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Abstract

In this thesis, we study 1-sink location and k-sink evacuation problem on dynamic cycle

networks. We consider the 1-sink location problem is to find the optimal location of the

1 sink, while the k-sink evacuation problem is to find the optimal evacuation protocol for

the given locations of the k sinks. Both results minimize the sum of the evacuation times

of all the supply located at the vertices to the sink/s of a given cycle network of n vertices.

We present an efficient algorithm with a useful data structure that finds the optimal location

of the 1 sink in O(n) time when the capacity of the edges are uniform. If the edges have

arbitrary capacities, we solve the problem in O(n logn) time by an extension of the data

structure. We also propose an O(n) time algorithm to solve the k-sink evacuation problem

with uniform edge capacity.
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Chapter 1

Introduction

Maximizing efficiency and minimizing cost has become a primary objective to the economists

and industrial engineers in both the public (e.g., schools, hospitals, fire stations) and private

sectors (e.g., agriculture, retail facilities) to design a useful model nowadays. This type of

research deals with advanced analytic techniques to help make decisions towards an opti-

mal solution, which is known as the operations research. It has many branches dealing with

the optimization of different type of activities. Facility location problems (FLPs) are one of

these branches concerned with the facility placement.

FLPs ideally consist of a set of demand points which need to be served and a set of des-

ignated spots where the facilities can be placed. Further, FLPs have a set of constraints

that influence the transportation criteria of the supply from the demand points to the facility

points, where the supply can be a set of evacuees or fluid-like material. The objective of

an FLP is to find the optimal location of the facilities so that the supplies at the demand

points can be sent to one of the facilities in such a way that a specific objective function is

minimized.

FLPs often deal with many real-life problems, such as emergency evacuation planning,

industrial or urban planning, traffic or vehicle routing. For example, if we need to build a

hospital in a particular residential area, the facility location problem can deal with identify-

ing the optimal location of the hospital that can minimize the residents’ transportation cost.
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1.1. PROBLEM OVERVIEW

In this model, the residences are the demand points, and the hospital is the facility point.

In this thesis, we studied two problems in facility location. One is the sink location prob-

lem, where we need to find the optimal location of the sink/s (facilities), and the other is

the evacuation problem, where we need to find an optimal evacuation protocol for a set of

given sink locations.

1.1 Overview of the covered problems

The sink location and the evacuation problems can be modelled in dynamic networks,

which is first introduced by Ford et al. [6]. A dynamic network is a graph network where

each vertex has an associated supply, and each edge has a length and a capacity. The supply

evacuates to a subset of the vertices called sinks. The capacity of an edge limits the flow

of supply that enters the edge in the unit time, and the length determines the time the flow

traverses the edge from one end to another. In this thesis, we consider the dynamic network

with the continuous flow of supply, where the supply at a vertex can be a real number. Or

the supply can be regarded as fluid-like material, where each infinitesimally small amount

of supply is an evacuee. The evacuation time of an evacuee is the time to send that evacuee

to one of the sinks. The cost of a sink is defined as the sum of the evacuation times of all

the evacuees. As a simple illustration, let us consider a dynamic path network as follows.

p qx

c1 c2wp wq

Figure 1.1: Illustration of evacuation on a dynamic path network. The sink is at x, and all
the supplies at the vertices p and q evacuate to the sink.

In Figure 1.1, the evacuation starts with wp and wq amount of supply at the vertices p

and q respectively. Let all the edges have the same length l and the time to travel a unit

distance is τ. An infinitesimally small amount of supply dw takes τl units of time to cross

each of the edges. Since the amount of supply that can enter an edge in the unit time is

2



1.1. PROBLEM OVERVIEW

bounded by the capacity of that edge. The capacity of the edge (x, p) is c1, so c1 amount

of supply can enter the edge in the unit time from vertex p. Therefore, the last supply

at p leaves p at time wp/c1 and reaches sink x at time τl +(wp/c1). Note that the first

supply from vertex q reaches vertex p at time τl. At time τl, if there is no supply at p, i.e.,

τl ≥ wp/c1 then the supply from q can continuously reach sink x without being delayed at

p, so no congestion occurs. But, if τl < wp/c1, then the first supply from q reaches p before

the last supply at p leaves p, so congestion occurs at p. Now, if we plot the arrival flow rate

at sink x from all the vertices as a function of time, we get the sequence of supplies arriving

at the sink as follows.

flow rate

time0 l

c1
C1

C2

2ll +
wp

c1
2l +

wq

c2

flow rate

time0 l

c1
C1

2l +
wq

c2

(a) (b)

c2
I1

I2

I1

I2

c2

Figure 1.2: Sequence of supplies arriving at sink x as an illustration of evacuation on the
path graph of figure 1.1 in two cases, when c1 > c2. (a) No congestion occurs; (b) Conges-
tion occurs at p.

Definition 1.1. Cluster

Let us consider a dynamic network N with a sink located at some point x ∈ N. For sink x,

if we plot the arrival flow rate from all the vertices of N to the sink as a function of time, we

get a sequence of clusters, where a cluster is a maximal time interval for which the arrival

flow rate at sink x is continuously greater than zero.

In Figure 1.2, we call each of the contiguous time interval of flow rate c1 or c2 or both,

a cluster. We also call a cluster the set of vertices whose supplies are evacuated within a

cluster. In Figure 1.2(a), vertex p forms cluster C1 and vertex q forms C2, where, the areas

of the clusters C1 and C2 are the supplies wp and wq respectively. In Figure 1.2(b), the

supply of q leaves the vertex with rate c2 but a part of the supply gets congested at p and

3



1.1. PROBLEM OVERVIEW

leaves vertex p with rate c1. However, the rest of the supply of q that does not have to wait

at p reaches the sink with rate c2(< c1). Because of the congestion, the set of vertices p

and q forms the cluster C1, where the area of C1 is the sum of the supplies wp and wq.

Definition 1.2. Cluster Head

Cluster head is the first vertex of a cluster whose supply is the first to reach the sink without

being blocked at any intermediate vertices in the evacuation path between the vertex and

the sink.

In Figure 1.2(b), the cluster head of cluster C1 is vertex p. A cluster consists of sequence

of sections.

Definition 1.3. Section

A section of a cluster is a contiguous and maximal time interval of the cluster for which the

flow rate is constant. For any two adjacent sections of a cluster, the flow rates are different.

In Figure 1.2(b), cluster C1 consists of two sections I1 and I2, while in Figure 1.2(a),

both clusters C1 and C2 have only one section.

In this thesis, a cluster is represented by Ci and a section by I j, where 1≤ i≤ j≤ n. The

cluster head of a cluster Ci is denoted by ηi. The flow of a section must originate from a

vertex. The first vertex of a section I j is denoted by u j, from which the supply correspond-

ing to that section can reach the sink without being delayed at any intermediate vertices.

The flow rate (or height) of a section I j is determined by the minimum edge capacity of

the evacuation path between the sink and the first vertex of the section, denoted by h j. The

supply carried by section I j is represented by σ j.

Moreover, if there are two sections I j and I j+1 belongs to two adjacent clusters (as

shown in Figure 1.2(a)) then the time interval of flow rate 0 between I j and I j+1 is called a

“gap.” On a similar note, if the sections I j and I j+1 belongs to the same cluster (as shown in

4



1.1. PROBLEM OVERVIEW

Figure 1.2(b)) then the region on top of section I j+1 of height h j−h j+1 and duration δt j+1

is called a “step”.

However, we define two possible type of clusters depend on the number of sections in

the cluster; one we call the “Simple cluster” and the other is “Mixed cluster.”

Definition 1.4. Simple Cluster

A cluster of uniform height is called the simple cluster. A simple cluster consists of only

one section. In Figure 1.2(a), C1 and C2 are the simple clusters.

Definition 1.5. Mixed Cluster

A cluster is called mixed cluster when it contains multiple sections of different heights. In

Figure 1.2(b), cluster C1 is mixed clusters.

p q rx

4 2 5
wp = 17 wq = 10 wr = 8

c =

l = 1 3 6

Figure 1.3: An example of a dynamic path network

Example 1.6. Figure 1.3 shows an example of a dynamic path network of three supply

vertices p,q and r, and a sink x. The capacity of an edge is labelled on the top, and the

length is labelled below of that edge. The time to travel a unit distance by an infinitesimally

small supply is 1. The first supply of vertex p reaches the sink at time 1. If the last supply

of p reaches sink x at time t ′, then

(t ′−1)4 = 17

So,

t ′ = 5.25

Therefore, the last supply of p leaves vertex p at time 4.25 while the first supply from q

arrives at p at time 3. Without loss of generality, we consider the portion of supply from

5



1.1. PROBLEM OVERVIEW

q arriving at p in between time 3 to 4.25 waits to start evacuating through the edge (p,x)

until time 4.25. Thus, the amount of supply arrives and waits at p is 1.25×2 = 2.5, while

the rest of the supplies from q pass through the edge (p,x) without waiting at p.

flow rate

time0 1

2

4
C1

C2

5.254 96.5 10 14

A

B

D

Figure 1.4: Illustration of the congestion of the supply evacuating to sink x

In Figure 1.4, time 4 is the time the first supply from q would have reached the sink if

it had not been delayed at vertex p. Therefore, the area of region A represents the portion

of supply of q waiting at p until all the supply of p leaves p, which is the 2.5 amount of

supply. This 2.5 amount of supply starts to leave vertex p at time 4.25 with the higher

capacity 4 (the area of region B) along with the rest of the supply from q that arrives at

p at time 4.25 and afterwards (the area of region D). Thus, the areas of regions A and B

represents the same supply. The time 5.25 is the time the first supply of q reaches sink x

with the higher capacity 4. The time interval in which the supply of q arrives sink x at rate

4 is (2.5+2.5)/4 = 1.25. Therefore, the time t at which the rest of the supply of q starts to

arrive at the sink with capacity 2 is

t = 5.25+1.25 = 6.5

where the last supply of q reaches sink x at time 9. Unlike q, the supply of vertex r contin-

uous through to x without being delayed at any of the vertices p and q but with the lowest

capacity in its evacuation path, which is 2. As a result, the total amount of supply that

arrives at sink x forms two clusters or three sections as shown in Figure 1.5.

6



1.1. PROBLEM OVERVIEW

flow rate

time0 1

2

4
C1

C2

I1

I2 I3

96.5 10 14

Figure 1.5: Sequence of clusters as a function of time arriving at sink x for the path network
showed in figure 1.3

Now, for the dynamic path network in Figure 1.1, the cost of sink x is the sum of the

costs of all the sections. The cost of a section is defined as the sum of the evacuation times

of all the infinitesimally small amount of supply carried by the section. Figure 1.6 shows

the area of a section I, which represents the total amount of supply evacuates at rate c or

the height of the section.

flow rate

0

c

s δt
time

r
t

dw

w σ − w

Figure 1.6: Area of a section I with start and end time at the sink

The start time (resp. end time) of a section with respect to a sink is the time when the

first supply (resp. last supply) of the section reaches the sink, denoted by s (resp. r). Thus,

the duration of a section is the difference between the end time and start time, denoted by

δt(= r− s). If the area of section I is denoted by σ(= cδt), then the end time r is s+(σ/c).

In Figure 1.6, w is a portion of supply in the total supply σ, where, the infinitesimally small

dw-th supply reaches the sink at time s+(w/c). Therefore, the cost of section I is given by

[9] ∫
σ

0
(s+

w
c
)dw

=
[
sw+

w2

2c

]σ

0

7



1.1. PROBLEM OVERVIEW

= sσ+
σ2

2c
(1.1)

From equation (1.1), the average evacuation cost for an evacuee of section I is s+(σ/2c),

where σ/2c is the average waiting time per evacuee before it starts to evacuate. We adopt

equation (1.1) as the main equation to compute the cost of a section. For a clear understand-

ing, if we plot the cost of the section I as a function of time, we get a trapezoid as shown in

Figure 1.7.

cost

time
0 s s+ σ

c t

Figure 1.7: Total cost of section I as function of time

The area of the trapezoid is the cost of I, where the area of the triangle (dark gray part)

is the total waiting cost (second part of the right hand side of equation (1.1)) and the area

of the rectangle (light gray part) is the total travelling cost (first part of the right hand side

of equation (1.1)).

Furthermore, the sink location problems are formulated in one of the two objective func-

tions, minisum and minimax. The minisum objective function deals with the goal of min-

imizing the sum of the evacuation times of all the infinitesimally small supplies located

at the vertices to the sinks, which is also known as the total cost criterion. The minimax,

by contrast, aims to minimize the maximum evacuation cost of an infinitesimally small

amount of supply from a supply vertex to a sink, which is also known as the maximum cost

criterion. In Figure 1.1, all the supply located at the vertices p and q evacuate to sink x by

forming multiple clusters/sections. Let Ix denote the cost of a section with respect to sink

8



1.1. PROBLEM OVERVIEW

x, and sum(Ix) and max(Ix) are defined as the summation and maximum of the costs of all

the sections respectively. Now, if we are given the control to change the location of the

sink in such a way that a specific objective function is minimized, then the minisum (resp.

minimax) objective is to minimize sum(Iν) (resp. max(Iν) for ν ∈ S, where S is a set of all

feasible locations of the sink.

