance between thargeta nd L i d ar rauretrip toavelime 6fthé pulsesfrom
emission to reflection to reception and 6c 6 i sindir@-@10smps®ed of | i ¢
(Boland et. al., 2004 Scanning units can be subdivided into the following key
components described by Wehr and Lohr (1999): laser ranging unimeatoanical
scanner, control, and processing uBitans can either be umir bidirectional depending
onthe scanning mechanisms, allowing for an array of calibration options and scanning
patterns. The scanning mirror unit is an integrated mechanism that measures the scan

angle of the mirror controlled by a galvanometer controlling the amount of angular
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motion of the mirror (Goulden artdopkinson 2010). Mirrors inside the laser transmitter

typically rotate in a sweeping motion perpendicular to the flight direction in order to

blanket the surface of the Earth with a swath wigill of view of up to 75° (Broelli et

al. 2004).

Typical scanning mechanisms used for airborne Lidar survey include oscillating

mirrors (bidirectional scan) producing parallel lines or arcs, nutating (swaying) mirrors

(Palmer scan) producing an elliptical pattern, rotating polyganrgers producing

parallel lines (unidirectional scan), and fiber scanners producing a parallel line scan

(Figure2.2) (Wehr and Lohr 1999).

fiber switch fiber

€)

_——r

——

Figure 2.2 Scanning Mechanisms. a) oscillating mirror b) Palmer scan c) fiber scanner
d) rotating polygon. Adpted from Wehr and Lohr (1999).
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that must be penetrated in order for a pulse to be sent to and received from the ground,

often resultingn multiple returns (Jens&®07). Single return Lidar involves a single

pulse that generally returns from the first rRgeound object it encounters. Thian be

useful for derivingabare ar t h  or

of 3-dimensionaktanopystructureinformation(Jenser2007). Multiple returns are

a canopy

height

model

generated when the laser pulse encounters ground and above ground features, such as
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vegetation, then scatters back to the receiver. Such occurrences are described as the 1
return from the incident laser ige, intermediate retusirom below the ¥ return and

the last return, which isftenfrom the groundFigure2.3).

1% and
last return last return

Figure 2.3 lllustration of ., 2% and last returns fromirborneLidar laser pulses
interacting witha forested and grassy enviroem(adapted from Hopkinsa2006).

Systematic errors and uncertainties occur in all data collection equipment, causing
imprecise and inaccurateeasurements. Therefore, determination of uncertainty in data
collection is important to understanding the eaéund application of results. In order to
estimate final observation uncertaintygividual sources oeérrorfrom GNSS IMU, laser
scanmr, and rangingomponents of the overall mapping systannst be combined in an

error propagation modéGoulden and Hokinson 2010). This is achieved by
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transforming the laser range observation to a coordinate system by transferring the range
observation between three-oadinate systemshrough time
1) Scanning Mirror Framevhi ch has an axi s t oallettthe mirr
the flight direction where the reference frame rotates with the scanning mirror
corresponding to the observed range in the Z axis;
2) Platform or Body Framés a transformation of the ortBmensional range
observation created by the scanning miframe where it has a Z axis in the
direction of normal gravity, X axis in the aircraft heading direction, and Y axis to
complete the system, therefore, is unaffected by roll, pitch and yaw of the aircraft;
3) Topocentric Mapping Frameepresents the coordites of the point location on
the ground. The height origin is set to the ellipsoid or geoid and the planimetric
origin is set at the centre of a UTM zone and the equator. Transformation of a
vector uses GPS data from the scanning mirror for comparisdhdodata sets
(Schwarz et al. 1993).
This framework, development for testing uncertainty in Lidar observations, is
useful because it can be employed to predict uncertainty prior to acquisition, and accounts
for unavoidable and predicted error that camdreected or expected in the dataset before
extensive ge@rocessing (Goulden and Hopkinson 2010).
A Digital Elevation model (DEM) represents the shape of a surface using a
continuous mathematical model. Generally, two types of DEM can distinguish etevati
as a function of latitude and longitude: digital surface model (DSM) expressing the
Earthdéds surface, and digital terrain model

removed terrain cover such as canopy cover and vegetstasspoints used in DEM
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creation can be viewed individually, which is useful for identifying data voids, multiple
flight lines, and effectively portragg last return data (Jens2007).

Traditional wetland delineation requires resodrgensive orsite investigations
of soils, \egetation, and hydrology. Lidar provides spatially distributed ground elevations
that have a density appropriate for ¢neg fine-scale topographic maps suitable for
delineation applicationslénsen 2007 These maps can enhance the visualization of
depressions and associated wetlands if the data are modeled. To be useful in hydrologic
modelling, elevation datia typicallyinterpolated into an even grid, or a DEM (Toyra et
al. 2003). Wetland visualization is greatly enhanced in smoother models ontttio
three metergesolution with the triangular irregular network providing the most accurate
border.Mappingof depressions has many implications to both surface and subsurface
hydrology. Closed depressions are landforms with no outlet point, wherelyeiaés
infiltrates into the soil or poolsna becomes a wetlandiayashi et al, 2003 These
closed depressions are often viewed as eramdare removedo eliminate barriers to
hydrological connectivity, largely justified based on the assumptioriitbatepressions
are arifacts, therefore sources of error in a DEMnsen 2007).indsey and Creed
(2004,2005 suggest removing all closed depressions from a DENajgpropriate
because a DEM surface represents a combination of bddcthaand actuallepressions,
that when removed may remove actual depressions that are important environmental
featuresLindsey and Creed2004)developed a method thigientifies actual closed
depressions using a stochastic based simuldbastimate the likelihoodf @ real versus
digital depression based on an iterative model where sources of error were randomly
added to a DEM before filling depressions. Tinisthodenables the likelihood that a

depression is a real featurg assuminghe degree of error in topogptay of a normally

28



distributed and spatiallgutocorrelated DEMThe stochastic simulation based approach
to depression identificatiorequires little additional data and is applicable to all
landscapes, accounting fancertainty in the DEM data, and id@lo identifyif
depressionsontain water Traditional triangular irregular network (TINjased
processing yields a DEM that can be used to accurately detect the edge of a depressional
wetland withinl-3 meters Maxa and Bolsta@009, but with high reslution (<1m
resolution) and bathymetric datasets (water surface and bottom topography), this accuracy
can likely be improved upon.
2.5 Synthetic Aperture Radar (SAR) Technical Details

Radio detection and ranging (Radar) operates in the microwaverpoftihe EM
spectrum, beyond the visible and thermal infrared regions. Operating in the microwave
region of the spectrum improves signal penetration (decreases attenuation) especially in
the atmosphere, providing many benefits for temporal studies. Radlifferent from
optical sensors in that it is an active, sifminating sensor that operates on the
microwave spectrum, with the distinct advantage for remote sensing for two reasons: (1)
radar systems can collect any time of day or night and undemgather or atmospheric
conditions; (2) backscatter (radar reflections) provide different information than optical
sensors. Unlike optical, radar is sensitive to surface texture, particularly in studies
discriminating the contrast or brightness betwegeas such as land and water (Hess et
al. 1990, RieandLozanoGarcia 2000Alsdorf et al.2001, BourgeauChavez et al. 2001
Ozesmi & Bauer 2002, Brisco et al. 2013, White et al. 2015).

