












































































1. Assuming the Hamiltonian cycle is not in ntmicrical (or alphabet ic) order use a 

counting sort lit create anotlier array that is the inverse; of the permuta t ion of 

1,2..../* that represents the Harniltonian cycle*. 

2. For e;»:h of the; unordered lists e>f ihe> visibility graph use; a bucket, sort to put 

the nodes into Hamiltonian cycle order. Here the inverse array will be used to 

conwrt. the actual node; (or vertex) number into the appropr ia te location of the 

Hamil tonian cycle. 

All the; elements of the Hamiltonian cycle will be unique integers in the range 

1.2, ...n, so count ing sort can be used here, and s tep 1 of the a lgori thm uses 0(n) 

t ime. T h e bucket sort, assumes that, the input is well dis t r ibuted over the range of 

buckets. Tf the length of each list is the; bucket, size for t ha t list is set to be w/U. 

The; fact that t he e;ntriejs in a list, are unique numbers in the range 1.2. ...n ensures the 

entries in each list are distr ibued into various buckets . T h u s all U bucket, sor ts will 

be completed in 0(1\ + !•> 4- ...ln) = 0(E) t ime. Therefore the entire ordered visibility 

graph can be computed in 0(E) t ime, and furthermore, the space used is also 0(E). 

3.3 Summary 

This chapter presented an algori thm t h a t converts the ordered visibility graph of a 

simple; polygon to its Hamiltonian cycle in 0(E) t ime, where E is t he number of 

etlge* of the; given visibility graph. A second algori thm in the chapter converted 

the Hamil tonian cycle and unordered visibility graph of a simple polygon to the 

corresponding ordered visibility graph in 0(E) t ime. Both a lgor i thms are opt imal . 
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These two results a re interesting primarily because they link the results of two 

previously unrelated subareas in the visibility l i terature: line segments and polygons. 

For the reconstruction of a set of line segments. 5 . from the endpoint visibility graph. 

l '„„(5) ts frequently supplied, whereas for the reconstruction of a polygon. P . from its 

vertex visibility graph, it is generally \ 'v(fy) and the Hamiltonian cycle that is con

sidered. Neither of these two reconstruction problems has been completely resolved 

in the general case. 

Tn the next, chapter , t he reconstruction of an orthogonal polygon is considered, 

using line of sight visibility in the direction of each of the sides of the polygon. 
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Chapter 4 

Orthogonal Polygon 
Reconstruction 

An o r t h o g o n a l p o l y g o n is a polygon tha t has an internal angle of f I /2 (CONVEX) 

or 3T1/2 (REFLEX) radians a t all corners. Tn this chapter , it is assumed t h a t the 

orthogonal polygon is simple, has more than four vertices, and has no collinear sides. 

Tn section 4.6, the collinear sides assumption is discussed. A s tab of a vertex of a 

simple polygon is an indication of the next side of the polygon seen by the vertex 

in the direction of the side. Both interior and exterior s t abs of t h e polygon are 

specified. Every vertex of an orthogonal polygon has two s tabs , one in the horizontal 

direction, and one in the vertical direct ion. Tf there is no side t h a t is s tabbed in t h e 

indicated direction, the s t a b is said to be a s tab t o i n f i n i t y (denoted as oo). T h e 

H a m i l t o n i a n c y c l e of a polygon is a list of its vertices, in the order they appea r 

around the polygon. 

This chapter contains two algor i thms; the second one relies on information pro

vided by the first. T h e input to t h e a lgor i thms is the set of s tabs and the Hamil tonian 

cycle of an unknown orthogonal polygon. T h e first a lgori thm determines whether each 

vertex is forced by the s t ab information to be CONVEX or REFLEX. Th is is equiva-
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lent to determining whether the s t ab is through the interior or exterior of the polygon, 

since s tabs from convex vertices an; on the exterior of the polygon and from rellex 

vertices are interior to the polygon. T h e second algori thm reconstructs an orthogonal 

polygon t h a t is consistent, with the input s tabs and Hamiltonian cycle. (Actually, 

the reconstructed polygon is just one of a family of polygons that satisilies the input 

information.) Define the O r t h o g o n a l P o l y g o n R e c o n s t r u c t i o n ( O P R ) problem 

to be the reconstruction of an orthogonal polygon given only its Hamil tonian cycle 

and s tabs . F igure 4.1 is an example of the input, information required by tin; O P R 

problem. 