In this thesis, we focus on a specific sink location problem called 1-sink location problem

on dynamic cycle networks with minsum objective function. A cycle graph is repre-

sented by a set of vertices connected in a single cycle in such a way that all the vertices are

of degree two so that the number of vertices and edges in the graph are equal.

v2

v1

v3

v4

v5

v6

vn

Figure 1.8: Cycle graph

Therefore, the problem is to find the the optimal location of the 1 sink that satisfies the

minsum objective function on a given cycle network (see section 2.1 for detail problem

definition). Note that in this thesis, we call the problem Minsum 1-sink location, in short.

On the other hand, the specific evacuation problem we covered in this thesis is called k-

sink evacuation problem on dynamic cycle networks with minsum objective function.

So, in this problem, we are given a dynamic cycle network with the location of k sinks,

where we need to identify the optimal evacuation protocol that minimizes the sum of the

9



1.2. LITERATURE REVIEW

evacuation times of the supplies at the vertices to the sinks (see section 5.1 for detail prob-

lem definition). We call this problem Minsum k-sink evacuation, in short.

1.2 Literature review

The evacuation and the sink location problems have been studied in recent years moti-

vated by the mass evacuation planning strategies in different cities due to natural disasters

such as earthquakes, tsunamis, hurricanes etc., where dynamic graph networks are used

to model evacuations. Cities can be modelled as dynamic graph networks, where, people

in a building represent the supply at a vertex and roads connecting the buildings represent

edges. The problem is to locate a set of facility points (sink location problem) or to identify

the optimal evacuation protocol (describing who goes to which facility point) if the facility

points are already there (evacuation problem), so that the total cost to evacuate all the evac-

uees from the buildings (vertices) is minimum.

The minsum k-sink location problem is equivalent to the classical k-median problem (see

Definition 1.7) when the edge capacities are sufficiently large so that the supply at the ver-

tices can move to their closest sink without being delayed at any of the vertices. In [11],

Kariv and Hakimi formulated the k-median problem as a decision problem and proved that

for a general graph the k-median problem is NP-Hard. A problem is said to be NP-Hard

if it is at least as hard as the hardest problems in the class of NP. In computational com-

plexity theory, NP is a set of all decision problems for which the result can be a yes or no.

The “yes” answer should have adequate verifiable proof, and the proof has to be verified in

polynomial time.

Definition 1.7. k-median problem

Given an undirected graph G = (V,E) of n vertices, identified as a set of supply points.

The k-median problem is to find a set S⊆V of k facility points that minimizes the sum of the

10



1.2. LITERATURE REVIEW

weighted distances between the supply points and the nearest of the selected facility points.

Unlike the minisum k-sink location problem, the edges of graph G are uncapacitated. If the

distance between a facility point p and a supply vertex v is represented by d(v, p) and w

represents the supply at vertex v, then the cost of the k-median problem is given by

∑
v∈V

(
Minp∈S

(
d(v, p)w

))
(1.2)

The cost of a median is defined as the sum of the weighted distances between the me-

dian and the supply points, which are served by the median.

Definition 1.8. k-median as a decision problem

Given an undirected graph G = (V,E) with a positive integer k and a positive real value z.

The problem is to identify, does there exist a set of medians S such that S ⊆ V and |S| ≤ k

for which the sum of the costs of the k medians is not greater than z?

Let us consider an undirected graph G = (V,E) of n vertices, whose edges and vertices

have unit length and supply respectively. In graph G, the cost of the optimal k-median is

n− k.

Now, we consider a dynamic graph network N = (G,w, l,c,τ), where graph G is the same

graph we consider for the k-median problem. Therefore, in network N, w is a function that

associates each vertex v ∈ V with the unit supply and l is a function that associates each

edge e ∈ E with the unit length. Positive constants c and τ represent the uniform capacity

of the edges and the time to travel the unit length respectively. In network N, the cost of

the optimal k-sink is n− k, if no supply has to wait at any vertex of N. So, in that case, the

capacity c is greater than or equal to the maximum supply at a vertex, which is 1. Thus,

the solution of the k-sink problem on network N is identical to the solution of the k-median

problem on graph G, when the uniform capacity c≥ 1.

Now, if we convert the k-median problem to a decision problem, then if the answer is “yes”
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then it is also “yes” for the k-sink problem and vice versa.

As, in [11], Kariv and Hakimi proved that the k-median problem is NP-hard even in a

planar graph with edges of unit length and the maximum degree of a vertex is three. There-

fore, minsum k-sink location problem is also NP-Hard as the k-median problem is a special

case of the k-sink problem.

Because of its hardness, special cases of the evacuation and sink location problems are

actively being studied in recent years. More specifically, Mamada et al. [12] proposed an

O(n log2 n) algorithm that solves the minmax 1-sink location problem on dynamic tree net-

works. Bhattacharya et al. [3] solved the minmax k-sink location problem on dynamic path

networks in O(min{n+ k2 log4 n,n log3 n}) time when the edges have arbitrary capacities

and in (min{n+ k2 log2 n,n logn}) time when the edge capacities are uniform. In the arbi-

trary case, Golin et al. [1] derived an O(kn log2 n) algorithm for solving the minmax k-sink

location problem on dynamic path networks.

The sink location problem with minsum objective has been studied in [8] [9] [2]. Hi-

gashikawa et al. [8] were the first to show an O(n) algorithm that solves the 1-sink location

problem on dynamic path networks in the uniform edge capacity case. In the same pa-

per, they also solved the k-sink in O(kn2) time, but later they improved the result to an

O(n2 min{
√

k logn+ logn,2
√

logk log logn}) time algorithm in [9]. The authors proved that

the location of the sinks that minimizes the total evacuation cost of all the evacuees of the

network must be at the vertices of the network. In both papers, the authors used some

properties strictly applicable to the uniform edge capacity case; therefore, in our observa-

tion, we cannot extend their idea to solve the problem in the arbitrary case. In [9], the

authors also proposed an O(kn) algorithm that solves the minmax k-sink location problem

on dynamic path networks. Recently, Benkoczi et al. [2] showed the first polynomial time

12



1.2. LITERATURE REVIEW

algorithm, where they solved the k-sink on dynamic path networks in O(kn2 log2 n) time in

the arbitrary case and improved the running time to O(kn log3 n) when the edge capacities

are uniform. They applied a dynamic programming approach inspired by the recursive for-

mulation showed by Hassin and Tamir [7] for solving the k-median problem on path graphs.

The authors of [2] also proposed an efficient data structure to get the local cost of all the

intermediate vertices in a given sub-path.

At best of our knowledge, there is nothing known for the minsum objective in any general

graphs except the path graph, which prompted us to do further research on this problem.

We motivated to satisfy the minsum objective function from the desire of minimizing the

total evacuation cost of the evacuees, which reduces the average psychological stress for

each evacuee. Also, we studied the dynamic cycle network, which we believe can be a

significant extension of the results found by Higashikawa et al. [9] and Benkoczi et al. [2].

Furthermore, our results can be used towards solving the problem in cactus graph networks,

as a cactus graph consists of multiple cycles and defines as a connected graph where any

two cycles have at most one vertex in common.

On the other hand, evacuation problems in different variants have extensively been studied

by several researchers but only with the minmax objective function. Ford and Fulkerson

[6] were the first to introduce the dynamic graph networks, where they show a polynomial

time algorithm that gives the maximum dynamic flow from a single source to a single sink

in a given time T . Another variant of the dynamic flow problem is the quickest transship-

ment problem, where the sources have specific supplies and sinks have specific demands.

In contrast to the evacuation problem, the network is a directed graph network. However,

Hoppe and Tardos [10] provided a polynomial time algorithm that sends the right amount

of supply from multiple sources to multiple sinks in minimum time. Burkard et al. [4]

studied a different variant of evacuation problem, which is called the quickest flow problem
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(QFP). The QFP is to determine the minimum units of time that are necessary to trans-

mit a given amount of supply (flow units) in a given directed network from a given source

to a given sink. They derived a strongly polynomial time algorithm of time complexity

O(m2 log3 n(m+n logn)), where n and m are the numbers of vertices and edges in the net-

work respectively. Therefore, after all of these variants, we study the evacuation problem on

cycle networks with the minsum objective function and came up with some useful results

which can be a good start to this type of problems with the minsum objective.

1.3 Contributions

To the best of our knowledge, no previous study of the sink location problem or the

evacuation problem on dynamic cycle networks with minsum objective function has been

carried out in the literature we surveyed. In this thesis, we present efficient algorithms for

the problems listed below.

• Minsum 1-sink location problem on dynamic cycle networks

We proposed an efficient algorithm with a useful data structure to solve the problem

in O(n) time when the edge capacities are uniform. In our proposed solution, the cost

per operation is amortized O(1). Moreover, by implementing some extensions in the

data structure, we solve the problem in O(n logn) time in the arbitrary edge capacity

case, where the cost per operation is amortized O(logn). We named our data structure

the “Cluster Head Tree” (see chapter 3).

• Minsum k-sink evacuation problem on dynamic cycle networks

Minsum 1-sink evacuation problem is trivial because if we fixed the location of the

1 sink then all the supply goes to the fixed sink and there is no choice to be made.

Therefore, we studied the evacuation problem with multiple sinks and came up with

an O(n) algorithm that solves the problem for k sinks.

The sink location problem with minsum objective has been studied only on path networks,
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so our results advance the research on algorithms for more general networks. Further, we

are the first to solve the evacuation problem with minsum objective, which we think can be

a significant start towards solving the problem on other special graphs.

1.4 Thesis organization

The rest of this thesis is organized in the following order. In the second chapter, we de-

fine the minsum 1-sink location problem on dynamic cycle networks and present the com-

mon part of our algorithm that solves the problem in both uniform and arbitrary edge capac-

ity cases. We also describe the general approach to compute clusters due to the congestion

at the vertices, which is followed by some essential properties of the problem. Finally,

we discuss the complexity of the algorithm comparing to the straightforward approach. In

chapter three, we describe the construction of our proposed data structure in the uniform

case followed by an extension for the arbitrary case. Chapter four shows the implementa-

tion of the data structure to solve the minsum 1-sink location problem on dynamic cycle

networks. Finally, in chapter five, we define the minsum k-sink evacuation problem and

describe our proposed O(n) algorithm to solve the problem. In the concluding chapter, we

discuss our results and future works.
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Chapter 2

Algorithm for Minsum 1-sink on Cycle
Networks

2.1 Problem Definition

Consider a dynamic network N = (G,w, l,c,τ), where G = (V,E) be an undirected cy-

cle graph. Graph G has an ordered set of vertices V = {v1,v2, ....,vn} and a set of edges

E = {e1,e2, ....,en}, where, n is the total number of vertices. In graph G, vertices are

ordered either clockwise or counter-clockwise. For a simple illustration, unless stated oth-

erwise, we consider the vertices as ordered counter-clockwise, as shown in figure 2.1. An

edge between two adjacent vertices vi and vi+1 is represented by ei ∈ E for 1 ≤ i ≤ n− 1;

for i = n, the edge between the vertices vn and v1 is represented by en.

In network N, w is the function that associates a vertex vi with a positive supply wi which

represents the initial amount of supply located at the vertex (wi : V → R+). An edge ei has

a positive length li (li : E → R+) and a positive capacity ci (ci : E → R+). The length of an

edge determines the time required by an evacuee to traverse the edge, and the capacity is

the upper limit of the flow rate that can enter the edge in the unit time. Finally, the time

required by each evacuee to travel a unit of distance is represented by the positive constant τ.

Moreover, the sub-path from a vertex vi to vertex v j in clockwise (resp. counter-clockwise)

direction is denoted by Pc[i, j] (resp. Pk[i, j]), and dc(i, j) (resp. dk(i, j)) denote its length.

The capacity or flow rate of a sub-path Pc[i, j] (resp. pk(i, j)) is the minimum edge capacity
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2.1. PROBLEM DEFINITION

in that path, denoted by cc(i, j) (resp. ck(i, j).

In our model, the sink has infinite capacity, therefore, the evacuation time for any sup-

ply already located at the sink is zero and its corresponding cost is also zero. We assume

that all evacuees located at the vertices start to evacuate to the nearest sink at the same time.

Moreover, the evacuee flow is confluent, which means, all the evacuees, initially located at

a non-sink vertex along with the evacuees who arrive there later must evacuate along the

same path to the sink (either in the clockwise direction or in the counter-clockwise direc-

tion). The confluent flow is desired in the context of evacuation planning to avoid confusion

between the evacuees located at the same vertex regarding who moves in which direction.

However, in the case of cycle graph G, the supply at a vertex v ∈ V can reach the sink

x either in the clockwise direction or the counter-clockwise direction. Moreover, the flow is

confluent, every vertex evacuates its entire supply in on the two directions. Since all vertices

visited by some evacuation flow must use the same outgoing edge to evacuate, there exists

one edge, called split edge. The vertices on one side of the split edge evacuate clockwise,

and the vertices on the other side evacuate counter-clockwise.

Let Zx(ei) denote the total cost of sink x with respect to the split edge ei ∈ E, where L(x, i)

(resp. R(x, i)) represents the total cost of evacuating all the supply at the vertices that evac-

uate clockwise (resp. counter-clockwise) to sink x. Then,

Zx(ei) = L(x, i)+R(x, i) (2.1)
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v2

v1

v3

vi

vi+1

vi+2

vn

sink

clockwise

counter-clockwise

eisplit edge

x

Figure 2.1: Evacuation path to sink x with respect to split edge ei

In Figure 2.1, L(x, i) (resp. R(x, i)) is the total cost to evacuate the supplies of the

vertices from vi to v2 (resp. vi+1 to vn) to sink x.