Most Radar systems operate between wavelemgtasnd 100cm depeent on

the purpose of the radar syst€hable2.2). Some bands have specific wavelengths that
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are suited for a certain type of application or terrain, suchlaand which is commonly
used for snow and ice monitoring, oiland, commonly used in geologipplications

(Jensen 2(8®).

Table 2.2 Typical radar bands and wavelengths with associated common applications.

Band Wavelength Common Applications
X-Band 2.4-3.75cm (12.5  Military terrain survey. Ice
8ghz) survey.
C-Band 3.75- 7.5cm (8- 4ghz) Goad medium for all
applications.

S-Band 7.5- 15cm (5- 2ghz) Land classification.
L-Band 15- 30cm (2-1ghz) Geologic survey.
P-Band 30-100cm (1- 0.3ghz) Foliage extraction.

Shorter wavelength Xand signals generally interact with the upper sectibns
vegetation, while the intermediateldand penetrates further into the entire canopy, also
interacting with the ground surface. Thdand is capable of penetrating throughout the
vegetation and interacts with the surface beneath the vegetdtog étal. 2009. Since
C-band interacts with both the vegetation and ground surface, it is widely utilised in
flooded vegetation and wetland studies (Adam et al. IB&&zi et al. 200,/Brisco et al.
2008, 2009, White et al. 2014, 2015). Radar polarisatidependent on the direction the

SAR signal is transmitted and received to the sat@élaatenna. Early SAR satellite

systems in the 199006s operated on single p
transmitted and horizontal received) or VV (verticahsiaitted and vertical received).

More recent systems | aunched in the 200006s
called 6quad pol 6, which is capable or acgq

for enhanced terrain and vegetation studitsng etal. 2009.
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TerraSARX (German Aerospace Cent@LR)) is a spacéorn X-band SAR
system, launched in 2007 with an 11 day repeat orbit. The high spatial resolution (0.25m
T 40m), combined with the repeat orbit has been found suitable for monitoring water
level changes over wetlands (Hong et al. 2009, Schmitt et al. 2012). TexXradar
generate coherent interferograms in wetland areas and has been usedtemmpoltal
mapping of the distribution of vegetation formations for determining flood duration
(Schmitt 2012. Another recent satellite 8entinel1lA and Sentinel 1B (European Space
Agency (ESA)), which is a®and, two SAR satellite constellation mission part of a
larger mission (Copernicus), launched in 2014 and 2016 respectively with a 6 day repea
cycle (Potin et al. 2015). One of the benefits of the mission is the relatively open access
data, which has been made available to public for research applications. Specific water
resource studies with Sentirklnclude Amitrano et al. (2014nd Ardhun et al.(2017)
focused on calibration of the data and mapping of large water bodies at high resolution.
The demand for sentinel data has been steadily growing as the Copernicus mission
progresses and develops. As additional satellites become activaébént Sentinel 6),
with a wide variety of active and passive imaging sensors, there will be added capabilities
for more comprehensive ocean, land and atmospheric monitoring through data fusion
RADARSAT-2 (RS2) is a Canadian Space Agency (CSA) sttddlunched in
2007 at an altitude of approximately 798km and orbits Earth 14.3 times per day, with a
repeat cycle of 24 days. It carries @&nd (5.405 GHz) synthetic aperture radar, which is
a good wavelength for earth observation applications ovdrdad water, offering a wide
range of beam modes well suited for wetland monitoring (Livingstone et al. 2005, White
el a. 2015). Since RS2 data is used to conduct the wetland classification avehpdir

analyses in Chapters 3 athdadditional radar pnciples and technical details of the
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satellite will be discussed as it relates to RS2, but these prinalptespply to other

radar satellite systems. The position of the satellite is derived fram-boardGPS that

is also used to determinethepasii of t he acquired data on
antenna and sensor electronics (SE) comprise the two major systems of the satellite.
These systems execute all radar functions and are controlled by the spacecraft
management unit (SMU) that is linkedttee antenna SE that interacts with transceivers
that form the link to ground receigrfacilities (ivingstone et al. 2005). Radar

acquisitions are scheduled by an internal clock that is synchronised to GPS time provided
by the satellite GPS receivers,oaling for the unique ability to direct and image the
satellite to the desired area of interest. RADARSAdan transmit and receive fully
polarimetric radar waves in both horizontal and vertical polarisation planes (HH, VV,

HV, VH); maintaining the phasafiormation and allowing for enhanced mapping of the
difference between low and high backscatter values (White et al. 2015). Phase relates to
the location and shape of the wave pattern allowing for the measurement of the time it
takes for the radar signatrst from the satellite to interact with the target in the ground

and return to the satellite (Brisco et al. 2013). RADARSIAThe predecessor to the
RADARSAT-2, was launched in 1995, but only had the capability to transmit and receive
waves horizontallyd the ground target, limiting the ability to detect and calculate phase
information. The upcoming RADARSAT Constellation Mission (RCM), which is
anticipated to launch in 2018, will also offer a wide range of beam modes well suited to
water monitoring apptiations similar to RADARSATR. RCMwill be composed of 3
satellites that will have an average daily coverage for 95% of the world. RCM will also

have a much shorter revisit timer days) compared to RADARSAZ (24 days), due
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to the larger swatkvidth ard nature of the constellation, which will greatly enhance
temporal monitoring applications.

The spatialesolution of SAR is determined by built in range and processor
constraints and depends on beam mode used at the time of data acquisition, which
dictates scene size and the nominal resolution. Range resolution is dependent on the
length of the processed beam pulse, where shorter pulses result in higher resolution found
in ultra-fine or spotlight modes. SAR data can be acquired in a variety of r{ibatde
2.3). Higher resolution modes are best suited for applications requiring high spatial
resolution over small spatial areas, such as change detection, whereas broad area coverage
modes are intended for applications requiring wide area coverage whesercoar
resolution is not a limiting factor.

Table 2.3 High resolution SAR modes of Radargawith associated nominal resolution,
scene size and incident angle.