Side Orientation Stab 

ab horizontal oo oo 
be vertical oo ef 
cd horizon t;U ffi 0 0 

de vertical oo oo 
cf horizontal 0 0 0 0 

vertical oo ab 
Kh horizontal be fa 
hi vertical ab no 

i.i horizontal ft! OO 

ia vertical 0 0 0 0 

Figure 4 .1 : Example Inpu t for the O P R Problem 

T h e remainder of this chapter is organized in six sections. Section 4.1 defines and 

characterizes horizontal rectangles t h a t are delimited by the horizontal s tabs and the 

sides of the polygon. These rectangles are inst rumental in determining the convexity 

of the vertices of the orthogonal polygon. Section 4.2 describes how to identify each 

of the horizontal rectangles. T h e first a lgori thm, determining whether each vertex is 

CONVEX or REFLEX, is presented in section 4.3. T h e algori thm to reconstruct the 
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orthogonal polygon is in section 4.4. Section 4.5 compares this O P R result to other 

similar results in the l i terature, ami section 4.G presents an O P R rout ine that allows 

the reconstructIHI polygon to have collinear ski ts . 

-<• 

<s -

Figure 4.2: An Orthogonal Polygon with Horizontal S tabs 

4.1 Horizontal Rectangles 

T h e first, algori thm of this chapter determines whether each vertex is CONVEX or 

REFLEX. In order to do this , the plane containing the polygon t o be reconstructed 

is part i t ioned into rectangles, and those rectangles are classified. I t is from this 

classification tha t the convexities of vertices are established. 

Figure 4.2 is an example of an orthogonal polygon with all horizontal s tabs drawn 

in. Notice that, the plane is divided into a collection of different rectangles. I t is 

assumed that, those rectangles with s tabs to infinity are completed by a pseudo side 

a t infinity. Depending on how the s tabs hit t he sides of the polygon, twelve different 

types of rectangles, as enumerated in figure 4.3, are possible, ignoring horizontal and 

vertically symmetr ic s i tuat ions . 

Notice t h a t even* s t a b is pa r t of exactly two rectangles, one above and one below 
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Typo 1 

T y p e 5 

->• 

Type 2 

<-

->• 

Type 6 

->-

Type 3 

T y p e 7 

< - -I— 

Type -1 

< - -I 

Type 8 

•<- - > 
-> 

->• 

T y p e 9 Type 10 T y p e 11 Type 12 

Figure 4.3: T h e Twelve Possible Horizontal Rectangles 

it. For the previously s ta ted assumption of no collinear sides, there; exists a unique top 

most side and a unique bo t tom most side, each of which part ial ly bound degenerate 

rectangles as shown in figure 4.4. These will be called type 0 rectangles and are easily 

identifiable. 

-<• 

Figure 4.4: T h e Two Type 0 Rectangles 

Lemma 4 Aside from Ike two type 0 rectangles, rectangles of tyjivs 1 through 12 are 

the only possible rectangles created from the sides of an orthogonal polygon and its 
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horizontal slabs. 

Proof: Every rectangle lias exactly four corners. It is possible tha t zero to four of 

those corners correspond to vertices of the polygon. 

• Case 0: If zr.ro corners of a rectangle correspond to vertices of the polygon, 

4 ' 
then; is ^ ^ J = 1 possible rectangle. The only rectangle tha t has no polygon 

vertices on its corners is type 12. 