Now, the optimal cost of x is the total cost of x with respect to the optimal split edge.

Definition 2.1. Optimal split edge

Let G= (V,E) be an undirected cycle graph with the set of vertices V and the set of edges E.

The optimal split edge ei ∈ E for the sink located at vertex x ∈V is the split edge for which

the sum of the evacuation times required to send all the evacuees located at the vertices of

G to x is minimum.

If Zx denotes the optimal cost of sink x then it is defined by the equation below.

Zx = Minei∈E(Zx(ei)) (2.2)

Finally, we need the optimal location of the 1-sink which minimizes the total evacuation

cost over all the other sink locations on graph G. Regarding the location of the sink, we get

the following theorem from Higashikawa et al. [9] in the context of minsum sink location

problem.

Theorem 2.2. If a sink location minimizes the total evacuation cost, then the sink must be

located at a vertex.
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Proof. Let us consider a cycle graph G = (V,E) of n vertices with en as the split edge.

Let us also consider an optimal sink location at x on an edge ei ∈ E for 1≤ i≤ n−1. The

shortest path from a supply vertex v to x visits either vertex vi or vi+1, ∀v∈V . Let the length

of edge ei is l and the distance of sink x from vertex vi is d. Now, the cost for sink x is given

by

Zx(en) = L(x,n)+R(x,n)

where, L(x,n) is given by

L(x,n) = L(i+1,n)+ τ(l−d) ∑
i+1≤ j≤n

w j

and R(x,n) is given by

R(x,n) = R(i,n)+ τd ∑
1≤ j≤i

w j

Therefore,

Zx(en) = L(i+1,n)+R(i,n)+ τl ∑
i+1≤ j≤n

w j +dτ

(
∑

1≤ j≤i
w j− ∑

i+1≤ j≤n
w j

)
(2.3)

Without loss of generality, if we assume ∑1≤ j≤i w j ≤∑i+1≤ j≤n w j, then d = l. So, we move

the sink from x to vertex vi+1, which gives a cost Zi+1(en)≤ Zx(en). Therefore, it is proved

that the sink on vertex vi+1 is optimal, since the assumption was that point x is optimal.

Thus, by Theorem 2.2, the following location model defines the minsum 1-sink location

problem.

Minimizex∈V (Zx) (2.4)

As defined in equation (2.4), we need to identify the optimal split edge (defined in equation

(2.2)) for each sink location to get the optimal location of the 1-sink.
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2.1.1 Properties of the minsum 1-sink on cycle networks

Let us consider a cycle graph G = (V,E) of n ordered vertices, where a sink is located

at some vertex x ∈V .

Now, L(x, i) (resp. (R(x, i)) is the sum of the costs of all such sections that evacuate clock-

wise (resp. counter clockwise) to the sink x with respect to the split edge ei. Let Ix denote

the cost of a section I to the sink x. So, the total clockwise cost L(x, i) is given by

L(x, i) = ∑
I∈IL

Ix (2.5)

where IL is the set of sections that evacuates clockwise. The total counter-clockwise cost

R(x, i) is similar. In equation (2.5) the cost of a section Ix is computed by equation 1.1.

2.2 Brute force approach to solve the Minsum 1-sink location problem

In the brute force approach, we try every combination of the sink location and the split

edge to find the optimal location of the 1 sink. We compute the total cost Zi(e j) for ∀vi ∈V

with respect to each edge e j ∈ E as the split edge. Algorithm 1 shows the main procedure

which is common for both the uniform and the arbitrary edge capacity cases. Algorithm 2

and 3 show the procedure to calculate the total evacuation cost of an arbitrary pair of sink

location and split edge for the uniform and the arbitrary edge capacity cases respectively.
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Algorithm 1: BRUTE FORCE APPROACH

1 Input data: cycle graph G = (V,E) of n vertices; supply wi at each vertex vi; length

l j and capacity c j for each edge e j and constant τ. All are defined as in section 2.1.

2 Output data: Minsum cost Z and the location of optimal 1-sink.

3 Z← ∞ //set the minsum cost as infinite

4 for i = 1 to n do

5 Zi← ∞ // set the optimal cost of Vi

6 for j = 1 to n do

7 //get the L(i, j) and R(i, j) by calling the function in Algorithm 2 or 3.

8 Zi(e j) = L(i, j)+R(i, j) //cost of vi with respect to split edge e j

9 if Zi(e j)< Zi then

10 Zi← Zi(e j)

11 end

12 end

13 if (Zi < Z) then

14 Z← Zi

15 location← i

16 end

17 end

We describe Algorithm 1 in three nested steps as below.

• In line 4, the algorithm sets each vertex in the given cycle graph G as the sink location

one by one and compute the optimal cost Zi for ∀vi ∈V (line 4 to 17). Note that there

are O(n) choices for the sink location in graph G. At the end of this process, the

optimal 1-sink should be at the vertex vi with minimum Zi. .

• In line 6, the algorithm sets each edge as the split edge one by one to find the optimal

split edge for ∀vi ∈V (line 6 to 12). The optimal split edge is the split edge for which
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we get the optimal Zi. For each sink location, there are also O(n) choices for the split

edge.

• In line 8, the algorithm calls algorithm 2 (uniform case) or 3 (arbitrary case) to get

the cost Zi(e j), which individually takes O(n) time to compute the cost.

Overall, the brute force approach takes O(n3) time for the three nested steps to find the

optimal 1-sink on a cycle graph.

The algorithm to compute L(i, j) (computation of R(i, j) is similar) for vi ∈V and ei ∈ E is

as follows.
Algorithm 2: CALCULATE L(i, j) FOR UNIFORM CAPACITY CASE

1 Input data: cycle graph G = (V,E) of n vertices with the sink location i and split

edge j; supply wp at each vertex vp ∈V ; length lq and capacity cq for each edge

eq ∈ E, and constant τ.

2 Output Data: returns cost L(i, j).

3 η← i+1 // set i+1 as the first cluster head

4 cost← 0 //initialize the cost as zero

5 for k = i+2 to j do

6 if the supply of k get congested at η then

7 wη← wη +wk

8 else

9 //k becomes the cluster head of a new cluster

10 cost← cost +wηsη +
w2

η

2c // adding the cost of the previous cluster

11 η← k// assign k as the new cluster head

12 end

13 end

14 cost← cost +wηsη +
w2

η

2c // adding the cost of the final cluster

15 return cost
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We describe Algorithm 2 as follows,

• In line 3, we set the vertex vi+1 as the cluster head of the first cluster.

• After that, starting from the vertex vi+2, we check for each vertex whether it gets

congested at the current cluster head or not. If it is congested, then we extend the

cluster by adding the supply in line 7. On the other hand, if it doesn’t get congested,

then the vertex forms a new cluster. So, we add the cost of the previous cluster in line

10 and assign vertex k as the cluster head of the new cluster in line 11. This process

continues until we reach vertex v j.

• Finally, we add the cost of the final cluster in line 14 and return the total cost of sink

vi in the clockwise direction for the sub-path Pc[ j, i+1].
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Algorithm 3: CALCULATE L(i, j) FOR ARBITRARY CAPACITY CASE

1 Input data: cycle graph G = (V,E) of n vertices with the sink location i and split

edge j; supply wp at each vertex vp ∈V ; length lq and capacity cq for each edge

eq ∈ E, and constant τ.

2 Output Data: returns cost L(i, j).

3 u← i+1 // set i+1 as the first section

4 cost← 0 //initialize the cost as zero

5 for k = i+2 to j do

6 if the first supply of k gets congested at u then

7 if k completely merges with u then

8 σu← σu +wk //extends the current section by adding the supply of k

9 else

10 //k partially merge with u

11 σu← σu +α //α is the amount of supply from k merges with u

12 cost← cost +σusu +
σ2

u
2hu

//adding the cost of the current section

13 wk← wk−α //deducting the partial supply α from the supply of k

14 u← k //k becomes a new section

15 end

16 else

17 //k becomes a new section

18 cost← cost +σusu +
σ2

u
2hu

//adding the cost of the current section

19 u← k //k becomes a new section

20 end

21 end

22 cost← cost +σusu +
σ2

u
2hu

//adding the cost of the final section

23 return cost

Algorithm 3 is similar to Algorithm 2 except from line 9 to 14. For the arbitrary case,
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we check whether the supply of a vertex k completely merges with the current section or

partially. If it is merged partially, then we calculate the partial amount of supply α and

extend the current section by adding the α supply to it in line 11. After that we add the

cost of the current section to the result in line 12 and assign vertex k as a new section with

supply wk−α.

2.3 Efficient Algorithm to solve the minsum 1-sink location problem

We propose an efficient algorithm over the brute force approach by identifying some

lemmas and designing a useful data structure. For better understanding, we split our goal

into two objectives.

Objective 1:

We design an efficient algorithm which is optimized over the brute force Algorithm 1. In

this thesis, we might refer to this efficient algorithm as the “Common Algorithm,” unless

stated otherwise. The algorithm is designed to solve the minsum 1-sink location problem

on cycle networks with both the uniform and arbitrary edge capacity cases.

Objective 2:

We design a data structure which helps to compute the total evacuation cost Zi(e j) for the

sink at some vertex vi ∈V and the split edge at some edge e j ∈ E efficiently. We design the

data structure for the uniform case, then extend the data structure to solve the problem in

the arbitrary case.

2.3.1 Technique to solve Objective 1

The vertices are ordered counter-clockwise in our model, therefore, we move both the

location of the sink and the split edge for each sink location in the counter-clockwise di-

rection. We now prove the following two lemmas to find the optimal split edge for all the
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vertices of V efficiently.

Lemma 2.3. Let G be a cycle graph with n≥ 3 vertices. If Zi(e j−1)≤ Zi(e j) then Zi(e j)≤

Zi(e j+1)

Proof: According to equation (2.1) and (2.5), the cost of vi with respect to split edge

e j−1 is,

Zi(e j−1) = ∑
I∈IL

Li(I)+ ∑
I∈IR

Ri(I) (2.6)

where, IL (resp. IR) is the set of sections between vertices v j−1 to vi in clockwise (resp. v j

to vi in counter-clockwise) direction.

So, the cost of vi respect to split edges e j and e j+1 are as follows.

Zi(e j) = ∑
I∈IL+P[v j,v j]

Li(I)+ ∑
I∈IR−P[v j,v j]

Ri(I) (2.7)

Zi(e j+1) = ∑
I∈IL+P[v j,v j+1]

Li(I)+ ∑
I∈IR−P[v j,v j+1]

Ri(I) (2.8)

We find from equation (2.10) and (2.11) that the cost to evacuate all the supply located at

all other vertices remains the same except for vertex v j.

Let sc
i ( j) (resp. sk

i ( j)) denote the start time of the vertex v j when the supply moves clock-

wise (for split edge e j) (resp. counter-clockwise (for split edge e j−1)) direction to the sink

vi. The start time of a vertex is the time when the first unit of that vertex reaches the sink.

As Zi(e j−1)≤ Zi(e j), so from equation (2.10) and (2.11),

∑
I∈IL

L(I)+ ∑
I∈IR

R(I)≤ ∑
I∈IL+P[v j,v j]

L(I)+ ∑
I∈IR−P[v j,v j]

R(I)
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or,

w jsk
i ( j)+

w2
j

2ck( j, i−1)
+ ∑

I∈IL

L(I)+ ∑
I∈IR−P[v j,v j]

R(I)

≤ w jsc
i ( j)+

w2
j

2cc( j−1, i)
+ ∑

I∈IL

L(I)+ ∑
I∈IR−P[v j,v j]

R(I)

so,

sk
i ( j)+

w j

2ck( j, i−1)
≤ sc

i ( j)+
w j

2cc( j−1, i)
(2.9)

Now, according to the fundamental constraint of evacuation planning, if the supply at v j

and v j+1 both evacuate in counter-clockwise direction then the relation between their start

time as follows.

sk
i ( j)≥ sk

i ( j+1)+
w j+1

ck( j+1, i−1)
(2.10)

and if the both v j and v j+1 evacuates in clockwise direction then the relation as follows.

sc
i ( j+1)≥ sc

i ( j)+
w j

cc( j−1, i)
(2.11)

Finally, by combining equation (2.13), (2.14) and (2.15), we get,

sc
i ( j+1)≥ sk

i ( j)+
w j

2ck( j, i−1)
−

w j

2cc( j−1, i)
+

w j

cc( j−1, i)

or,

sc
i ( j+1)≥ sk

i ( j+1)+
w j+1

ck( j+1, i−1)
+

w j

2ck( j, i−1)
+

w j

2cc( j−1, i)

So,

sc
i ( j+1)≥ sk

i ( j+1) (2.12)

From equation (2.11) and (2.12), the cost to evacuate all the supply located at all the other

vertices remains the same except for vertex v j+1, and we find in equation (2.16) that the

start time of the vertex v j+1 in clockwise direction is greater than or equal to the start time

27



2.3. PROPOSED ALGORITHM

in counter-clockwise direction. Therefore, the cost of vi respect to split edge e j is less than

or equal to split edge e j+1, and the lemma is proved. We can see in line 15 of Algorithm 4

that the algorithm stops moving to the next split edge for the current sink location when the

lemma 2.3 satisfies in line 11.