Mode Scene Sizékm)  Nominal Resolution Nominal Incident
(m) Angle(®)
Fine 50 x 50 8 30 to 50
Multi-Look Fine 50 x 50 8 30 to 50
ExtraFine 125 x 125 5 22 to 49
Ultra-Fine 20 x 20 3 20to 54
Spotlight 18 x 18 1 20to 54

2.5.1SAR Interaction with Wetland Surfaces
The utility, limitations, and accuracy of radar derived data in water extent
mappng, flooded vegetation delineation, awdter mask generatiandhas been well
investigatedless et al. 1995, Kasischke & Bourge@liavez 1997Brisco et al. 2014,
Santoro andWegmuller 2014). Synthetic Aperture Radar (SAR) can effectively map and
monitar changes in surface water, on annual and seasonal scakss reatime (Irwin

et al. 2017)Most surface water features are detectable on radar imagery because of the
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contrast in return between smooth water surface and the rough land surface. &@herefor
Synthetic Aperture Radar (SAR) can effectively map and monitor changes in surface
water (Brisco et al. 2008, Brisco et al. 2009), on annual and seasonalrscelasreal
time (Hess et al. 1990, Touzi et al. 2007, White et al. 20Mbisture contenof a
material can change electrical properties, thus affecting how material appears in the radar
i mage. |l ncreased moi smplexdeledtriommstard Gebiity a mat e
to store electric charge), influencing the ability of a materiabsorb, reflect and
transmit energwhich factors into both water and vegetation feature extraatibareby
reflectivity and image brightness of most natural vegetation and surfaces is increased with
increasing moisture content (Toyra et al020 Radardataaregood for detecting open
surface water because the dielectric constant of water is high compared to soil and
vegetation, and & been shown to be important for wetland water extent
characterizabn (Toyra et al. 2001Brisco 2015])rwin et al. 2A7). Since water has a high
dialectic constanit acts as a specular reflector under calm weather conditions (no rain or
wind). Thereforedue to theoff-NADIR emission and view angleery little backscatter
is returned to the satellite sensor, which esawater appear as a dark feature in radar
images compared to land features which are brighter due to increased texture and
backscattering responses (Di Baldassarre et al. 2011, White et al. 2015).

Rain and wind posesne of the biggest challenges frface watemapping
using SAR. As wind increases it causes rough surfacedmattering rather than specular
scattering which is typical in calm conditions. As the water roughness increases, the
scattering pattern of the incident wave changes and morgyeséackscatteredrigure
2.4). As a result, the contrast is lowered between water and land making surface water

mapping more problematic (Brisco 2015).
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Incident wave Incident wave Incident wave

Scattering wave
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Figure 2.4. Schematic drawing illustrating specular scattering and the increase in
backscatter deito increased surface roughness over a waterbody (adapted from Brisco
2015).

Radar signals are often reduced in wetlands dominated by herbaceous vegetation
with low biomass, largely due to the specular reflectance (Smith28Gd). While
surfacewave @&tion has a large influence on the scatteregponsedifferent types of
vegetation also produce variable types of scattering, védretiependent on vegetation
density and heighFigure2.5). Wetlands present four different types of backscattering
unde different polarisations and acquisition conditions in SAR data (Brisco et al 2011).
Scattering is predominantly influenced by wave effects and varying emergent phases of
vegetationFigure2.5).

The four common types of scattering in wetland environsard as follows:

1) Specular Scattering: weak omo return to the satellite. Occurs from smoother
surfaces such calm water and bare soil.

2) Rough Scattering single bounce return to the SAR from surfaces such as rough
water or low emergent vegetation.

3) Double-Bounce Scattering two smooth surfaces create a right angle that deflects
the incoming radar signal off both surfaces such that most of the energy is
returned to the sensor.

4) Volume Scattering signal is backscattered in multiple directions from features

such as vegetation or canopies
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Types of Scattering in a Wetland Environment

Specular Rough Double-Bounce Volume

Figure 2.5. Schematic illustrating four types of Radar scattering that occurs in wetland
environments as a function of surface roughness and vegetation (adapted from Brisco et
al. 2015).

As mentioned, RADARSAT can transiih and receive fully polarimetric radar
waves in both horizontal and vertical planes (HH, VV, HV, VH). HH Polarisation
generally yields a higher contrast between upland and open water (Brisco et al. 2008,
2009). Therefore, differences in backscatter respdretween land and water are the
greatest in the HH polarization. HH polarization is better able to separate land from water
under calm water conditions because open water results in less scattering, resulting in
higher contrast between land and water garad to the HV or VV polarization (Brisco et
al. 2008, 2009). Therefore, differences in backscatter responses between land and water
are the greatest in the HH polarization (Adam et al. 1998)le HH is best utilised
under calm conditions, the HV polaation is better suited for surface water mask
processing when there are waves or high wind because backscatter is more independent
of surface roughness, and largely independent of incidence angle and wind direction
(Toyra et al. 2001). When waves are prdadn water there is often an increase in
backscatter that causes water features to appear as vegetation. Therefore, HH/HV dual
polarisation images are better suited to ensure accurate delineation of open water in

variable conditions (White et al. 201B®)ata for mapping wetlands are best acquired in
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the spring, summer, and fall to avoid any-areimagery (Van der Sanden et. al. 2012).
For example, rough surface water can produce a backscatter response similar to ice,
thus making it difficult to distingwh between the two land covers (Van der Sanden et.

al. 2012).

2.5.2SAR Intensity Thresholding for Surface Water extraction

Areas of known surface water can be sampled to determine the range of intensity
thresholds (dB) that represent surface water in B 8#age, in order to create a surface
water extent mask. When mapping using an intensity threshold, the user must consider
beam mode, and polarization ancillary sources of data foreuiititg to obtain an
accurate result. Intensity thresholding is a camiy used approach where all pixels in an
intensity image are mapped as water when their backscatéffigent is lower than a
specific threshold based on intensity ranges sampled in areas of known water (White et al.
2014).The intensity threshold ddasl (dB) of water in SAR images is largely influenced
by weather, polarization, and incidence angle. Lower incidence angles tend to be more
sensitive to waves on water, therefore a combination of high and low incidence angle
imagess sometimes required @ccurately map surface water features (Toyra et al.
2001). A smaller incidence angle is better able to penetrate vegetation, therefore offering
better detection of flooded vegetation, especially noted in delta or floodplain areas with
dynamic seasonal imdation (Crevier et al. 1996, Adam et al. 1998). Generating water
masks using intensity thresholds isdebedin Chapter 3 of the thesis as the primary
objective of the chapter, whereas Chapter 4 focos@eon extracting flooded

vegetation characteriss using SAR.
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2.6 Image Orthorectification