Case 1: If one corner of a rectangle corresponds to a vertex of the polygon, 

there are y ^ j = 4 possible locations for t h a t correspondence. At tha t corner, 

the polygon could turn toward the rectangle, or away from it, as in figure 4.5 

thus giving 4 x 2 = 8 rectangles. Ignoring the four horizontal and vertically 

Figure 4.5: Turn ing Toward and Away from Rectangle 

symmetr ic s i tuat ions leaves only two different rectangles. T h e two rectangles 

with one corner corresponding to vertices of the polygon are types 10 and 11 . 

• Case 2: Tf two corners of a rectangle correspond to vertices of the polygon, there 

are ^ ^ ^ = 6 possible locations for those correspondences, as shown in figure 

4.6. 
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Figure 4.G: Two Vertices Correspond to Rectangle Corners 

Notice t h a t locations rz.l and n.2 differ by a vertical Hip, and thus will he con

sidered as equivalent. Locations 6.1 and b.2 and locations r . l and r.2 differ from 

their pa r tne rs by a horizontal flip, and thus will each be considered equivalent. 

— Tn case «, the vertices can both turn away from the rectangle, one turn 

toward the rectangle and one turn away from the rectangle, or both turn 

away from the rectangle. Th is gives three possible configurations, tha t 

correspond to rectangles of types 1, 2, and 3. 

— Tn case /», the polygon vertices can turn in the same three directions as in 

case a. These configurations are rectangles of types 4, 5, and 0. 

— Tn case c, the vertices can only turn toward the rectangle ami be consecutive 

on the Hamil tonian cycle. Tf ei ther or both turned away, a s t ab would 

b e created tha t defines par t of the rectangle, and the vertex would then 

not correspond to a corner of the rectangle. If both turned away from the 

rectangle and were not consecutive on the Hamil tonian cycle, collinear side's 

would be created. T h e one rectangle obtained here is a type 9 rectangle. 
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Thus , there an ; seven possible rectangles that, have two corners tha t correspond 

to vertices of the polygon. 

• Case 3 : Tf three corners of a rectangle correspond to vertices of the polygon, 

there are ^ ^ ^ = 4 possible locations for those correspondences, all of which 

are symmetrical ly related, leaving only one possibility. 

— T h e two of the three vertices cannot tu rn away from the rectangle, since 

this would result in an orthogonal polygon with collinear sides, violat ing 

one of the assumptions of this chapter . 

— T h e three vertices could have one tu rn ing away from the rectangle, and 

two tu rn ing toward it. However, in order to avoid collinear sides, t he three 

vertices must be consecutive on the Hamil tonian cycle of the polygon. This 

is a type 7 rectangle. 

— T h e three vertices could all tu rn toward the rectangle. However, in order 

to avoid collinear sides, t he three vertices must then b e consecutive on the 

Hamil tonian cycle of the polygon. Th i s is a type 8 rectangle. 

Thus , there are two possible rectangles t h a t have three corners t h a t correspond 

to vertices of the polygon. 

• fos-ft 4: If the four corners of the rectangle correspond to the vertices of a 

polygon, there is ^ * ^ = 1 possible location for this correspondence. However, 

this case is not possible under the given assumpt ions of: a s imple polygon with 

more than four vertices and no collinear sides. 
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Therefore, there are exactly twelve possible configurations of rectangles created from 

the sides and horizontal s tabs of an orthogonal polygon, and they are the types 1 

through 12 rectangles as defined previously. • 

Lemma 5 Even/ vertex of the polygon is part of exactly three horizontal rectangles. 

Proof: Refer to figure 4.7. There is one horizontal rectangle above and one below 

Above S t ab 
1 -=>. 

Behind Vertex Below S t a b 

Figure 4.7: A Vertex is P a r t of 3 Rectangles 

every horizontal s t a b , and one rectangle behind the vertex. • 

Corollary 6 Around each vertex, there is either: 

• one horizontal rectangle above and two below it,, or 

• two horizontal rectangles above and one below it. 