Lemma 2.4. Let G be a cycle graph with n≥ 3 vertices. If Zi(e j−1)>Zi(e j) then Zi+1(e j−1)>

Zi+1(e j)

Proof : Here, we use the same procedure that we used to prove Lemma 2.3. When we

calculate the cost of vi respect to the adjacent split edges e j−1 and e j, the cost to evacuate

all the supply located at all other vertices remains the same except for vertex v j.

As we consider Zi(e j−1) > Zi(e j), so similar to equation (2.13), the time to evacuate v j in

counter-clockwise direction is greater than the time in clockwise direction.

sk
i ( j)+

w j

2ck( j, i−1)
> sc

i ( j)+
w j

2cc( j−1, i)
(2.13)

Now, according to the fundamental constraint of evacuation planning, if the supply at v j

evacuates counter-clockwise then for arbitrary edge capacities,

ck( j, i−1)≥ ck( j, i)

so, we can write,
w j

2ck( j, i)
≥

w j

2ck( j, i−1)
(2.14)

and, the start time of v j respect to sink vi+1 is greater than the start time respect to sink vi.

sk
i+1( j)> sk

i ( j) (2.15)
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We can combine the equation (2.18) and (2.19) as below,

sk
i+1( j)+

w j

2ck( j, i)
> sk

i ( j)+
w j

2ck( j, i−1)
(2.16)

Similarly, if v j evacuates in clockwise direction, we find the inequality as follows.

sc
i ( j)+

w j

2cc( j−1, i)
> sc

i+1( j)+
w j

2cc( j−1, i+1)
(2.17)

Now, from equation (2.17), (2.20) and (2.21), we get the inequality as follows,

sk
i+1( j)+

w j

2ck( j, i)
> sc

i+1( j)+
w j

2cc( j−1, i+1)
(2.18)

where, left hand side is the total time to evacuate v j for the split edge e j−1 and right hand

side is for the split edge e j.

Therefore, the cost of vi+1 with respect to split edge e j−1 is greater than with respect to the

split edge e j and the lemma is proved.

So, we come to a conclusion from Lemma 2.4 that if the optimal split edge of vi ∈ V is

e j ∈ E then the optimal split edge of vi+1 ∈ V should be e j or in counter-clockwise order

from e j to ei. We can see in line 16 of Algorithm 4, the algorithm sets the starting split edge

for vi+1 to the optimal split edge of vi. So, for the next location of the sink, it does not start

from the beginning of start index of split edges.
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Algorithm 4: COMMON ALGORITHM FOR MINSUM 1-SINK ON CYCLE NET-

WORKS

1 Input Data: cycle graph G of n vertices; supply wi at each vertex vi; length l j and

capacity c j for each edge e j and constant τ. See section 2.1.

2 Output Data: Location of optimal 1-sink x ∈V and minsum cost Z for the optimal

location of the 1-sink.

3 Z← ∞ //set the minsum cost to infinity

4 j← 1 //initialize j to select the first split edge

5 for i = 1 to n do

6 Zi← ∞ //set the optimal cost of vi

7 done← f alse

8 while (!done) do

9 Zi(e j) = L(i, j)+R(i, j) //cost of vi respective to e j

10 //get the Zi(e j) using the data structure (showed in chapter 4)

11 if (Zi(e j)< Zi) then

12 Zi← Zi(e j) //set the optimal cost of vi, e j is the optimal split edge

13 j← j+1

14 else

15 done← true //finalize the optimal cost of i

16 j← j−1 // set j−1 as the starting split edge for i+1.

17 if (Zi < Z) then

18 Z← Zi //set Zi as the minsum cost

19 location← i //set i as the optimal location

20 end

21 end

22 end

23 end
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2.4 Running time analysis of Algorithm 4

Let the time to compute the cost of a sink vi ∈ V with respect to a split edge e j ∈ E

(computation of Zi(e j) in algorithm 4 line 9) is Tn. The operation to place a sink at the

vertex vi ∈ V costs 1 and the operation to consider an edge as a split edge costs 1. So, the

brute force approach (Algorithm 1) takes O(n2.Tn) time to find the optimal location of the

1 sink.

Lemma 2.5. Given an undirected cycle graph G = (V,E) of n vertices. We can find the

optimal split edges for all the vertices of G in O(n.Tn) time, where Tn is the time to compute

each Zi(e j).

Proof: In our efficient procedure (Algorithm 4), the number of operation to place the

sink at each vertex remains the same but the number of operation to consider each edge as

the split edge for a particular sink location is reduced. If the algorithm starts with the sink

at vertex vi; therefore, it computes the cost as follows,

Zi(ei)

Zi(ei+1)

...........

Zi(e j)

Zi(e j+1)

At this point, if Zi(e j) ≤ Zi(e j+1) then according to Lemma 2.3 the optimal split edge for

vi is e j and Zi(e j) is the optimal cost (see line 15). Now the algorithm starts searching for

the optimal cost of the sink at the vertex vi+1 but rather than starting with the edge ei+1 it

considers the optimal split edge of vi as the first candidate for vi+1 according to Lemma 2.4.

Note that for each sink location, there is one cost computation for each sink and optimal
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split edge. There are O(n) such computations. Then, for every candidate sink location,

there are additional cost computations with the sink and other split edges that turn out not

to be optimal. However, since computations involving a new sink start with the optimal

split edge for the previous sink, there are O(n) computations with non-optimal sink edges.

Now, according to Lemma 2.4, the optimal split edges of the vertices (sinks) move in the

same direction as the vertices move. So, if the optimal split edge of vi−1 crosses the optimal

split edge of vi while moves in the counter-clockwise direction it contradicts the Lemma

2.4 while it moves in the clockwise direction. Thus, we come to a conclusion that the algo-

rithm traverses all the edges at most twice except the repeated edges, which costs at most 2n.

Finally, after combining Lemma 2.3 & 2.4, we argue that the operation to identify the

optimal split edge of all the vertices of V costs 2n+ 2n = 4n. Therefore, the number of

operations to find the optimal split edge for each sink location is amortized constant. The

final time complexity of algorithm 4 is O(n.Tn).
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Chapter 3

Cluster head tree (CH-tree)

The data structure we designed is based on dynamic path networks, that allows us to main-

tain the information regarding the congestion on a path or a cycle network. The hierarchical

construction of the data structure permits it to answer a batch of sequential queries, where

the answer to a single query depends on the clusters sequence with respect to that specific

sub-path. The same data structure is also described in the M.Sc. thesis of Rajib Das [5],

who has an equal contribution in designing the data structure. Rajib Das used this data

structure to solve the sink location problems with minimax objective function.

For simplicity, first, we show the construction and the use of the data structure for the

uniform capacity case. Then we show an extension of the data structure for the arbitrary

edge capacity case. The complexities of the arbitrary case over the uniform case are listed

below.

• A cluster may have multiple sections of different heights.

• Merging of clusters/sections does not occur orderly with the order of the clusters/-

sections. Two clusters/sections can merge anytime when some certain conditions are

met.

• The height, duration or number of evacuees carried by a section may vary with the

considered sub-path.

Therefore, we need some enhancement in the data structure so that it can overcome these
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3.1. CH-TREE STRUCTURE

complexities and answer the batch of queries efficiently. We name the data structure the

“Cluster Head tree” (CH-tree, for short).

3.1 Structure of the CH-Tree in uniform capacity case

The cluster head tree (CH-tree), denoted by T , is defined for a dynamic path network.

Let us consider an undirected path graph P = (V,E), where V = {v1,v2,v3, ....,vn} is an

ordered set of n vertices and E = {e1,e2, ....,en−1} is the set of edges. Let N = (P,w, l,c,τ)

be a dynamic path network; where all the other preliminaries of N are same as mentioned

in Section 2.1, unless stated otherwise. Now, we want to compute the evacuation cost of

the supply on a sub-path P[i, j] to a sink x located on vertex vi−1, where i < j. For this, we

need to identify the cluster sequence in the sub-path P[i, j]. More precisely, we need the

cluster heads of the clusters containing the supply from v j.

v1 v2 vi−1 vi vi+1 vnvn−1

Figure 3.1: An undirected path graph P of n ordered vertices

The CH-tree stores the cluster head of every cluster on the path for evacuation flow in

a fixed direction. Without loss of generality, in this thesis, we present the structure of the

CH-tree in the descending order of the vertices, where the flow is oriented from vn to v1. At

the end of the construction, the algorithm develops a forest that contains less than or equal

to n trees with respect to the sink location at v1. Each tree in the forest represents individual

clusters where the root of the tree is the cluster head. For a better demonstration, we create

CH-tree T by connecting the root of the trees in the forest to a dummy root ρ (see Figure

3.2). Therefore, The nodes 1 of the tree T are the vertices of P except the root node. Thus,

vertex vi in the path corresponds to node i in the CH-tree. Let T (i) denote a sub-tree in

T rooted at node i, where node x(! = ρ) is the parent of i and node y is the node with the

largest index. Then, x < i and sub-tree T (i) contains all the node with indices between i to

1We use the term “node” to distinguish between the tree T and path P. A node in T is the same vertex in
P except the dummy root ρ in T .
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y.

C1

ρ

C2

C4

i

C3

Cp

T (i)

Figure 3.2: CH Tree T on the path graph P

3.2 Construction of the CH-Tree in the uniform capacity case

In this section, we describe an O(n) algorithm that constructs the CH-tree on the dy-

namic path network N. The algorithm that we use to construct the CH tree in uniform case

follows the template of the algorithm proposed by Higashikawa et al. [9] for the 1-sink

location problem on dynamic path networks. The main idea is to place the sink at each ver-

tex of the path graph P in sequential order and construct the tree according to the updated

cluster information with respect to each location of the sink.

Basically, the algorithm places the sink at every vertex vi ∈ V for 1 ≤ i ≤ n− 1 in de-

scending order of i and constructs the tree T by computing the cluster sequence on the

sub-path P[n, i+1]. First, the algorithm places the sink at vn−1, and then compute the clus-

ters in the evacuation path P[n,n−1]. As there are no intermediate vertices between vn and

vn−1, vertex vn forms the first cluster C1. The supply carried by the cluster is σ1 = wn. The

algorithm adds the node vn in the tree T . Thus, vn(= η1) is the cluster head of cluster C1.
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3.2. CH-TREE CONSTRUCTION

Now, suppose that we have already constructed the tree T on the sub-path P[vn,vi+1] by

computing the set of clusters CL = {C1,C2, ...,Cp} for the sink located at some vertex vi

satisfying 2≤ i≤ n−1, where 1≤ p < n and C1 is the first cluster arrives at sink vi. Note

that vertex vi+1(= η1) is the cluster head of C1.

Next, we show how the algorithm updates the structure of the tree T when we move the

sink to vertex vi−1. Thus, vertex vi is a new vertex encountered in the front, so that the

evacuation path extends as P[n, i]. First, the algorithm sets vi as a new cluster C0 in front of

the already obtained cluster sequence, thus, σ0 = wi and η0 = vi. Thus, the algorithm adds

the node vi as the leftmost node in tree T .

After that, the algorithm runs a test for the clusters in CL in the ascending order of the

clusters by equation (3.1).

τd(η j,η0)≤
(σ0)

c
(3.1)

If equation (3.1) is true for a cluster C j satisfying 1 ≤ j ≤ p, then the cluster will merge

with cluster C0. Therefore, the algorithm updates the structure of the tree T by connecting

the cluster head node of cluster C j as the right most child node of the cluster head node of

cluster C0. Therefore, it also sets σ0 = σ0 +σ j.

The algorithm continues to test the clusters in CL one by one until it finds a cluster Cr such

that τd(ηr,η0)≥ σ0/c for 1≤ r≤ p or it reaches the last cluster Cp to test. At the end of the

testing, we get an updated set of clusters with respect to the sink at vi−1. Also, the tree T is

constructed for the sub-path P[vn,vi]. Now, in the next recursive step, the algorithm places

the sink at vi−2 and repeats the same procedure to update the structure of CH-tree. The

algorithm finishes constructing the tree T when we get the cluster sequence corresponding

to the sink location at v1. Finally, we connect all the cluster head nodes of the sub-trees in

the forest to the dummy root ρ to create the CH-tree.
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3.2.1 Complexity of the construction algorithm

Lemma 3.1. Given a path graph P=(V,E) of n vertices. If the edge capacities are uniform,

we can construct CH-tree T in O(n) time.

Proof: There are n iterations to construct the CH-tree, where, at each iteration exactly

one node is added to the tree. In each iteration, the algorithm does a test that checks for

merging of the already obtained clusters as long as two clusters merge. For n iterations,

there are O(n) clusters and they can merge O(n) times. Moreover, for each iteration, the

sequence of tests ends with a negative result for merge. Thus, there are n such negative tests

for n iterations. Finally, the time complexity of the construction algorithm is O(n), where

the average cost per iteration is amortized constant.

3.3 Use of the CH-Tree in uniform edge capacity case

Let us consider; we are given CH-tree T constructed on path P as described in Section

3.1. Now, we show the algorithm to answer an arbitrary query Q(i, j) for 1 ≤ i ≤ j ≤ n,

where the sink is located at vertex vi. The answer to the query is the sum of the evacuation

times of all the evacuees in the sub-path P[i, j]. Thus, we need to identify each cluster in

the sub-path and calculate the costs of the clusters. Total cost of a sub-path P[i, j] is defined

by the sum of the costs of all the clusters in the sub-path, denoted by cost(i, j).