While ortharectification of optical imagery is well documented (Leprince et al.
2007,Marsetic et al. 2015prtho-rectification of SAR data has proven to be more
difficult due to its unique and complicated gezing, predominantly caused by the
interaction of siddooking imaging geometry of the sensor (Leberl 1990, Schreier 1993,
Leberl 1998). Any geometric distortion of the mosaics limits the use of these data for
scientific applications, especially when intagd with data from other sources and canaot
be compared temporallyhe interpretive and mosaicking problems of dat&king radar
images are well known, and described by Lewis et al. (1&T@Curlander et al. (1984).
One such issue is known as radaefshortening, which occurs when imaged terrain
surfaces slope toward the radar sensor creating the appearance that they are shortened
relative to those sloping away from the se
| ayover 6 i s an etening teahoecurs vehenehe sldpe df the terraimi®
greater than the angle of the incident signal (Sheng et &8).2B6th issues create
geometric complications when attempting to ofthotify SAR images, specifically
without control data found in theetadata from acquisition. DEM data are required to
correct topographic distortion in SAR imagery and image simulation due to the
dependence of SAR echoes to terrain topography. An indirect strategy uses the technique
of SAR image simulation from DEM daf&uindon 1993, Sheng et al. Z)0The direct
strategy determines the ground coordinates of a SAR image pixel through an iterative
process using the SAR Doppler equation, SAR range equation, and Earth surface model
(Kwok et al. 1987). These equations anenmonly used in SAR spatial processing in
modern software that directly uses mdtda of the sensor. The direct method requires as

input the precise sensor position and imaging parameters. Since these data do not function
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when creating SAR mosaics duediffering metadata unique to each image, the direct
strategy is not applicable to SAR mosaic rectification.

Typical SAR ortherectification procedures are as follows: 1) simulating a SAR
image from the DEM according to the imaging geometry of the /Bl iBage; 2)
manually selecting or automatically deriving reliablepg@nts that appear in both real
and the simulated SAR images; 3) warping the real SAR image to the simulated image
using a polynomial function fitted from the 4p®ints; and 4) projertg the warped real
SAR image back to the map coordinate system using a [3BBh{ et al. 208). As
previously stated, the procedures only work well in rectifying individual scenes of SAR
imagery (Kwok et al. 198%heng et al. 208). With a proper DEM fotopographic
correction and proper metkata for layover and foreshortening distortion correction, the
radar images can be projected to regular map coordinate systems, at which point they are
denoted as orthorectified or orthographic SAR images (KropaS@n). The result of the
whole process is an orthorectified SAR image in the DEM map coordinate system.

2.7 Common SAR Image Enhancement Methods

2.7.1 Filters
Image filtering is a common procedure in SAR data due to the noise
characteristics present inakaimage. Filters are used for a variety of reasons to perform
adjustments to an image to reduce speckle (noise) while also preserving edge effects of
pixels (White et al. 2014). Image variance is known as speckle, whadumtion of the
radar systemot the scene. The difference between scene texture and image texture is
explained by speckle in a SAR image. The presence of speckle makes SAR imagery very

different from most optical imagery because speckle causes SAR imagery to have broad
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spatial bandwdth, meaning that the spectral width for SAR data approaches the upper
limit set by the sampling rate. Speckle variance in an image reduces with increased
effective number of looks (ENL), but by increasing the ENL and averaging the
reflectivity in an imaggethe area of each speckle increases which can also reduce the
resolution of an image (Brisco et al. 2013, White et al. 2014). Filtering allows the user to
mitigate or correct distortion caused by the imaging sensor or environmental effects such
as windy o rainy weather. While there are many filters available to adjust imagery,
almost all filters perform averaging on clusters of pixels, based on the pixels value
compared to adjacent pixels. In order to reduce the amount of speckle in an image, a
moving weghted function filter with varying filter window sizes can be applied to the
image pixels to reduce the amount of speckle (Lee at al. 1994). Common filters used for
SAR processing can be found in Geomatica (PClI Geomatics) software developed for geo
spatialanalysis and remote sensing applications, which includes the following three
processing filters:
1) 6FAVS6 (Averaging Filter)

FAV is a filter that performs spatial average filtering on individual pixels in an
image using the gralgvel values in a square @ctangular window that surrounds each
pixel (Figure2.6). Dimensions of the filter size must be odd numbers, and can be between
1x3 or 3x1 to 1001x1001. The filter size cannot exceed the size of the iB@yemon
resample pixel sizes are 3, 5 or 7. Valhigher than 7 will result in significantly altered

and dissolved data which is not indicative of the SAR response in most cases.
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Image before filtering Image after filtering
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Figure 2.6. FAV averaging filter example using a 5x5 filter on an 8x8 pixel image
(Geomatica 2015).

Pixels with values withi the minimum and maximum background range are excluded
from the calculations. If one value is specified, the image contains one background value.
If a parameter is not specified, the image will contain no background value.
2) 6FGAMMAGS ( Gamma Filter)

FGAMMA performs gamma map filtering on image data that removes high
frequency noise (speckle), while preserving high frequency features (edges). When a
scene reflectivity is assumed to have a Gaussian distribution, it assumes a negative
reflectivity (Lopes et al1990;Lopes et. al. 1993). The filter performs spatial filtering on
each individual pixel in an image using the glayel values in a wmdow surrounding
each pixelHorizontal and vertical filter size selected by the user specifies the size of the
filter in pixel units between 1 and 3Bhe dimensions of the filter must be an odd number
that can range from 3x3 to 11x11 pixél®. retain higher resolution and viswhgtail 3,
5, or 7 are the most commonly used pixel siBesels near the edge of the image

replicated to provide sufficient data for the filter.
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3 6FMO6 (Mode Filter)
The FMO mode filter computes the modal gtayel values (the most frequently
occurring graylevel value) in the square or rectangular filter window that surrounds each
pixel. FMO mode filtering is best for cleaning thematic maps for presentation purposes

because it replaces small 'island’ effects with larger surrounding pixel cli#Sgene

2.7).
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Figure 2.7. Mode filter (5x5) applied to an 8x8 database image that ctéansatic maps
(PCI Geomatica, 2015).