Proof: Since these are the horizontal rectangles created by the horizontal s tabs , 

these are the only possible configurations. Sec figure 4.8. • 
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Above S tab Behind 
Vertex Above S t a b 

•>-
Behind 
Vertex 

Below S tab 
Below S t a b 

Figure 4.8: Two Orientat ions of Rectangles Around a Vertex 

4.2 Identification of Rectangles 

This section uses the characterizat ions of the previous section to identify the type 

of each horizontal rectangle. T h e identification or all rectangles of type 0 to type 

11 will be shown to be an 0(n) s tep , but identification of type 12 rectangles require 

Q(n\ogn) t ime. This typing will be used in the CONVEX/REFLEX a lgori thm in 

section 4.3. 

S tar t ing a t one vertex of the polygon, and traversing through the Hamil tonian 

cycle, the algori thm determines the three types of rectangles around each vertex. 

Define the value returned by the function sf.ab[v] to be the side t h a t is s t abbed by 

vertex v along a horizontal s t ab . Also, define $tab[v].ver to be one of the vertices 

t h a t a re on the vertical side t h a t is s tabbed by vertex v. (Which of the two vertices 

depends on the orientation of the rectangle and the layout order, clockwise or counter 

clockwise, of the Hamil tonian cycle and is left as an implementat ion detail.) T h e 

boolean function IsTIoriz{yiVi+\) determines whether the given side is horizontal or 

not . Tf i is the current vertex on the Hamil tonian cycle, then i + 1 and % — 1 (modulo 

n a r i thmet ic) respectively refer to t h e next and previous vertices on the Hamil tonian 
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cycle. Refer to figure 4.3 while reading the descriptions. 

Identifying the types 0 through I I rectangles can he achieved by test ing the fol

lowing conditions for a vertex i: 

• Type 0: atab[i} = cc and slnb[i + 1] = cc AND TnHoriz[rir1+l) 

• T v p e I : stab[i\ = st.ab[i + 1] AND N O T IsHoriz(lvtt) 

• T y p e 2: st.ab[i] = sf.ah[i + 2] AND N O T (a type 1 rectangle) 

• T v P C 3: Mab[i] = stab{i + 3] AND N O T (a type 1 or type 2 rectangle) 

• T y p e 4: stab[st.nb[i].vcr\.vvr = / 

• T y p e 5: stab[st.at)[i].vcr + l ] .«cr = i 

• T y p e 6: 5£o&[s/ab[z'].vcr + 1].VCT — 1 = i 

• T y p e 7: «/aA[z].vcr = i* + 2 

• T y p e 8: $/.ab[z'].vcr = i + 3 

• T y p e 9: $tab[i].vcr 4-1 = .s/afc[z - l].wfr AND FsIforiz(v~7JJ^) 

• T v p c 10: */-a/;[stafr[i].7;cr] = .s/afc[z - 1] AND 7.s//r>n:;(7yCT) AND N O T (a 
type 4 rectangle) 

• T y p e 11: sf.ab[sf.ab{i].vcr + 1 ] = a/.afc[i- 1] AND IsIIoriz(viv^) AND N O T (a 
type 3 or type 5 rectangle) 

For a given vertex i, detect ing the types 0 through 11 rectangles incident upon 

i requires 0 ( 1 ) t ime. 

• T y p e 12: A type 12 rectangle is detectable when two pairs of vertices have 

common s tabs . (Tha t is, sf.ab[i] = st.abU + 1] and .v/.«fc[z' + l] = sUtft\j]t assuming 

TsHoriz(viVj+i) and Is II or i z (Vj Vj+1)). Detect ing this type of rectangle will 

require examining all horizontal s t abs to each vertical side. Since it is possible 

t h a t 0(n) s t abs could hit one side (sec figure 4.12, for example) , it might appear 

t h a t th is operat ion could take 0 ( n 2 ) t ime . However, in section 4.3 , a da t a 
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s t ructure is presented thai reduces the overall t ime needed to identify all type 

12 rectangles to 0(r»log7/) t ime in to ta l . 