First, the algorithm gets the index of node i+ 1 in T in constant time. Next, it starts to

traverse the tree T top-down starting from node i+1. Note that the sub-tree T (i+1) is the

first cluster in the sub-path P[i+1, j]. During traversal, the rightmost leaf node of a sub-tree

indicates the last vertex of its corresponding cluster.

Now, let us consider, the algorithm identifies the shape of a cluster Cm by traversing the

sub-tree T (k), where k is the cluster head node for i+1≤ k≤ j. If cost(m) denote the cost
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3.3. USING CH-TREE IN UNIFORM CASE

of the cluster Cm, then it is given by equation (1.1) as follows.

cost(m) = smσm +
σ2

m
2c

where, sm = τd(k, i) is the time when the first unit of cluster Cm reaches sink vi and σm =

∑k≤y≤l wy is the total supply carried by cluster Cm, where l is the right most leaf node of the

sub-tree T (k) (or the last vertex of the cluster Cm) for k ≤ l ≤ j. After that, the algorithm

updates cost(i, j) as follows.

cost(i, j) = cost(i, j)+ cost(m) (3.2)

Claim 3.2. In a cluster head tree, T , If a sub-tree T (k) (rooted at node k) is identified

as a cluster with node l as the descendant with maximum index (while traversing in the

ascending order of the vertices), then the sub-tree T (l +1) represents the next cluster with

node l +1 as the cluster head.

In the next step, the algorithm continues to traverse the tree top-down to identify the

next cluster in the sub-path P[i+1, j] starting from node l +1.

The algorithm repeats the same procedure to compute the cost of each cluster in the sub-

path P[i+1, j] until it reaches the last sub-tree that contains the node j.

Lemma 3.3. Given a cluster head tree T for a path network P = (V,E) of n vertices. If the

edge capacities are uniform, we can compute the total cost of an arbitrary sub-path P[i, j]

to sink vi in O( j− i) time, where i < j.

Proof: To traverse a sub-tree T (u) (representing a cluster) of T , it takes O(1) time to

get the index of u and total |T (u)| time to traverse the sub-tree T (u), where |T (u)| is the

number of vertices spanned by u. Finally, it takes O(1) time to compute the cost of T (u)

with respect to the sink location. Now, to compute the total cost of any sub-path P[i, j] to
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sink vi, the algorithm needs to traverse all the sub-trees in the sub-path, which takes O( j− i)

time for i < j, where j− i is the size of the path we are querying. So, the lemma is proved.

3.4 Structure of the CH-tree in the arbitrary capacity case

As this is an extension, we use the same names, definitions and notations with some ad-

ditional notations (which are defined when needed) to describe CH-tree T in the arbitrary

capacity case. The main idea of the construction remains the same as described in Section

3.2. We place the sink at every vertex of the path graph P = (V,E) (see Figure 3.1) one by

one from vertex vn to v1 and update the structure of CH-tree with respect to each location of

the sink. However, unlike the uniform case, the CH-tree needs to handle two complications

in order to compute the evacuation cost of the supply between two vertices vi and v j to a

sink located at vertex vi−1 for i < j. To handle the complications, we extend the structure

of the CH-tree for the arbitrary case as follows.

Label the edges of the CH-tree:

During the construction, when we move the sink from vertex vi+1 to vi, several clusters can

merge because of a smaller capacity of the edge ei. More importantly, two merged clusters

can be located anywhere in the already obtained cluster sequence, as shown in Figure 3.3.

Therefore, to know the cluster sequence with respect to a location of the sink, we label the

edges of the CH-tree with the index of the sink location for which the clusters get merged.

C2

C1

i
ci

flow rate

t

C1 C2

Figure 3.3: Cluster C1 and C2 merge because of the smaller capacity ci
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Store necessary information in the cluster head node:

In the arbitrary case, unlike the uniform case, there can be mixed clusters along with the

simple clusters. Therefore, we need to know the rate of the sections, as it is variable. We

observe that, at every iteration in the construction algorithm, the rate of O(n) sections can

change O(n) times. Thus, updating this information at every iteration can lead to an O(n2)

algorithm. Therefore, we choose not to store the rate (or height) of a section explicitly.

Each time we need the rate of a section with first vertex x, the rate is the minimum edge

capacity of the sub-path between vertex x and the sink location. To get the rate of a section

efficiently, we construct a capacity tree ζ, which is a standard binary search tree. We use the

tree ζ to get the minimum capacity c(x,y) in the sub-path P[x,y] for ∀x,y ∈ {1,2,3, ...,n} in

O(logn) time. However, to obtain the sections in a mixed cluster, we store other necessary

information in the cluster head node. The information stored in a cluster head is nothing but

the information of the next section in the same mixed cluster with respect to a sink location,

denoted by φu for node u. As a simple illustration, consider Figure 3.4(b), where we have

two clusters Ca and Cb with respect to the sink at some vertex i as shown in Figure 3.4(a),

then in Figure 3.4(c), the clusters get merged into a mixed cluster Ca with four sections

I1, I2, I3, I4 with respect to the sink at vertex i−1.
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I2
I3

I4

t

flow rate

0 r(= r2)

flow rate

t
0

Ca

Cb

ηa(= i+ 1)

ηb(= i+ 2)

I1
I2

I3
I4

I1

ηa

β(= ηb)

(b)

Cacluster

(c)

r1 r3

h2

h3

ii− 1 i+ 1 i+ 2 i+ 4i+ 3

(a)

I2
I3

I4

t

flow rate

0

I1

Cacluster

(d)

h2

h3

ti+1 ti+2 ti+3 ti+4

αw

Figure 3.4: (a) A path graph; (b) sequence of clusters Ca and Cb when the sink is at i; (c)
a mixed cluster Ca with three section I1, I2, I3, I4 by merging of Ca and Cb after moving the
sink to i− 1; (d) cluster Ca with the the time when the first supply from a vertex reaches
sink i−1
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For mixed cluster Ca, similarly, we do not store any information of section I1, as the

rate of I1 can change O(n) times for O(n) different edge capacities. However, we can store

necessary information regarding the sections I2, I3 and I4 as their rates do not change as

long as the cluster consists of sections I1, I2, I3, I4. Thus, we store the following information

of section I2 in the cluster head node ηa with respect to the sink location for which both

clusters get merged. Note that the similar information was also stored regarding section I3

in the head of section I2, when I2 was the first section of cluster Cb consisting of I2, I3 and

I4.

s = The index of the sink location for which the mixed cluster is created or the shape of

the cluster is updated significantly.

β = The index of the cluster head of cluster Cb that Ca just merged with. In Figure 3.4(b),

it is the index of the first vertex of section I2, β = ηb.

r = The end time of section I2 with respect to s (the index of the sink location). For cluster

Ca, r = r2. It is the time when the last supply of the section reaches the sink. we can

compute r to be stored in ηa from the previously stored information in ηb as follows.

(r− r1)h2 +(r3− r)h3 = ∑
ηb≤y≤α−1

wy +αw

r =
1

h2−h3

(
∑

ηb≤y≤α−1
wy +αw− r3h3 + r1h2

)
(3.3)

where, index α and supply αw are defined similarly as follows but stored in cluster

head ηb of section Cb.

α = The index of the vertex from which a partial amount of supply evacuates as some

supply of section I2. The partial amount of supply is defined as the portion of supply

in a section whose originating vertex is not included in the section, therefore, it is

always the last portion of the supply in a section. For any cluster, the partial amount
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of supply can be zero. As a simple illustration, let us consider Figure 3.4(d), which

shows the time when the first supply of a vertex reaches sink i− 1. In the mixed

cluster Ca, the cluster head ηa is the vertex i+ 1, where, the first supply of i+ 1

reaches sink at time ti+1. Similarly, the first supplies of vertices i+2, i+3, i+4 reach

the sink at times ti+2, ti+3, ti+4 respectively. Now, from the definition of α, for cluster

Ca shown in Figure 3.4(a) and (b), we store the index i+3 as α in cluster head node

ηa.

αw = The partial amount of supply in the total supply of sections I1 and I2 originating from

vertex α, which is given by

αw = (r1− s1)h1 +(r2− r1)h2− ∑
ηa≤y≤α−1

wy (3.4)

Using this stored information, if we are given the cluster head of a cluster, then we can

visit the sequence of the nodes in the CH-tree which identify the different sections in the

mixed cluster. Now, if we wish to compute the cost of a cluster with respect to the sink

location at some vertex i, we use equation (1.1) to compute the cost of each section in the

cluster, where we need three information regarding any section; flow rate, start time and

total supply. We use the stored index β to compute the start time s of section, which is

τd(β, i). Also, the index β is used to get the rate of the section from the capacity tree ζ,

while for section I1 we use the cluster head ηa as we do not store any information regarding

I1. Lastly, we need to know the area of the section to identify the total supply in the section.

Thus, in addition to the rate of the section, we need to know the duration δt of the section,

which is r− s. Note that, we have stored the r of each section in the CH-tree except for

section I1. However, we can compute the r for section I1 using equation (3.3). Moreover,

during traversing the CH-tree, we use the index β to iterate each of the sections in a cluster

one by one.
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3.5 Construction of the CH-tree in the arbitrary edge capacity case

We mentioned in Section 3.4 that, in arbitrary case the merge between two clusters can

take place anywhere in the cluster sequence. Therefore, the algorithm maintains a critical

capacity tree H during the construction process of CH-tree T to identify the merging of the

sections/clusters because of the new sink location.

Definition 3.4. Critical Capacity

The critical capacity of a section is the expected height or flow rate of the section for which

the leftover evacuees of that section fills the gap or the step with the next adjacent section.

A section’s critical capacity is always lower than it’s current height/flow rate.

The critical capacity tree H is a max heap tree in which we store or update the critical

capacity corresponding to each section. The critical capacity of a section Ii is denoted by

µi. It takes O(logn) time to insert/remove a critical capacity into/from the H tree and O(1)

time to get the maximum critical capacity.

gap step

I1

I2

I3

h1

h2
µ1
µ2

t

Figure 3.5: Critical Capacity of I1 and I2

Figure 3.5 shows that the critical capacity µ1 of section I1 fills the gap (dark gray)

between I1 and I2 by the leftover evacuees (light gray) of I1, where µ2 fills the step between

I2 and I3.

The critical capacity µi of a section Ii that fills the step with the next adjacent section Ii+1 is

given by

µi =
hiδti +hi+1δti+1

δti +δti+1

(3.5)
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where δti and δti+1 are the duration of section Ii and Ii+1 respectively.

The critical capacity µi of a section Ii that fills the gap with the next adjacent section Ii+1 is

given by

µi =
hiδti

τd(ηk+1,ηk)
(3.6)

where sections Ii and Ii+1 belong to the clusters Ck and Ck+1 respectively.

Equation (3.6) replaces the height and duration of the next adjacent section of equation (3.5)

by the gap. The gap has no height and the duration of cluster Ck should be long enough to

the make the gap duration to 0.

We now show the steps of the construction of CH-tree in arbitrary capacity case. The

algorithm starts with placing the sink at vn−1 so that the supply at vn evacuates to the sink.

Therefore, vn becomes the first simple cluster/section with the same vertex as the cluster

head. The algorithm adds vertex vn as a node in the tree T . At this point, the critical capac-

ity tree H = /0 as there is only one section in T .

Now, suppose that we have already constructed the tree T in the sub-path P[vn,vi+1] by com-

puting a set of sections with respect to the sink at some vertex vi satisfying 2 ≤ i ≤ n− 1.

The algorithm also populates H tree by the critical capacities corresponding to the each

computed sections arriving at sink vi. We then show how the algorithm updates the clus-

ter/section sequence information after moving the sink to vertex vi−1.

First, the algorithm inserts the node vi in the tree T as a simple cluster C0 (section I0)

with vertex vi (=η0) as the cluster head. The section I0 has the height h0 (=ci−1) and dura-

tion δt0 (= wi
ci−1

). Next, the algorithm uses equation (3.6) to calculate the critical capacity µ0

that fills the gap between sections I0 and I1 and inserts µ0 into the H tree.

After that, the algorithm starts processing the critical capacities in the H tree to update
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the cluster/section sequence respect to the new sink location vi−1. The processing does

compare the critical capacities one by one with the newly encountered departing capacity,

starting from the maximum value in H. A critical capacity in H is successfully processed if

it is higher than the current departing capacity. The new departing capacity is ci−1 for the

sink location at vi−1. Now, as a simple illustration, see Figure 3.6, where I1, I2, I3, I4, .... are

the already computed sections arriving at sink vi. The successful processing of a critical

capacity corresponding to a section either fills the gap or the step with its next adjacent

section; therefore they get merged.

I1 I2

I3

I4

µ1
µ2

µ4

ci−1

t

h

I5

µ3

C1 C2

C3

Figure 3.6: Sequence of arriving sections with their critical capacities and the new departing
capacity ci−1

The following two situations can arise to these sections when their corresponding criti-

cal capacity in H is higher than the new departing capacity.

Case 1:

In this case, a stretched section I j of cluster Ck fills the gap with the next adjacent section

I j+1 of the cluster Ck+1 and clusters get merged. Figure 3.6 shows that the leftover evac-

uees of section I1 fills the gap between I1 and I2 as µ1 > ci−1, and as a result clusters C1

and C2 get merged. At this point, the algorithm updates the structure of the CH-tree T by

connecting the cluster head node ηk+1 as a child of node ηk by an edge labelled i−1. After

a successful processing, the algorithm removes the processed critical capacity µ j from the

H tree and calculates a new critical capacity for the section I j that can remove the step be-

tween I j and I j+1 (they are in the same cluster now) using equation (3.5). In equation 3.5,
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we need the height and duration of both sections. We get the height of the sections from the

capacity tree ζ as described in Section 3.4. In this case, the section I j is a simple cluster, so

the Duration of I j is given by

δt j =
∑vl∈VL wl

h j
(3.7)

where VL is the set of vertices got merged into simple cluster Ck (section I j) before cluster

Ck+1 merged with Ck.