While filtering allows the user to mitigate or correct distortion caused by the imaging
sensor or environmental effects, it may also distort or degrade the image to the degree that
the resolution changes markedly, fésg in loss of valuablspatialinformation on a
perpixel basis.
2.7.2 SAR Polarimetric Decompositionsfor Flooded Vegetation

Vegetation canopy penetration of the microwaves in a SAR system allows for
mapping and classification of flooded vegetatime to enhanced backscatter from a
doublebounce scattering mechanism (Brisco 2015). This results in enhanced HH

backscattering with less increase seen in VV, therefore dual (HH/VV) or quad (HH, HV,
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VH, VV) polarised data sets can be used to identifydéabvegetation using polarimetric
decomposition techniques (Brisco et al. 2011, Brisco 2015). Decompositions are
physically based models that can be decompressed from several channels in quad
polarised SAR data, into a single intensity channel that estintia¢ amount of different
types of scattering contributing to the total backscatter from each pixel (Freeman &
Durden 1998, White et al. 2015). The phase information in the SAR data allows for the
SAR decomposition to discriminate between different scagianechanisms, and in
particular between areas of double bounce scattering which is indicative of flooded
vegetation (Brisco 2015). Well documented decomposition techniques include: Van Zyl
(Van Zyl, 1989), Cloudd>ottier (Cloude and Pottier 1997), FresmDurden (Freeman
and Durden 1998), and Touzi (Touzi et al. 2007). The most suitable decomposition for
extracting flooded vegetation has been found to be the FreBoralen decomposition,
which produceshreebandsidentifying volume scattering (talleregetation and forest),
doublebounce scattering (flooded vegetation) and surface scattering (water or rough
surface, (Freeman and Durden 1998, Brisco et al. 2013, White et al. 2014, 2015).
Decomposition techniques are widely accepted and validated, aadvdéan developed
and implemented in remote sensing software for SAR processing.
2.8 Data Fusion

Data fusion is a technique that seeks to enhance the detection of features in an
image by creating composite data from a variety of sens@sospatial dataources.
Remote sensing fusion decreases classification error and increases interpretation
robustness, something that is generally only accomplished through integration of data

collected from more than one sensor (Wald200ad 2002 Ramsey et al. 1998The
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utility of adding more than one sensor data type can be assesskéthgrthe fused
classificationproduct is moreccuratecompared to the results without fusion (Wald

2001, Irwin et al. 2017. Ideally, processes manipulating spatial data that diasa from
multiple sensors create quality products that provide improved accuracy and aid in
interpretation of spatial data, which could not be otherwise achieved without data fusion.
Fusion can be integrated in a wide variety of applications that leayelifferent sensor
characteristics, but can be modified to meet specific objectives that require rigorous
guality control to meet research or consumer needs (Walt ¥88d 2002 Chasmer et

al. 2014, Brisco et al. 2015)

Sometimes it can be difficulbtmap flooded vegetation with only SAR data because there
are other targets in a scene that can have the same brightness as the flooded vegetation
(White et al. 2014)While the use of muHpolarisation or multirequency data can

improve accuracies, em®of omission and emission are still observed (Brisco 2015).

As a result, many approaches use optical and terrain data to improve delineation of water
features, identifying additional topographic high and lomtsich greatly aid in

delineation of surfazwater and flooded vegetatiohojvnsend andvValsh 1998,

Pierdicca et al. 2008, Hostache et al. 2009). This is also true for detailed mapping of
ephemeral water bodies for monitoring seasonal and annual changes in flooded vegetation
due to changing climafactors (Brisco 2015)hereforethe need for enhanced data

fusion methods has beetentified,and studies are increasingly using more thiaa type

of sensor due to the different interactiovith the ground surfacandfeature extraction
capabilitiesof the sensord-or example, Radar records the backscatter attributes of
various polarisations, whereas optical sensors record the sum of radiance refleeted

result,passiveoptical products are far medirectly interpretable due to being analogous
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to what we see with our eyesmpared to radawhich is considered more difficult to
visuallyinterpret ands less intuitive But, radar and optical remote sensing have similar
attributes defined by reflectance, transmittance, backscatter and abs@ytiothough

they operate on differemégionsof the electromagnetic spectrydensen 20070ptical

is recording the passive reflectance from solar illumination, whereas radar sensors
provide their own illumination, therefore, reflectance characteridiffer markedly.

These two types of images are therefore not comparable in information content, which
ultimately affects interpretation of the imadderefore data fusion (combination of
different sensors) is valuable to derive similar products, suchraxypy reflectance or

land cover type (Hong et al. 2009). While there is limited literature on combining Lidar
and optical derived water masks to evaluate temporal change, temporal Lidar products
integrated with temporal multispectral products and hyetomdata provide a basis for
monitoring surface volume changes in wetlands and support development of monitoring

frameworks over large areas (Zhang et al. 2014).

2.9 Image Classification

Landscape classification aften tedious due to the size of mepttial datasets
Classification methodsan alsacreate discrete classand overlapping unitg)accurately
grouping features from interpreted landscafsstering algorithra with many variants
called Kkmeansjs often used for land classification gfpatial data. Methods of-Kieans
classification have been successfully used to overcome problems of class overlap and to
create increasingly spatially accurate land class maps, especially when combired with
high-resolution DEM (Burrough et al. 2000)-deans cluster classification aims to

partition observations into clusters in which each observation belongs to the cluster with
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the nearest mean, serving as a prototype of the cluster (Kanungo et al. 2002). The aim of
the K-means algorithm divides pointganclusters so that the within cluster sum of

squares is minimised. The Euclidean distance is then calculated repeatedly between points
and clusters by moving points from one cluster to another (Hartigan & Wong 1979). This
process results in partitioning the data into separate cells describeBigure2.8.

Hamerly et al. (2002uggest by prprocessing data to exclude detected noise data, the

accuracy of the clustering algorithm used imi€ans classification is significantly

improved.
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case k=3) are randomly associating every observation & clusters becomes the new until convergence has been
generated within the data with the nearest mean. The mean. reached.
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the means.

Figure 2.8. Demonstration of the #fneans standard algorithm generating clusters
(Hamerly et al. 2002).

Other widely used classificatianethod in geographyaredecision tree (DT)
hierarchical models based on decisi@hecision treeand rules that can be applited
predct land covelby determining the highest probability of prediction with input data
and manually delineated areas, such as wet ddeassiontree hierarchical classification
is more accurate than manual delineation from aerial photographgaaatso be used
with many types of spatial data classify land cover typegkrough supervised and
unsupervised clustering techniques (Strahler 1G8@dale et al. 2007; Chasmer et al.