4.3 Algorithm - Determine CONVEX/REFLEX 

INPUT: 
- The s tabs of t h e horizontal and vertical s ides 

of an unknown s imple orthogonal polygon, P. 
- T h e Hamil tonian cycle tha t corresponds 

to t h e boundary of the polygon, P. 
OUTPUT: 

- The convexity ( C O N V E X / R E F L E X ) of each ver tex 
of t h e polygon, P. 

The; following algori thm determines the convexity of the vertices of an or thogonal 

polygon given the Hamil tonian cycle and the s t a b information. Traversing the Hamil 

tonian cycle of the polygon, all sides a re assigned to be cither horizontal or vertical: 

h\, W|, h.2, v2, . . . h U / 2 , w»/2- Firs t , the algori thm will identify the rectangles adjacent 

to each horizontal s tab . Each rectangle contains two, three, or four vertices of the 

polygon, and the convexity propert ies of the involved vertices are not independent . 

For each vertex, /;, of the polygon, t he algori thm mainta ins two sets , samc[v] a n d 

f)j)posUc[v]. Ultimately, all the vertices on a rectangle containing v will be included 

in either .wrnc[w] or opposiLe[v]. These two sets indicate whether those vertices have 

the same or opposi te convexity as v. For example, figure 4.9 shows a type 6 rectangle, 

and the corresponding same and opposite sets associated with each polygon vertex 

of t he rectangle. Note tha t a t this s tage it has not ye t been established whether the 

rectangle is in the interior or exterior of the polygon. Tn the final s tep , using all these 
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a b 

h -—• ^ same[a|: g 

samr[b]: h 

samcjg]: a 

same[h]: b 

opposition]: b. h 

opposite[h]: a. g 

opposite[g]: b . h 

opposite[h|: a. g 

Figure 4.9: .srmir and opposite Sets Corresponding to a Type 0 Rectangle 

sets , the algori thm will assign the label CONVEXw REFLEX to each vertex. 

T h e algori thm is described in three par ts : classifying types 0 through 11 rectangles 

and identifying the vertices on each, identifying vertices on type 12 rectangles, and 

finally determining the convexity of each of the vertices. 

4.3.1 Classify and Identify Rectangles: Types 0 to 11 

This pa r t of the algori thm walks through the Hamil tonian cycle of the polygon, 

checking each horizontal s t ab for inclusion as pa r t of any type 0 through 11 rectangles. 

For each vertex, append the o ther vertices on the same rectangle to either its 

sarne[v] or oppos-Uc[v] set, and count the number of rectangles to which it has been 

• Initialize: For each vertex w, in Hamil tonian cycle order do : 

1. number.of-rectanglcs[v] : = 0. 

2. initialize sarne[v] to the empty set. 

3. initialize oppo$Uc[v\ to the empty set,. 

• Classify/Identify. For each vertex, v, in Harniltonian cycle order do: 

- if conditions 0 to 11 of section 4.2 are satisified with vertex v: 

assigned. 

* For every pair of vertices, j and /:, on the rectangle 
1. increment number.of jrecl.angles[j] 

2. ei ther INSERT{j,same[k]) or INSERT(j,oj/[josite[k]) 
appropr ia te ly 1 

'This is easily determined from figure 4.3 
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Analysis: T h e initialise loop uses ()(n) t ime since each of tin; operat ions inside 

the loop use constant t ime, and the loop is executed TI timers. In the classify/identify 

loop, cheeking each of conditions 0 through 11 requires constant t ime (as shown in 

s i n ion 4.2). Since every vertex is part of exactly three horizontal rectangles, each 

of which contains from two to four vertices of the polygon, the same and opposite 

sets for each vertex will together contain no more than twelve vertices, a constant 

number. Inserting a constant, number of vertices into constant length sets is an O ( l ) 

t ime operat ion, as is incrementing a variable. So the classify/identify loop also uses 

()(n) t ime, and the overall analysis of this part of the algori thm is 0{n). Also, t he 

space used by the; above routines is bounded by O(n). 