Similarly, If the section I j+1 is in a simple cluster, then, computing the duration is similar

to equation (3.7) (ex. I1 and I2 in Figure 3.6). On the other hand, if the section I j+1 is in

a mixed cluster (ex. I2 and I3 in Figure 3.6), we can compute the duration using equation

(3.3) as shown in Section 3.4.

After computation, the algorithm inserts the computed critical capacity in H tree.

Case 2:

A stretched section I j fills the step with the adjacent next section I j+1 and merges into one

section. Figure 3.6 shows that the departing capacity ci−1 is lower than the critical capac-

ity µ3. So, the leftover evacuees of I3 fills the step with I4 and both sections get merged.

The algorithm removes the processed critical capacity µ j from the H tree and calculates the

new critical capacity of section I j (after merged with I j+1) with respect to the next adjacent

section. The following two situations can arise when a step between two sections get filled.

1. If the next adjacent section is in the next cluster, then the algorithm calculates the

critical capacity that can fill the gap between two sections/clusters using equation

(3.6)).

2. If the next section is in the same cluster, then the algorithm calculates the critical

capacity that can fill the step between two sections using equation (3.5). In Figure

3.6, two sections I3 and I4 get merged because the departing capacity ci−1 < µ3.

After that, the algorithm proceeds to the next critical capacity in the H tree to process.
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During processing the critical capacities in the H tree, to keep track which cluster/sec-

tion gets merged with it’s preceding cluster/section, the algorithm stores the information in

CH-Tree T as follows.

• Let the sections I j, I j+1, I j+3... belongs to the cluster Ck. If section I j+1 gets merged

with I j with respect to the sink location at vi for 1 ≤ i < j < n, then the algorithm

add/update the merge information at the cluster head node ηk (as showed in section

3.4).

• If a cluster Ck+1 (simple or mixed) merges with it’s preceding cluster Ck (simple)

for the sink location at some vertex vi, where i < ηk < ηk+1, the algorithm updates

the structure of the CH-tree T by connecting the cluster head node ηk+1 as a child

of node ηk by an edge labeled i. The edge label indicates that the cluster Ck+1 get

merged with cluster Ck for the location of the sink at vertex vi. If cluster Ck+1 was a

mixed cluster, then the cluster Ck becomes a mixed cluster after the merge. So, in that

case, the algorithm also adds the merge information to the node ηk which contains

information regarding the next section with respect to sink vi.

So, for the sink location at vi−1, the algorithm continues to process each of the critical

capacities in H one by one until it finds a critical capacity less than the current outgoing

capacity.

After that, the algorithm eventually sets vi−2 as the new sink location and repeat this process

till vertex v1.

Lemma 3.5. Given a path graph P = (V,E) of n vertices. If the edges have arbitrary

capacities, we can construct CH-tree T in O(n logn) time.
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Proof: For each node u of T , the algorithm calculates the critical capacity and inserts

into the max heap H. Since u is a new node, it takes O(1) time to calculate the critical

capacity while insertion into the heap takes O(logn) time. Next, it processes the critical

capacities in the heap. It takes O(1) time to get the max value from the heap while it

individually takes O(logn) time for each deletion and insertion operation in the heap H

during processing the max value. Also, to compute the critical capacity, it takes O(logn)

time to get the height of the section from the capacity tree ζ. However, for all the node of

T , the algorithm process at most n critical capacities which can be proved similarly to 3.1.

Therefore, the average time to process a critical capacity value for a node u is amortized

O(logn). Thus the total time for all node is O(n logn).

3.6 Use of the CH-tree in the arbitrary edge capacity case

Let us consider, we are given a CH-tree constructed on the path graph P as described in

Section 3.5. Now, we show how we can answer an arbitrary query Q(i, j) for 1≤ i≤ j≤ n.

Similar to Section 3.3, the algorithm first identifies a cluster in the sub-path P[i+1, j]. Un-

like the uniform case, CH-tree in the arbitrary case may have mixed clusters. Therefore, we

also need to identify each section in a mixed cluster and compute the cost of each section to

sink vi. Finally, the result is the sum of the costs of all the sections in the sub-path P[i+1, j],

denoted by cost(i, j).

First, the algorithm gets the index of the node i+ 1 in T in constant time. Then it starts

traversing the tree top-down starting from node i+1. Note that the sub-tree T (i+1) is the

first cluster with node i+1 as the cluster head in the sub-path P[i+1, j].

To identify the shape of a cluster during the traversal, in addition to reaching the rightmost

leaf node of the sub-tree, the algorithm also considers to check the edge labels between two

nodes. So, when traversing a sub-tree T (k), if the algorithm reaches a node l for k < l ≤ j;
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connected to it’s parent node x by an edge labeled s, where k ≤ x < l and s < i, then the

algorithm identifies node l−1 as the end node of the sub-tree T (k). After reaching a cluster

head node, there are two possible situations can arise as follows.

Case 1:

In this case, the cluster is a simple cluster. The algorithm calculates the total evacuation

cost of the cluster/section to sink vi by the same procedure described in section 3.3 using

the equation (3.3).

Case 2:

In this case, the cluster is a mixed cluster. The algorithm identifies the sections in the clus-

ter one by one by following the index of α stored in the first vertex corresponding to each

section. After reaching a section Im, the algorithm checks for the node j in stored α.

• If α < j, then node j is not in the current section. So, σm is given by

σm = δtmhm (3.8)

where the algorithm gets the height hm from the capacity tree ζ and for duration rm is

stored in the preceding section Im−1 except the first section in the cluster.

• If α > j then the node j belongs to the current section. So, the number of evacuees

carried by the section is given by

σm = ∑
ηm≤y≤ j

wy− ∑
1≤p<m

σp (3.9)

where, I1 is first section in the current cluster.

• If α == j then the node j is not in the current section Im but the first vertex of the

next section Im+1, which indicates that a portion of supply of vertex v j might evacuate
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with the supply of Im. Therefore, σm is given by the equation (3.8) and σm+1 is given

by the equation (3.9).

After reaching a section Im the algorithm computes the total evacuation cost of the section

with respect to sink vi (denoted by Ii(m)) using the equation (??), where, sm = τd(um, i) and

add the cost to the result as follows. Then, move to the next section for α≤ j.

cost(i, j) = cost(i, j)+ Ii(m) (3.10)

The algorithm repeats the same procedure for each sub-tree in the sub-path P[i+1, j] until

it reaches the last sub-tree that contains the node j.

Lemma 3.6. Given the CH-tree T for the path graph P = (V,E) of n vertices. If the edges

have arbitrary capacities, we can compute the total cost of an arbitrary sub-path P[i, j] to

sink vi in O(( j− i)logn) time, where i < j.

Proof: This can be proved similarly to lemma 3.3. The only difference is, to compute the

total cost of a section, it takes O(logn) time to get the height of the section from the capacity

tree ζ. Thus the time to compute the total cost of an arbitrary sub-path is O(( j− 1)logn)

for i < j.
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Chapter 4

Using the CH-tree to solve the minisum
1-sink problem on Cycle Networks

4.1 Using the CH-tree in the uniform case

Here, we show how we can implement the CH-tree on the cycle graph G = (V,E) of n

ordered vertices, to compute each L(i, j) and R(i, j) in constant time. First, we convert the

cycle graph G into a path graph P1 of n vertices by a random split edge (say en). Next, we

connect two P1 graphs serially by that same split edge (en) to get a path graph P of 2n(= m)

vertices as follows,

v1 v2 vn v1 v2 vn

Figure 4.1: Path graph P of 2n vertices while the split edge is en

where all the vertices of P have the same supply, and the edges have the same length of

the cycle graph G. The path graph P has all the edges and vertices of G at-least once so that

we can traverse any sub-path of G. Therefore, we construct the CH-tree on P.

In our approach, the algorithm constructs two CH trees on the path P; one for the clock-

wise operation, denoted by TL and other for the counter-clockwise operation, denoted by

TR. The algorithm first constructs the tree TL by placing the sink at every vertex vi ∈V for

1≤ i≤m−1 in descending order of i (clockwise operation). Then, it constructs the tree TR

in a similar fashion but in ascending order of i for 2≤ i≤m (counter-clockwise operation).
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4.1. USING THE CH-TREE IN THE UNIFORM CASE

In Algorithm 4 (line 10), we use the tree TL to calculate L(i, j) and TR to calculate R(i, j).

We use the same construction algorithm described in section 3.2 to construct the CH-tree

TL (construction of TR is similar) on the path graph P.

vi+1

vi

vi+2

vj

vj+1

vj+2

vn

sink

clockwise direction

evacuees flow in

ejsplit edge,

counter-clockwise direction

evacuees flow in

Figure 4.2: Illustration of evacuation of a cycle graph. The evacuees in the path Pk[ j+1, i]
evacuate in counter-clockwise direction, while the evacuees in the path Pc[ j, i] evacuate
in clockwise direction. The sink location and split edge are moving in counter-clockwise
direction.

We recall our common algorithm (Algorithm 4 line 10), where it needs results for a

batch of subsequent queries in both directions (L(i, j) in clockwise and R(i, j) in counter-

clockwise) to find the optimal split edge for each sink location followed by identifying the

optimal location of the 1-sink that minimizes the total evacuation cost. We use the tree TL

to answer the batch of queries like L(i, j),L(i, j+1),L(i, j+2),L(i+1, j+1),L(i+1, j+

2), .........., where the split edge e j and sink vi moves (counter-clockwise) against the flow of

the evacuees (clockwise)(see Figure 4.2). On the other hand, the tree TR answers the batch

of queries like R(i, j),R(i, j + 1),R(i, j + 2),R(i+ 1, j + 1),R(i+ 1, j + 2), .........., where

the split edge e j and sink vi moves in the same direction with the flow of the evacuees

(counter-clockwise). Here, we show how we can answer both type of batch of queries.

First, the algorithm gets the result (total evacuation cost) of the first query L(i, j) in the

same procedure described in section 3.3 and then, temporarily sets cost ′ = L(i, j), when
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j is incremented by 1 in the next query. For a simple illustration, let consider the algo-

rithm identifies the set of clusters CL = {C1,C2,C3, ...,Cp} on the sub-path P[i+1, j] to get

the result of the query L(i, j), where C1 is the nearest cluster to sink vi (a similar procedure

for the first query R(i, j)). Now, using the tree TL we can answer the next queries as follows.

Computing L(i, j+1):

If the next query is L(i, j+1), where the sink remains at the same vertex but the split edge

moves; the algorithm handles two situations based on the position of the node j+1 in TL.

1. If the node j+1 is a child node of some node k for i+1≤ k ≤ j then the node j+1

belongs to the same cluster with node j. So, the node j+1 includes in the last cluster

Cp and the total cost is given by

L(i, j+1)= cost ′−sp ∑
ηp≤y≤ j

wy−
(∑ηp≤y≤ j wy)

2

2c
+sp ∑

ηp≤y≤ j+1
wy+

(∑ηp≤y≤ j+1 wy)
2

2c
(4.1)

where, ηp is the cluster head node of Cp.

2. Otherwise, if the parent node of j+1 is some node x for 1≤ x ≤ i or x = ρ then the

node j+1 is the cluster head of the new cluster Cp+1. So, the cost is given by

L(i, j+1) = cost ′+ sp+1σp+1 +
σ2

p+1

2c
(4.2)

where, σp+1(= w j+1) is the number of evacuees carried by section Cp+1 and sp+1(=

τd( j, i)) is the time when the first unit reaches sink vi.

The algorithm uses the same process to answer any next query in the batch for an incre-

mental J.

Computing L(i+1, j)

Now, we show the calculation of L(i+1, j) from the result of L(i, j), when the sink moves.
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According to the cluster computation described in section 1.1, the first cluster C1 that evac-

uates to vi has vi+1 as the cluster head. So, when the sink moves to i+ 1, the cluster C1

(subtree T (i+1)) may breakdown into multiple clusters (sub-trees) depending on the num-

ber of child of node i+1. So, the algorithm traverses through the child nodes of i+1. If k

is a child node of i+1 then the subtree TL(k) becomes a new cluster respect to the sink at

i+1. So, the total cost is given by

L(i+1, j) = cost ′− τdc(i+1, i)
(

∑
η2≤y≤ j

wy

)
−Ci(1)+ ∑

I∈IL

Ci+1(I) (4.3)

where, η2 is the cluster head node of C2, Ci(1) is the total cost of cluster C1 and IL is the set

of new clusters created after breakdown of cluster C1. The algorithm uses the same proce-

dure for any next query in the batch where the sink moves to the next location. Therefore,

the idea is, when the algorithm answers the query L(i+ 1, j) after L(i, j), it only needs to

traverse the descendants of node i+1.

Now, using the tree TR we can answer the next queries as follows.

Computing R(i, j+1):

If the next query is R(i, j+1), the algorithm handles two situations based on node j.