2014). Decision tretusion can be used to quantify the highest praibalbf prediction in
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a set of input data and sample sites distributed throughout a watershed (Chasmer et al.
2014) whichis specifically useful for wetland delineation and classification in forested
wetlands such as bogs and fens. In addition to gemgnraater masks, a decision tree
watermaskand/orlevel approach can be extended into use in water storage calculations
by using datdusion for classification, or integrated with channel and bank delineation
routines to characterize flood hydrology intlaad environments (Crasto et al 201
Chasmer et al. 2014)his is accomplished by determining the highest probability of
prediction with input data and manually delineated wet areas distributed throughout a
watershedspecifically,for wetland delineatin and land classification in forested wetland
environments (Chasmer et al. 201ffectively identifying different types of wetlands in

spatially large, logistically challenging areas.
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ABSTRACT
The Shepard Slough wetlands area is an urban fringe, suburbalm g

modified praire pothole environment in the Foothills Fescue Natural Subregion, located
east of Calgary, Alberta, Canadue to low precipitationdevelopmentand dry
conditions with high evaporation, only approximately 1% of the natural subregion is
continuously occpied by water, with natural wetlands confined to depressions in
undulating terrain, making it challenging to monitoesewetland eosystems

This studyexaminesow high resolution, single polarisation (HH) RADARSAT
2, Synthetic Aperture Radar (SAR), dam utilized in spatialemporal studies to classify
wetlands by associating surface water hydroperiod to wetland permanence and

classification.Theinnovativehydroperiod analysis and methodology presented provides a
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baseline for longerm, high resolutio water resource monitoring describing more than

just water extent of wetlands, allowing for enhanced characterization and classification of
wetlandsthat can be applied to any wetland or floodplain environnfentntensity (dB)
threshold routine is used extract open surface water extent of marsh wetlands in the
growing season over three years (2013, 2014, 20¥&)and hydroperiods examined

using a pixel frequency analysis and classified in accordance with the current Alberta
Wetland Classificatiolsystem (2015).

The results of this thregear study indicatthatSAR derived multitemporal
openwater masks provide an index of wetland permanence eV@bsoverall accuracies
of 88.7 to 95.2% compared to optical validation data, and RMSE betweema@®2tn7m
between model and field validation datg.droperiod variation and surface water extent
was found to be heavily influenced by shitentm rainfall events in both wet and dry years
(rainfall events of ~30+mm corresponded with a marked increasenjorary surface
water) Persistent and staggered rainfall yieldedlidingestwater surface area. Seasonal
hydroperiod in wetlands was found to be highly variable if tiiexga decrease in
temporary or serpermanent hydroperiod classes. In years witheexe rain evenishe
more temporaryydroperiod classswereobserved in highdotal area percentages
compared to seasonal and sgrarmanent/permanent clasges 84%in 2015 which has
significant rainfall eventssompared to 42% which did not havsignificant rainfall
event) Flooding controls, water diversion, and highly variable precipitation may also be
affecting the hydrological regimes of these prairie pothole wetlands, contributing to
changes to wetland riparian vegetation, and therd&fonethese wetlands are classified
and what class thefgll in to under the Alberta Wetland Classification Syst(@®15)

Keywords: SAR, wetlands, hydroperitidie series, frequency analysis
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3.1Introduction
3.1.1 Wetland Resources

Wetlands are defineals areas of land that hold water, either temporarily or
permanently, and contain waterlogged and altered soils with water tolerant (hydrophytic)
vegetation adapted for life in saturated soil conditions (Government of Alberta 2013).
Wetlands are vital foreplenishing and storing groundwater, preventing flooding,
reducing erosion, filtering and purifying water, and storing substantial amounts of carbon
(Stewart & Kantrud 1971; Warner & Rubec 1997, Government of Alberta 2013).
Therefore, wetland areas haareironmental, social, and economic impacts given the role
wetl and ecosystems have in | ocal ecol ogy.
threatened ecosystem types, estimated to have diminished betw@&th 64 extent in
the 2" century, and continue teedline in quantity and function due to the effects of
climate change, anthropogenic activities, and land cover change (Daily et al. 1997, Dahl
et al, 2007, Costanza 2014). Wetlands found at high latitude or iresehnegions have
been found to be vulnale to climate changes due to their poor capability to adapt to
changing temperature and precipitation regimes (Lane et al. 2014).

Even in water rich countries such as Canada, decline and degradation of these
wetland ecosystems has becaronacerning (Korars and Stanojevic 2013, Smith et al.
2014) Agricultural drainage and urban expansion in the settled areas (known as the
OWhite Zoned) in the province of Al bert a,
approximately 2/3 of wetlands in the region (Governnoémtlberta 2013, de Groot et al.
2013). In addition, warmer temperatures and reduced precipitation trends are causing
drying of wetland surface and groundwater, resulting in changes to hydrology and

vegetation (Roulet 2000; Stow et 2004; Klein et al2005; Riordan et al. 2006; Smith et
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al. 2014). Wetland watdevels and extent can fluctuate daily, seasonally and
unpredictably following prolonged periods of rainfall, affecting the ecological
characteristics of a wetland controlled by the presence anati@h of open water,
referredtoasthé h y d r o (Ewel 1990 Surface water frequency and hydroperiod
characterizes wetland type, directly relating to the perceived value of a wetland in time
series investigations (egoster 2007/Mitsch and Gossgelk 2007). Therefore, if a

wetland has a high proportion of more permanent water {germanent) determined in
hydroperiod analysigndhas dynamic hydroperiod changes (temporary hydroperiod), it
is likely of more value ecologically and economically lthea the services it provides.

As these valuable freshwater resources become increasingly scarce, there is a need
for improved wetland monitoring and management through mapping and inventory
(Ozesmiand Baue002). While policy makers have sufficientesdiific information to
understand the need to take steps toward conservation, the global extent and spatial scale
of wetlands is immense. Therefore, governing entities increasingly rely on developing
remote sensing techniques to quantify wetland physrchfienctional changes for water
monitoring and management where changes can be tied to ecosystem functiam using
situ validation methods. This enables temporal studies to be conducted over large areas to
preserve and better understand the dynamics ¢dmeeenvironments.

3.1.2Remote Sensing for Water Mask Generation

Accurately mapingthe hydrology in the prairie pothole region using remote
sensing techniquesan be challengingn a large temporal and spatial seaparticularly
the dynamic wet arextent of the shallow and often ephemeral wetlands. While optical

data such as SPOT or RapidEye has been used widely to map wet areas and accurately
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delineate water body boundariess not able to capture the extent of the water surface
following significant precipitation events, amatimospheric effects such as haze and
clouds are problematic when trying to construct {ermgn monitoring programs over
large areas (White et al. 2015).

Traditional mapping requires significant amounts efsitu data colletton, which
can be logistically challenging, costly amdy missor underestimate the extentsnoény
smaller seasonal or annual wetlagelg. Halsey et al. 200#rey & Smith 2007). Remote
sensing applications have been found to greatly enhance wat@rcessmonitoring,
ecological studies, and infrastructure management with spatial and temporal data (Ozesmi
& Bauer 2002; Toyra et al. 2002, Brisco et al. 2009; Maxa & Bolstad 2009, White et al.
2014, Brisco et al. 2017). Water masks spatial datdayersthat can be derived from
many types of remote sensing daeoviding a snayshot of water versus land at a
specific time (White et al. 2014, 2015). Application domains include flood extent
delineation, water resource monitoring, habitat mapping andmwiedissessments
(Goodale et al. 2007, Chasmer et al. 2@r45co et al. 201Crasto et al. 2015).
Synthetic Aperture Radar (SAR) backscattering signals obtained using radar satellites
have been commonly used for surface water extraction (White et al. 2(deb et al.
2015, Schlaffer et al. 2016), and flooded vegetation monitoring in a variety of ecosystems
(Kasischke & Bourgeathavez 1997, Brisco et al. 2008; Touzi et al. 2007, Brisco et al.
2009, Brisco et al. 2017).