Now, label any vertex that, has been assigned to three rectangles as classified And 

the rest as unclassified. T h e next- section will use this classified/unclassified labelling 

to identify the type* 12 rectangles. 

4.3.2 Identify Rectangles: Type 12 

A type 12 rectangle could be on either the inside or the outside of the polygon. Any 

vertex that is now unclassified must, be pa r t of some type. 12 rectangle. T h e difficulty 

is identifying which o ther s tabs arc also pa r t of this same rectangle; refer to figure 

•"4 
•<. 

Figure 4.10: A Type 12 Rectangle 
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4.10. The s t ab .»••_> that is on the-o ther end of the horizontal side from > i ran be 

identified in constant t ime, simply by looking at the s tab of the next vertex on the 

Hamil tonian cycle. T h e two s tabs .s;[ ami .<*., of the same rectangle are more difiicull 

to find. 

T h e necessity of identifying type 12 rectangles is shown by the polygon of figure 

4.11. Tf type 12 rectangles are not considered, the marked vertices would not appear in 

the .same or opposih: sets of any of the other vertices. T h e marked vertices and more, 

would be isolated if we examined the vertical, instead of the horizontal rectangles. 

Figure 4.11: A Polygon with Vertices Isolated by T y p e 12 Rectangles 

Even though the total number of all types of rectangles created by a polygon's 

horizontal s tabs is 0(n), there could be 0(n) type 12 rectangles. A natural conjecture 

would be t h a t each of the 0(n) vertical sides s tabbed by type 12 rectangles, only have 

a constant number of »uch s tabs . Vertical side, .v, on the polygon of figure 4.12 shows 

tha t this conjecture is incorrect and a more elaborate procedure is required. 
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e 5 
<• 
<• 

etc. 

Figure 4.12: A Polygon with 0(ri) T y p e 12 s tabs to Some Vertical sides 

Th i s pa r t of the algori thm traverses the Hamil tonian cycle of the polygon several 

t imes. T h e first pass initializes counters and b i n a r search trees for each vertical 

side, while the second pass determines the number of type 12 vertices tha t s t ab each 

vertical side. T h e third creates a b inary tree for each vertical side and matches the 

vertices on each type 12 rectangle. For every adjacent pair of type 12 vertices (e.g., 

.s'i .s 2 in figure 4.10) one vertex of the pair is included in the binary t ree of the vertical 

side s labbed by the other. When inserting into these binary trees, a vertex to be 

inserted t h a t already exists in the tree was placed there by the o ther pai r of type 12 

vertices t h a t s t abbed the same vertical sides. This condition indicates tha t all four 

vertices of a type 12 rectangle have been identified. 

• Initialize For each vertical side, .s, in Hamil tonian cycle order do: 

— -unclassif ietLcount[s] : = 0. 
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— initialize himiryjrcc\s] to empty. 

• Cowil stabs: For each vertex, r, in Hamil tonian cycle order do: 

— Tf (nmnber.of~reetat)yles\r] = 2 ) increment iine!assified.eonnt[sttib\r]]. 

• Create Trees: For each vertex, r . in Hamil tonian cycle order do: 

— if {mnnber.of.reetatiyles[e\ = 2) AND {r)mnber.of.reetaii(jles[r-\- I] •„ ,'J) 

* if (uTtclassifie(}.romit\stab\n}] < nnclassifie(Lcouiit[stab[e -f 1]]) 
/ * vertical side .s/«/>[r] is the least s tabbed of the two sides * / 

- if (MEMBER(stab[v + \]t binary J.nr[stab[r]])) 
- / * a type 12 rectangle has been found. */ 
- For every pair of vertices, j and k. on the rectangle: 
rNSERT(j,sarnc[k]) 
- DELETE(stnb[u + \}J)hmryJ.rec[n\) 