1. If the node j is the cluster head node, it deducts the cost of j from cost ′. So, R(i, j+1)

is given by

R(i, j+1) = cost ′− spσp−
σ2

p

2c
(4.4)

where, v j(= ηp) in last cluster Cp and σp = w j.

2. If the node j+1 is the parent of j, it re-compute the cost of the last cluster Cp.

R(i, j+1) = cost ′− sp ∑
ηp≤y≤ j

wy−
∑ηp≤y≤ j wy

2c
+ sp ∑

ηp≤y≤ j+1
wy +

∑ηp≤y≤ j+1 wy

2c
(4.5)

The algorithm uses the same process to answer any next query using the TR tree for
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an incremental j.

Computing R(i+1, j):

In this case, unlike L(i+ 1, j) in the tree TL, multiple clusters can merge into one cluster

as a new vertex vi encountered at the front of the evacuation path to the sink vi+1. So, the

algorithm traverses through the immediate child nodes of i. If k is a child node of i then

the substree T (k) merged with i for sink at i+1. Therefore, the algorithm deducts the cost

of each subtree spanned by each child node of i and add the cost of T (i) to cost ′ to get

R(i+1, j).

R(i+1, j) = cost ′− ∑
I∈IL

Ci(I)+ s1σ1 +
σ2

1
2c

+ τdk(i, i+1) ∑
l≤y≤ j

wy (4.6)

where, C1 is the first cluster with vi as the cluster head. So, σ1 = ∑i≤y≤l−1 wy, where l−1

is the last node of sub-tree T (i). For, any next query in TR where sink location moves, the

algorithm uses the same procedure to answer the query.

Lemma 4.1. Given the CH tree TL for the path graph P = (V,E) of n vertices. If the

edge capacities are uniform, we can answer each query in a batch of subsequent query like

L(i, j),L(i, j+1),L(i, j+2),L(i+1, j+1).... in O(1) time.

Proof: From lemma 3.3, it takes O( j− i) time to answer a single query L(i, j) for

i < j. For each next query when j is incremented by 1, it takes O(1) time to answer the

query. But when i move to i+1 in the next query, the subtree T (i+1) can breakdown into

multiple subtrees (as a cluster breakdown into multiple clusters) and the algorithm traverse

the immediate child nodes of T (i+1). However, traversing the immediate child nodes for

all the values of i takes at most O(n) time. Therefore, the average time to answer each query

in the batch of subsequent query takes amortize O(1) time by using the CH tree TL.
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4.2 Using the CH-tree in the arbitrary case

Here we show how we can implement the CH-tree on the simple cycle graph G = (V,E)

of n ordered vertices, to compute each L(i, j) and R(i, j) efficiently. We use the same proce-

dure described in section 4.1 to get our desired path graph P (see Figure 4.1) from the cycle

graph G. Here we also construct two CH-trees on the path P; one in the descending order

of the vertices vi for 1 ≤ i ≤ n− 1 (clockwise operation), denoted by TL and other in the

ascending order of vi for 2≤ i≤ n (counter-clockwise operation). We use the construction

algorithm described in section 3.5 to construct the CH-tee TL (construction of TR is similar)

on the path graph P.

Now, we show how we can answer the same type of batch of subsequent queries men-

tioned in section 4.1 using the trees TL and TR constructed for the arbitrary case.

First, the algorithm answer the first query (total evacuation cost) L(i, j) using the same

procedure described in section 3.6 and then, temporarily sets cost ′ = L(i, j) when j is in-

cremented by 1 in the next query. For a simple illustration, let consider the algorithm

identifies the set of sections IL = {I1, I2, I3, ...., Ip} on sub-path P[i+ 1, j] while answering

the query L(i, j), where I1 is the nearest section to the sink vi (a similar procedure for the

first query R(i, j) using tree TR). Now using the tree TL we can answer the next queries as

follows.

Computing L(i, j+1):

If the next query is L(i, j+1), where the sink remains at the same vertex but the split edge

moves. The algorithm handles three situations based on the position of the node j+1.

1. If the node v j+1 is in the same section Ip with v j then the total cost is given by

L(i, j+1) = cost ′− Ii(p)+ sp ∑
ηp≤y≤ j+1

wy +
(∑η1≤y≤ j+1 wy)

2

2hp
(4.7)
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So, v j+1 includes in the last section Ip and the algorithm updates the cost of the last

section Ip to get the result of L(i, j+1).

2. If the node v j+1 is in the same cluster Cm with v j but in the next section Ip+1 then the

algorithm first updates the cost ′ by updating the total cost of section Ip.

cost ′ = cost ′− Ii(p)+ spσp +
σ2

p

2hp
(4.8)

where σp = hpδtp . Then it adds the cost of the next section Ip+1 to get the result of

L(i, j+1) as follows

L(i, j+1) = cost ′+ sp+1σp+1 +
σ2

p+1

2hp+1
(4.9)

where, σp+1 = ∑ηm≤y≤ j+1 wy−∑I∈IL σI , where IL is the set of section in cluster Cm

before the section σp+1.

3. If the node j+1 is in the next section Ip+1 that belongs to the next cluster Cm+1 then

v j+1 is the cluster head of the cluster. The algorithm sets σp+1 = w j+1 and the total

cost of L(i, j+1) is given by

L(i, j+1) = cost ′+ sp+1σp+1 +
σ2

p+1

2hp+1
(4.10)

Computing L(i+1, j):

Now, we show how we can answer the next query L(i+ 1, j) after computing L(i, j). Ac-

cording to the construction of the CH tree TL, moving the split edge e j does not impact the

construction of the clusters but moving the sink location does. In Algorithm 4, whenever

we move the sink location, a cluster can break down into multiple clusters or the number of

sections in a cluster can increase.
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When the algorithm calculates L(i+ 1, j) after L(i, j), the sink moves in the opposite di-

rection of the flow. Thus, the sub-trees (or clusters) with edges or stored information with

respect to sink vi will must break down into multiple sub-trees (or clusters).

lll + 1

k

T (k)

Figure 4.3: A sub-tree (or cluster) T (k) rooted at node k (or k is the cluster head) with three
child nodes

Therefore, during the computation of L(i, j), the algorithm maintains a min-priority

queue γ that contains the cluster head nodes in the sub-path P[i, j]. In the min-priority

queue, the cluster heads are sorted by the index of their minimum edge label or stored in-

formation. It takes O(logn) time to insert/delete an element in/from the priority queue. At

the beginning of the computation of L(i, j), the priority queue γ = /0. Let us consider the

Figure 4.3, the sub-tree T (k) with three child nodes of root node k. Two of the edges be-

tween the child nodes and node k are labelled with index l, while another is labelled with

index l + 1. If the sub-tree T (k) is in the path P[i, j], then l ≥ i. The algorithm stores the

cluster head node k in γ according to the smallest index of the edge label, which is l. As

the algorithm runs a batch of subsequent queries, every time the algorithm runs the query

L(i, j + 1) after L(i, j) it updates γ by inserting the index of the cluster head of any new

cluster encounters in the path. Thus, the overall idea is to update the list in γ for the subse-

quent queries when j is incremented by 1 and process the cluster head nodes in tree γ when

i is incremented by 1.

Therefore, when the algorithm needs to process a query where the sink location moves

59



4.2. USING THE CH-TREE IN THE ARBITRARY CASE

from i to i+ 1, it starts processing the cluster heads from the top of the queue γ whose

corresponding index of the sink location is i. More precisely, whenever we move the sink

from i to i+1, the algorithm only processes the clusters which have the index i as the sink

location. When a cluster head node has been processed, the algorithm removes it from the γ

and inserts the cluster heads of the newly generated/modified clusters. Processing a cluster

is defined as deducting the total cost of that cluster from L(i, j), and then adding the cost

of the newly generated cluster/s after the breakdown of the processed cluster. At the same

time, the algorithm also computes the total supply W = ∑C∈CL σC, where CL is the set of

clusters which are processed in γ. Thus, L(i+1, j) is given by

L(i+1, j) = cost ′−∑
k∈γ

(
∑
I∈Ik

Li(I)+ ∑
I∈Il

Li+1(I)
)
− τdc(i+1, i) ∑

i+2≤x≤ j
wx−W (4.11)

where, k is a cluster in γ, and Ik is the set of sections in k and Il is the set of sections newly

revealed after the breakdown of the cluster k.

Now we show how we can answer the next queries after answering R(i, j) using TR tree.

Computing R(i, j+1):

If the next query is R(i, j+1), the algorithm handles three situations based on the location

of j.

1. If j is the cluster head then R(i, j+1) can be computed as follows.

R(i, j+1) = cost ′− spσp−
σ2

p

2hp
(4.12)

where, j is in the last section Ip and σp = w j.

2. If j is the first vertex of the section Ip except the first section of the cluster Cm then

the algorithm first updates the cost ′ by deducting the cost of the section Ip and Ip−1
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as follows.

R(i, j+1) = cost ′− Ii(p)− Ii(p−1) (4.13)

Then, calculates σp−1 = ∑ηm≤y≤ j+1 wy −∑I∈IL σI , where IL is the set of sections

before the section Ip−1. So, R(i, j+1) is given by

R(i, j+1) = cost ′+ sp−1σp−1 +
σ2

p−1

2hp−1
(4.14)

3. If j and j + 1 belongs to the same section Ip then we can use similar procedure of

case (2) described above and obtain R(i, j+1) as follows.

R(i, j+1) = cost ′− Ii(p)+ spσp +
σ2

p

2hp
(4.15)

The algorithm uses the same procedure for any next query where j is incremented by 1.

Computing R(i+1, j):

We use a procedure similarly to compute L(i+ 1, j). In this case, the sink moves in the

direction of the flow, so, the vertex i encountered in front of the evacuation path to i+ 1.

Therefore, multiple clusters/sections can merge into one cluster/sections in the path P[i, j].

So, like L(i, j), during the computation of R(i, j) the algorithms maintains a min-priority

queue γ that contains the index of the cluster heads in the sub-path P[i, j]. In the min-

priority queue, the cluster heads are sorted by the index of their minimum edge label or

stored information. Now, similar to L(i+1, j), R(i+1, j) is given by

R(i+1, j) = cost ′−∑
k∈γ

(
∑
I∈Ik

Ri(I)+ ∑
I∈Il

Ri+1(I)
)
+ τdk(i, i+1) ∑

i−1≤x≤ j
wxW (4.16)

where, k is a cluster in γ, and Ik is the set of sections in k and Il is the set of sections newly

computed after the merge operation.
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Lemma 4.2. Given the CH-tree TL for the path graph P = (V,E) of n vertices with arbi-

trary edge capacities. We can answer each query in the batch of subsequent query like

L(i, j),L(i, j+1),L(i, j+2),L(i+1, j+1))... in O(logn) time.

Proof: From lemma 3.6, it takes O(( j− i) logn) time to answer the single query L(i, j)

for i < j. So, for each next query when j is incremented by 1, it takes O(logn) time to

answer the query. But when the sink move from i to i+1, any sub-tree T (u) can breakdown

into multiple sub-trees. To re-calculate the cost of those sub-trees, the algorithm traverses

each subtree T (u) where u is stored in a min-priority queue tree γ with respect to the index

of the sink location. However, re-traversing the nodes stored in γ tree for n sink locations

takes O(n) time (can be proved similarly to lemma 3.1. Thus average time to answer each

query in the batch of subsequent query takes amortize O(logn) time.

4.3 Main Theorem

If two CH trees TL and TR are given for a dynamic network N = (G,w, l,c,τ), where

G = (V,E) be an undirected cycle graph then we solve the minsum 1-sink location problem

by implementing the CH tree in our main algorithm described in section 2.3, where CH-tree

is the data structure we use to achieve objective 2.

Theorem 4.3. (a) The minsum 1-sink location problem on dynamic cycle networks with

arbitrary edge capacities can be solved in O(n logn) time.

(b) The same problem can be solved in O(n) time if the edge capacities are uniform.

As a proof of Theorem 4.3, we already analyzed the time complexities in Lemmas 2.5,

4.1, 4.2.
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Chapter 5

Algorithm for k-sink evacuation
problem on cycle networks

In this chapter, we describe an O(n) algorithm that identifies the optimal evacuation pro-

tocol for k-sink evacuation problem on simple cycle networks, mentioned in section 1.1.

Note that the same approach also solves the problem on dynamic path networks. First, we

define the problem rigorously with some extra terms added to the common terms we use

throughout the description of the sink location problem. Then we describe the techniques

we use to solve the problem efficiently followed by the overall algorithm.

5.1 Problem definition

Here, we consider the same dynamic network N = (G,w, l,c,τ,S) that we defined in

section 2.1. In addition, a set of k-sink locations S = {x1,x2, ...,xk} is given, where S ∈ V

and 2 ≤ k ≤ n. In graph G, vertices or sinks can be ordered either clockwise or counter-

clockwise. Note that, in our description, we consider the vertices and the sinks are ordered

counter-clockwise as shown in figure 5.1, unless otherwise stated.
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Figure 5.1: Cycle graph G of counter-clockwise ordered n vertices and k sinks,

Unlike the sink location problem, the evacuee flow is distributary in this problem, which

means the evacuees at a vertex can split to different sinks to minimize the average evacua-

tion time for each evacuee. Moreover, we are also considering the uniform capacity of the

edges to solve this problem.

A simple cycle graph G with given k sink locations can be divided into k sub-problems

each consists of a path graph P. Note that in this chapter, unless stated otherwise, the path

graph P is defined as follows.