Radar is different to optical seors in that it is an active, sdlluminating sensor
technology that operates in the microwave spectrum, with two distinct benefits for earth
observation applications: (1) radar systems can collect any time of day or night and under

poor weather or atmpgeric conditions; (2) backscatter (radar reflections) provide
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different informationto optical sensors. Unlike optical, radar is sensitive to surface
texture, particularly in studies discriminating the contrast or brightness between objects
such as landrad water (Hess et al. 1990, Rio & LozaBarcia, 2000; Bourgeabhavez

et al. 2001; Alsdorf et al. 2001; Ozesmi & Bauer 2002, Brisco et al. 2013, White et al.
2015). Higher spatial resolution modes from RADARS2Tave been used to monitor
smaller wetlandand enhance discrimination between land, flooded vegetation and water
surrounding or beneath vegetation, allowing for better characterization and classification
of wetland types (Touzi et al. 20(Brisco et al. 2011, Schmitt et al. 2012, White et al.
2014). Open water areas have a high dielectric constant and act as a specular reflector
under calm conditions causing very little backscatter to the sensor, therefore water
appears dark (Di Baldassarre et al. 2011). Based on this, several water boundary
extraction algorithms have been developed using poiglect based or threshold

classification approaches (Martinis et al. 2015, Bolanas et al. 2015, Brisco 2015).

3.1.3 Wetland Classification System

While the combination of several wetland classificationesys(regionally
variable),enhances and clarifie@getland classificationStewart and Kantrud (1971) is
still the foundation for assessments of marsh wetlands found in the prairie pothole region
of North AmericalUSA and Canada)

Prairie potholes are geessions formed after glacial retreat in the last ice age
(~12,000 years ago), promoting wetland formation in these depressions following melting
of land ice(Winter, 1989) Prairie pothole wetlands are highly variable in size and
permanency, but ageneally characterized as having less than 1m water depth at peak

volume (Stewart and Kantrud 1971). Winter and Labaugh, (2003) describe how prairie

53



pothole wetlands change dynamically, making wetland function and classification
difficult to consistently asss through the growing season and between years. Stewart
and Kantrud (1971) describe prairie pothole marsh wetlands in detail, specifically
vegetation and surface water cover as indicators of wetland type and permanency.
Marshes are divided into seven difént types based on open water and vegetation zones
(Figure3.1). Each of these zones is subject to highly variable water levels and vegetation

succession depending on snowpack melt and rainfall.

Class | Class I Class I
Ephemeral Temporary Seasonal
Pond Pond Pond or Lake

Low-prairie

Zone

Wet-meadow Zone
Low-prairie zone

Low-prairie zone

Class IV ClassV
Semi-permanent Permanent
Pond or Lake Pond or Lake

Permanent
open-water
zone

Deep-marsh
zone

&/ Shallow-marsh zone Deep-marsh zone
Shallow-marsh zone
Wet-meadow Zone

Low-prairie zone

Wet-meadow Zone
Low-prairie zone

Figure 3.1. Marsh wetland classifications based on watmanence and spatial relation
of associated wetland riparian zonéglapted from Stewart & Kantrud (1971).

The most common marsh environments in the prairie pothole region of Alberta are
temporary (class Il), seasonal (class Ill), spetimanent (claslV) and permanent (class
V) (Table3.1). Wetland classes from Stewart and Kantrud (1971) have been narrowed

from seven to five, removing fen and alkali wetlands, better representing the common
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marsh environments. Seipermanent and permanent wetland sypave been merged
into one class as a result of the limited thyear data serigpermanent (V) requires a
longer timeframe (at leasfive consecutivgrearsof datg to be classified as permanent).
Vegetation and soil characteristics are generallyp#s wetland class indicators, but the
hydroperiod of these four marsh wetland types is indicative of how permanent the
wetland is both seasonally and annually (Stewart & Kantrud ¥atityud 1989
Government of Alberta 2012\meli et al. 201Y.

Table 3.1. Four commonly found marsh environments based on the Stewart and Kantrud (1971)
wetland classification system, with corresponding hydroperiod and vegetation characteristics.

Wetland Type (S&K) Hydroperiod Vegetation
Zone
Temporary (I1) Surface water peent for short period ol  Wet meadow
time after snowmelt or heavy rainfall.
Seasonal (Ill) Surface water present throughout Shallow wetland
growing season, typically dry by end ¢
summer.

Semipermanent (IV)  Surface water is present for most or a Deep wetland
the yar, except in drought conditions.
Permanent (V) Surface water present throughout the  Open water
year

3.1.4 Study Obijective
This study examines how high resolutionHEl SAR data can be utilized to
classify dynamic marsh and shallmpen wag¢r wetlands by associating surface water
extent and permanence in accordance with the current Alberta Wetland Classification
System (2015). Obijectives of the study were to: (1) present and evaluate an effective
approach to derive water masks from SAR inmpga&d compare them to water masks
derived from temporally similar optical imagery, and (2) classify open water wetland

hydroperiod and permanency using frequency analysis over aygmed&imeperiod.
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3.2 Data & M ethods

3.2.1 SAR Data
RADARSAT-2 SAR data were collected at each repeat cycle (24 days) in 2013 to
2015. A total of 18 (6 each year, (TaBl&)) UltraFine (U77) single look complex
(SLC) 20 x 20km swath images in ascending orbit are used to derive surface water masks,
which have a nominaksolution of 2.8 x 2.8m. While the nominal resolution of the U77
mode is 2.8 x 2.8m, the SAR dataset wasammpled using cubic convolution to 5 x 5m to

match the optical datasets used for validation purposes.