• else lNSERT(stab[n + binary J.rcr[stab[n}\). 
* else / * vertical side stab[v] is N O T the least s tabbed of the two sides 

7 
• if (MEMBER{slnb[v],blnaryJree[stab[tJ + 1]])) 

- / * a type 12 rectangle has been found. * / 
- For everv pair of vertices, j and fc, on the rectangle: 
INSERT{j,same[k]) 
- DELETE{stab[n]ybiTiaryJ.ree[i) + l]) 

• else INSERT{stMb[n},binaryJrev[stMb\v + 1]]). 

Analysis: T h e initialize and count .s/.ai.s loops are each O(n ) loops. T h e create 

trees loop is an 0{n logn) loop, since it is executed n times, and each binary tree* 

could have 0(n) entries in it. (Searching, and inserting into a balancer] binary tree 

of size 0(n) requires O( logn ) time.) So, the overall t ime needed by this pa r t of 

the a lgori thm is 0 ( n l o g n ) . However the space required here is only 0(n), since the 

number of entries in all the binary trees never exceeds n, 

4.3.3 Determine Convexity of Vertices 

This s tage s t a r t s with any vertex, 7;, t ha t has a s t a b to infinity, marks it as CONVEX', 

and initializes a queue (called toJieudone) with this vertex. Then a loop is created 
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that, dequeues a vertex, v, from the front of the queue, marks the vertices in samr[r] 

as trie; same convexity as v, and those in oppositciv] as opposite to v. For each of 

these vertices, if they wen; not previously marked, enqueue them to the back of the 

queue. T h e loop continues until the queue is empty. 

• initialize lo-be-donc to be an EMPTY queue. 

• Initialize: For each vertex, v, in Hamil tonian cycle order do: 

- Iinsj>cc7i-qucucd[v] := false 

- if (stab[v] = oo) and (toJtc-donc = EMPTY) 

* ENQUEUE{v,toJ)e„donc) 

* hasJtecn-queucd[v\ := true 
* vert,ex{v] := CONVEX 

• Determine Convexity: Whi le (toJiCjdonc ^ EMPTY) do: 

- i := DEQUEUE(lo.bejionc) 

- for every vertex, j , in .same[i] do: 

* if NOT(hasJ)ecnjqucucd[$\) 

• ENQUEUEUjloJbejdonc) 
• hasJbcen-queued]j] :— true 

* if (vcrlcx[i] = CONX''EX) then vertex[j} : = CONVEX 

* else wcr/exb'] : = REFLEX 

- for every vertex, j , in oppost.ie[i] do: 

* if NOT(hasJ)een-queued\j]) 

- ENQUEUE{jito.be.don.c) 
• hasJteen-queued[j] : = / .rue 

* if ( v c r t a [ i ] = CONVEX) then uer/.ex[j] : = REFLEX 
* else ?;er/.ez[/] : = CONVEX 

Analysis and Correctness: T h e initialize loop clearly uses 0(n) t ime. T h e cor

rectness of the determine convexity loop requires the following definition and lemma. 

Define an isolated group of vertices to be a p ropersubse t , K", of all t he vertices 

of an orthogonal polygon such t h a t these vertices appea r in each other ' s same and 
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opposite .sots, but not in the sainc and opposite sets of any other vertices. Further

more, the same and opposite sets of the vertices of A" do not contain any vertices 

tha t a re not in A*. 

Lemma 7 After the algorithms to classify and identify types 0 through 11} reetanyles 

in subsections 4-3J and 4-3.2. an isolated group of vertices does not exist. 