Definition 5.1. A path graph P = (V,E) of ordered set of vertices V = {v1,v2, ...,vm} and

ordered set of edges E = {e1,e2, ...em−1}, where m ≥ 2 and k = 2 sinks are located at the

vertices v1 and vm.

So, for the path graph P, we need to determine the amount of supply (≥ 0) evacuate to

v1 so that the rest evacuate to vm (or vice verse). Let consider a point p′ on P that divides

the total supply of P to evacuate between two sinks, we call this point the split point. In

minsum objective, the cost is define on the each evacuee located at the vertices. So, the

total cost of P is define as the total cost to evacuate all the supply located at the vertices of

P to the designated sinks.
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5.2. PROPERTIES

Let, sump′(P) denote the cost of P respect to split point p′, where Lp′(P) (resp. Rp′(P))

represents the total cost of the supplies that evacuate to the left sink v1 (resp. right sink vm).

Then,

sump′(P) = Lp′(P)+Rp′(P) (5.1)

Then the optimal cost of P is the minimum among the total costs with respect to each

possible split points, denoted by sum(P).

Definition 5.2. Optimal split point

The split point on a path graph P is called the optimal split point for which the total cost

of P is minimized.

A split point can either be on a vertex or edge, called by split vertex or split edge

respectively. So, sum(P) is given by

sum(P) = minp′∈(V∪E)

(
sump′(P)

)
(5.2)

So, the optimal evacuation cost for the given cycle graph G is the summation of the results

of the sub-problems.

sum(G) = ∑
1≤i≤k

sum(Pi) (5.3)

5.2 Properties of the evacuation problem

Here, we show the properties that identify the optimal split point on the path graph P.

The following two cases can arise based on the location of the split point.

Case 1:

In this case, the split point is on an edge ei ∈ E, and therefore, computing sumei(P) is

straightforward. The vertices at the left of ei evacuate to v1 and vertices at the right evacuate

to vm. Then,

sumei(P) = Lei(P)+Rei(P) = ∑
C∈CL

L1(C)+ ∑
C∈CR

Rm(C) (5.4)
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where, CL (resp. CR) is the set of clusters evacuate to the left sink v1 (resp. right sink vm).

Case 2:

In this case, the split point is on a vertex vi ∈V −{v1,vm}. So, to minimize the total evacu-

ation cost, the supply wi at vi may split into two sinks. Let, αi (≥ 0) is the amount of supply

from vi goes to the left sink v1 and the rest (wi−αi) goes to vm, where αi is the optimal

value for which sumvi(P) is minimized.

Now we show how the algorithm calculates the value of αi for a split vertex vi.

Proposition 5.3. Given the path graph P, if the vertex vi ∈ V −{v1,vm} is the split vertex

and αi is the split amount of supply of vi evacuate to one of the sinks then the different

values of αi for 0 ≤ αi ≤ wi does not impact the total evacuation cost of the clusters on P

except the two clusters adjacent to the left and right of vi.

Let, Cl and Cr are the clusters adjacent to vi at the left and right side respectively and the

vertices v j = (ηl) and vk(= ηr) are the cluster heads, where 1 < j ≤ i ≤ k < m. Then, Cl

(resp. Cr) is the last cluster evacuate to v1 (resp. vm). Let, X(αi) denote the total evacuation

cost of the clusters Cl and Cr, where XL(αi) (resp. XR(αi)) represents the cost to evacuate

the cluster Cl (resp. cluster Cr). Then,

X(αi) = XL(αi)+XR(αi) (5.5)

where,

XL(αi) =

(
αi +(w(i, j)−wi)

)2

2c
+
(
αi +(w(i, j)−wi)

)
τd( j,1)

so,

XL(αi) =
α2

i
2c

+αi

((w(i, j)−wi)

c
+d( j,1)

)
+

(w(i, j)−wi)
2

2c
+w(i, j)τd( j,1)
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where, w(i, j) is the sum of the evacuees in the path P[i, j]. In a similar manner,

XR(αi) =
α2

i
2c
−αi

((w(i,k)−wi)

c
+ τd(k,m)+

wi

c

)
+

w2
i

2c

+wi

((w(i,k)−wi)

c
+ τd(k,m)

)
+

(w(i,k)−wi)
2

2c
+w(i,k)τd(k,m)

As we are only interested in αi, we can write equation (5.5) with the values of XL(αi) and

XR(αi) as follows.

X(αi) =
α2

i
c
+αi

((w(i, j)−wi)

c
+ τd( j,1)− (w(i,k)−wi)

c
− τd(k,m)− wi

c

)
+ constant

(5.6)

Now, by differentiating equation (5.6) by αi, we get,

αi =
1
2

(
w(i,k)−w(i, j)+wi

)
+

cτ

2

(
d(k,m)−d( j,1)

)
(5.7)

So, We use equation (5.7) to determine the optimal αi value for the split vertex vi ∈

V −{v1,vm}.

Finally, to identify whether a split point is on an edge or on a vertex, we go through follow-

ing observations based on the value of α.

Claim 5.4. Given the path graph P, if there are two adjacent vertices vi and vi+1 such that

αi ≥ wi and αi+1 ≤ 0 then the edge ei is the split point, where 2≤ i≤ m−2.

Claim 5.5. Given the path graph P, if there are two vertices vi−1 and vi+1 such that αi−1 ≥

wi−1 and αi+1 ≤ 0 then the vertex vi is the split vertex, where 3≤ i≤ m−2.

Moreover, regarding the number of split vertex in a given path P, we prove the following

lemma.
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5.3. EFFICIENT ALGORITHM

Lemma 5.6. For the given path P, there can be at most one split vertex.

Proof: Given the path graph P of m ≥ 4 vertices. Let consider two split vertices vi

and v j on the path, where 2≤ i < j ≤ m−1. If (wi−αi)≤ α j then the (wi−αi) evacuees

cross each other path for d(i, j) distance. Therefore, we get an extra transport cost of

2
(
(wi−αi)τd(i, j) due to the path overlap. So, at most one split vertex can gives us the

minimum total cost and the lemma is proved.

5.3 Efficient Algorithm for the k-sink evacuation problem

Here, we show the O(n) algorithm to solve the problem on dynamic cycle networks.

First, the algorithm decomposes the problem into k sub-problems, where each sub-problem

consists of the path graph P. A sub-problem is to find the optimal split point (optimal evac-

uation protocol) on P that minimizes the total evacuation cost of the path graph P.

Let consider a set of path graph ρ = {P1,P2, ....,Pq} such that the path Pi ∈ ρ has exactly

two sinks located at two ends, where q = k. Then, for each path graph Pi, the algorithm

identifies the optimal split point and compute sum(Pi). Finally, the summation of the q

values is the optimal evacuation cost on the cycle graph G.

Here, we show the computation of sum(P1) (computation for all other sum(Pi) is similar

for 2 ≤ i ≤ m). Basically, the algorithm computes sumvi(P1) for all the vertices where

2 ≤ i ≤ m− 1 in the ascending order of i (computing in descending order of i gives the

same result). Note that the algorithm automatically gets the sumei(P1) for all ei ∈ E in

the computation process of sumvi(P1). The minimum sump′(P1) is the result for P1, where

p′ ∈ (V ∪E).
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5.3. EFFICIENT ALGORITHM

First, the algorithm calculates the α2 for the vertex v2 in O(1) time as follows.

α2 =
1
2

(
w(2,k)−w(2,2)+w2

)
+

cτ

2

(
d( j,m)−d(2,1)

)
(5.8)

Let, Cl and Cr are the last clusters on left and right of v2 evacuate to the sinks v1 and vm

respectively. So, in equation 5.8, v2 and vk are the cluster heads of Cl and Cr respectively.

Note that the algorithm computes the clusters on the left side of split vertex in runtime. But

to get the last cluster on right side efficiently, we do an O(n) pre-processing from left to

right to store the vertices responsible as a cluster head. At the end of the pre-processing,

we get a total cost sume1(P1) and a list of vertices so that we can find the first cluster head

for any given path P[x,y] where 2≤ x≤ y≤m−1. Then, the algorithm calculates the total

cost of P1 with respect to split vertex v2 as follows,

sum2(P1) = L2(P1)+R2(P1)

= ∑
C∈CL

L1(C)+ ∑
C∈CR

(Rm(C) (5.9)

from equation (2.9), where CL and CR are the set of clusters evacuate to v1 and vm respec-

tively. Calculating L2(P1) is straightforward as there is no unknown intermediate vertices

between v2 and v1. So,

L2(P1) = σlsl +
σ2

l
2c

(5.10)

where, the number of evacuees carried by the section Cl , σl = α2 and sl = τd(2,1) is the

time when the first unit of cluster Cl ∈CL reaches sink v1 (from equation (??).

On the other hand,

R2(P1) = Re1(P1)−α2sr−
σr

2c
α2 (5.11)

where, sr = τd(k,n) and (σr/2c) is the average waiting time per evacuee for cluster Cr. So,

equation (5.10) and (5.11) give us the total cost of P1 with respect to split vertex v2.
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5.3. EFFICIENT ALGORITHM

Now, suppose that for some integer i satisfying 2 ≤ i < m− 1, we have already computed

the αi and then sumvi(P1), where Cl and Cr are the last clusters to evacuate v1 and vm

respectively. Here we show how the algorithm computes the total cost respect to next

splitting point (ei or vi+1) from the result of vi. First, we temporary set cost ′R = Rvi(P1),

cost ′L = Lvi(P1) and W ′R = (wi−αi)sr +
σr
2c(wi−αi), W ′L = αisl +

σl
2cαi. Then, the algorithm

calculates the αi+1 by a equation similar to equation 5.7. Next it compares, if αi ≥ wi and

αi+1 ≤ 0 then it satisfies claim 5.4 and ei is the split point. So, sumei(P1) is given by

sumei(P1) = sumvi(P1) (5.12)

So, sumei(P1) is the optimal cost of P1, therefore the final result. On the other hand, If it

doesn’t satisfy the condition of claim 5.4 then the algorithm compares, if αi−1 ≥ wi−1 and

αi+1 ≤ 0 then it satisfies the condition of claim 5.2 and vi is the optimal split point. So,

sumvi(P1) is the optimal cost of P1.

If the condition of the both claims 5.4 and 5.2 are not true then the algorithm compute

Rvi+1(P1) as follows (computation of Lvi+1(P1) is similar).

Rvi+1(P1) = Rvi(P1)−W ′R−αi+1sr−
σr

2c
αi+1 (5.13)

where, Cr is the last cluster on the path P[i+2,n−1]. So,

sumvi+1(P1) = Li+1(P1)+Ri+1(P1) (5.14)

After that the algorithm does the same process for the next split point vi+2 and continue

until it finds the optimal split point for P1. The algorithm uses the same procedure to solve

all the q sub-problems and thus solve the k− sink on simple cycle graph.

Theorem 5.7. The minsum k−sink evacuation problem on a dynamic simple cycle network
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5.3. EFFICIENT ALGORITHM

with uniform edge capacity can be solved in O(n) time.

The algorithm divides the simple cycle graph into k path graphs. Then, to find the

optimal split point for each path graph, it visits each node in the path graph at most once.

Thus the k optimal points for the cycle graph can be found in O(n) time.
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Chapter 6

Conclusion

Facility location problem is a problem in dynamic networks motivated by evacuation plan-

ning during different natural disasters all over the world. Researchers mainly work on these

problems with two objective functions, one is known as the “minmax criterion” where we

need to optimize the evacuation completion time, and the other is the “minsum criterion”

where we need to optimize total evacuation time of all the evacuees. The minsum is harder

than the minmax criteria as the objective cost function deals with the evacuation cost of all

the supply vertices, not just the vertex causing maximum evacuation cost. Therefore, there

is no known result for any special graph except the path graph with the minsum objective

function. We motivated to work with the minsum objective function from the desire of

minimizing the total evacuation cost of all the evacuees to reduce the average psychologi-

cal stress for each evacuee.

In this thesis, we work on two branches of facility location problem based on the given

condition of the sink/s. If the location of the sink/s is given then we need to find the op-

timal evacuation protocol so that the minsum objective function is obtained, we call it the

“evacuation problem.” On the other hand, if only the total number of the sink is given but

not their location then we need to find the optimal location of the sink/s so that the minsum

objective function is obtained, we call it the “sink location problem.”

In sink location problem, we studied two special cases of the 1-sink location problem on
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cycle networks based on the capacity of the edges. We proposed an O(n) time algorithm

based on a data structure that solves the problem with the uniform capacity of the edges.

We extend the data structure to overcome the complexities of the cycle graph with arbitrary

edge capacities and solve the problem in O(n logn) time, using the same algorithm.

The Evacuation problem has been extensively studying in different variants by several re-

searchers. We are the first to study the evacuation problem in the minsum objective func-

tion. As a first step, we proposed an O(n) time algorithm that finds the optimal evacuation

protocol on cycle networks with k sink locations, when edge capacities are uniform.

6.1 Directions for future research

The algorithm and data structure presented in this thesis open several possibilities for

future research. First, the 1-sink location problem can be extended to 2-sink or k-sink lo-

cation problem. It’s always challenging to solve the minsum sink location problem in a

more general graph efficiently. Our approach can be extended to solve the 1-sink location

problem on unicycle network.

The result we presented for the k-sink evacuation problem can be extended to solve the

problem on dynamic unicycle network. Our proposed lemmas and theorems can be a good

direction to solve the problems in more general graphs.
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