Table 3.2. Ultra-Fine (U77) beanmode SAR aguisition dates at Shepard Slough for 2013 to
2015 (2016)

2013 2014 2015
April 19 April 14 April 9
May 13 May 8 May 3
June 6 June 1 June 7 (2016)
June 30 June 25 -

July 24 July 19 July 14
August 17 August 12 August 31

- September 24

To maintain consistent frequency values (discussed in results section) the sample
size n=6 was used for each year. For 2013 and 2014 high quality acquisitions were
available for April to August. Unfortunately, data quality limitations prohibited
temporally simila analysis in 2015, specifically in June. To maintain temporal continuity
for all years, an acquisition from June 7, 2016 was substituted based on similar
environmental conditions. A missing acquisition issue was also encountered for
September 2014; thersk, to be temporally consistent to 2014, September 2013 was also

not included in the series. September 2015 is included in the analysis as it provides six
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high quality images for the 2015 series and showcases the effects of substantial late
growing seasoprecipitation (results section).
3.2.2 Optical Data

RapidEye (Planet Labs) optical image daten May 8, 2014, and SPOTéntre
national d'études spatialefrom July 15, 2015, and September 20, 2015 sampled at 5 x
5m resolution were acquired onameoincident or coincident days as some of the SAR
data for validation purposes. Images contain atmospheric effects such as clouds or haze
which requirecatmosphericorrection using PClI Geomatica Focus atmospheric
correction tools. While primarily usedrfagricultural purposes, RapidEye imagery is also
suitable for water identification (Tapsall et al. 2010, Giardino et al. 2014). Surface water
was classified using fheans unsupervised classification in PCl Geomatica Focus 2015

(Burrough et al. 2000, 200Lane et al2014).

3.2.3 Airborne Lidar Data
Airborne Lidar datavas collected by Airborne Imagi@algary, Canadah
2008 over the Shepard Slough area. Processing of a bare earth 1m x 1m digital elevation
model (DEM) was carried out using TerraScaarfasolid, Finland) and Surfer (Golden
Software, Colorado) following methods of Hopkinson et al. (2005). The Lidar DEM was
primarily used for orthorectification of the SAR angtical data, but also provided
topographic validation for water surfaces withvetland basins while illustrating the

surface hydrologic flow pathways for the study area.

3.2.4 Ground Validation Data Collection
Wetlands were chosen for the study from a series of optical images based on

observediparian disturbance, wetland sizge-existing stilling wells (GoA), and
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logistical feasibility (Figure 212e). Of the four chosen study locations, two were visited

in the last week of July 2015 to determine surface water extent and riparian habitat
boundariesvithin cm accuracysinga Global Navigation Satellite Systekinematic

6stop and godé survey techniques, where rov
base station locatioffhe topographic transition between wetlands and surrounding

upland is gradual but the transitionWween wetland vegetation communities and upland
vegetation communities is abrupt due to agricultural activities near or within the wetland
riparian area. Crossectional transects were performed extending away and upwards

from the wetlands to reflect vegéta zones and apparent changes in vegetation

community composition, which includes identification of predominant plant species, with
abundance ranking by foliar cover. Naming, taxonomic treatment, and life history
characteristics &bAPIli aantasé oafd atnlcee W itthe d US't

Agriculture, Natural Resources Conservation Serthtips://plants.usda.gov/jayavith

some wetland characteristics from Washington State Department of Tratspdrsts

(wsdot.wa.gov).

3.2.5 Study Area
The Shepard Slough study site is a 278klygon east of the City of Calgary,
Alberta, Canada in the Municipal District of Rockyview (M.D. #44) (FidRiga).
Shepard Slough is characterized as an urban frexdrirban, agfiuman, modified
prairie pothole environment in the grassland natural region, Foothills Fescue Natural
Subregion, with gently rolling plains dominated by moderately calcareous glacial tills at
an average elevation of 1030m (Natural RegiGommittee 2006). Only approximately

1% of the natural subregion is continuously occupied by water due to low precipitation
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and high evaporation, with wetlands confined to prairie pothole depressions. The Shepard
Slough region has lost much of its natunaipe pothole character due to extensive
modification and is therefore distinct to true prairie pothole regions. Cultivation,
irrigation networks, and urbanization has greatly impacted the local ecology and
hydrology of the natural subregion, in someaareeversing the drainage pattern to the
north through reservoirs and irrigation canals

Marsh wetlands were selected to best reflect the overall wetland population in the
study polygon. Four study sites were selected in the Shepard Slough Study Adearbase
accessibility and previously established field data collection activities. The wetlands do
not have official names, therefore are identified by defining features or proximity to
infrastructure. O0VI2HY) GhesOPuUMER))ad KOFI( Fuge
individual wetlandsn agricultural fieldsn well-defineddepressiongdetermined from a
Lidar DEM), chosen to represent wetlands known to be more permanent features on the
landscape. Their overall permanence derives from surface hydrologic&lctierty at a
low point in the landscape (West Chestermere) or by partial obstruction of surface
drainage by surrounding road @&2dyaad opment (
@®oh o I(Fegare3.2e) are larger spatial scale areas containing many individu
hydrologically variable wetland components in dynamic prairie pothole landscapes. These
latter two wetland areas are more disconnected from surface hydrological inflows either
by virtue of upstream anthropogenic flow diversion (Algae) or their shalaw a
disconnected catch basins on the land surface (pothole). The differences in hydrological
drainage characteristics and spatial coverage between the wetland focus areas was chosen
to evaluate the utility and effectiveness of the presented hydroperigdiar@aler a range

of scales and wetland types.
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Figure 3.2ae. Shepard Slough case study area ~10x30km in Canada, a) adjacent to the City
of Calgary, and location of the four chosen wetlands focus areas used in the hydroperiod
classificationanalysis b) West Chestermere, ¢) Pumpjack, d) Algae, and e) Pothole.
Vegetation transects surveyed in 2015 are shown as yellow in (b) and (c).
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3.2.6 Surface Water Extraction

Geomatica 2015 (PCI Geomatics) was used for filtering and surface water
extracton procedures using the SAR data. A model developed by White et al. 2014 using
Geomatica v10.3.2 was updated to current module versions to extract surface water using
input threshold intensity/decibel (dB) range val(®ppendixA). The first steps conver
from linear to decibel then reduce the amount of speckle before applying a threshold
value to the image, reducing speckle noise while maintaining spatial resolution and edges
(White et al. 2014). Speckle redusdd on met
while preserving edge features in an image using moving weighted filters and resampling
algorithms (e.g. Lee et.d994, Schmitet al 2013, White et al. 2014). THGAMMA
adaptive filter is used to preserve edges, which is important for surfaceewtzet
analysis (Toutin 2011, Zhang et al. 2012). The FAV filter is used to reduce speckle and
noise, and the FMO filter is used to further reduce noise and has been found to help with
the ortherectification (White et al. 2014, 2015). FGAMMA and FAMdits are applied
independently in parallel, to avoid the possibility of compounded loss of water edge
detail, then combined later in the routine (White et al. 2(Rigure 33 presents a flow

diagram of the image processing, threshold range and surféeeexttaction workflow.
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Extraction of the threshold decibel (dB) ranges that represent surface water was
conducted through the PCI SAR Pafaetry Tool in the PCI Geomatica suite using a
consistent area polygon ~70 hectares in area over Chestermere Lake, which is a known
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