Proof: Assume an isolated group of vertices does exist and tha t the original or

thogonal polygon is P. T h e vertices must all be on rectangles t h a t are defined by tin* 

vertices of the group. From lemma 5 we know tha t every vertex is part, of exactly 3 

horizontal rectangles, and from corollary 6 we know t h a t a t least, one or those three 

must be above the vertex and one below it. So, every vertex will be par t of the sarin: 

or opposite set of the vertices on one rectangle above it and one below it. Every 

rectangle has a t least one vertex on i ts top edge and a t least one vertex on its bo t tom 

edge. T h u s there is a s t r ip extending from the top of the plane to the bo t tom, con

sist ing of rectangles tha t were created from the isolated group of vertices. However, 

there must be some vertices, and thus some rectangles tha t a re not pa r t of the group 

since an isolated group is a proper subset of the total set of vertices. So there is 

ano ther s t r ip going from the top of the plane to the bo t tom consisting or rectangles 

t h a t were created from vertices t h a t are not pa r t of the isolated group. These two 

s t r ips must be mutual ly exclusive. Note tha t the horizontal segment with the highest 

y-coordinate delineates the upper type 0 rectangle, and tha t this rectangle extends 

completely across the plane, from right to left - similarly for the lower type 0 rect

angle. So, the two str ips of rectangles would have the upper and lower rectangles in 
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common. Thus the two strips cannot be mutually exclusive and therefore the isolated 

group of vertices cannot exist. • 

Lemma 7 indicates that, the determine convexity loop correctly identifies all the 

vertices as CONVEX or REFLEX, since there are no isolated vertices. T h e loop does 

not t e rmina te until the queue is empty, which will only happen when all arc marked. 

Each vertex is put onto the queue once, and pulled off once. Thus the determine 

convexity loop is executed exactly n t imes, with each i terat ion requiring constant 

t ime. Therefore, this entire s tage of the algori thm uses 0(n) t ime. 

Thus , t he t ime used to de termine whether each vertex of an orthogonal polygon of 

n vertices is CONVEX or REFLEX is dominated by the O ( n l o g n ) needed to identify 

the type 12 rectangles. T h e space requirement is only 0(n). 

4.4 Algorithm - Reconstruct Polygon 

I N P U T : 
- The stabs of the horizontal and vertical sides 

of an unspecified simple orthogonal polygon, P. 
- The Hamiltonian cycle that corresponds to 

the boundary of the polygon, P. 
O U T P U T : 

- An orthogonal polygon, P, that abides by the 
input information. 

In this section, an efficient a lgori thm is presented to reconstruct an orthogonal poly

gon from its s tabs and Hamil tonian cycle, after t he convexity of the vertices is es tab

lished. This algorithm creates two lists, representing the relat ionships between the x 
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and // coordinates of ail vertices. One list {.rmni r r H l U . } represents the J* coordinates 

of each of the vertical sides, the other list {;/,„„,. . . . / / m „ x } represents the y coordinates 

of the horizontal sides. These two lists will he created in such a way that when the 

sides a re laid out on t h e x and */ coordinates , the result will he an orthogonal polygon. 

T h e lists are not unique since it is not possible to determine the relationships between 

the s tabs on opposi te sides of any boundary segment. Placing all vertices on these 

coordinates, however, does reconstruct an orthogonal polygon that, respects the given 

s tabs and Hamil tonian cycle. 

1. Run the convex/reflex algori thm of section 4.3. C)(n log») t ime and space 

is needed to complete this task. 

2. Find the four segments with both horizontal and vertical s tabs to infinity. T h e 

two vertical ones must be located at, x m „ , and x , m L r , while the two horizontal 

ones must be a t ymin and ymnx. S t a r t with a horizontal extreme segment,, assign 

it to y m i „ , then follow through the Hamil tonian cycle. Assign the other three 

segments to x m j n , ymttx and xmiLr. These assignments will lay out the polygon 

so tha t its Hamiltonian cycle is in clockwise order. Completion of this strip 

requires one pass through the cycle, doing a constant amount of work on each 

vertex. Therefore O(n ) t ime is needed. 

3. T h e segment t h a t runs horizontally along ymin is laid out from right to left, since 

the Hamil tonian cycle is in clockwise order. Call this a kfl. segment. T h e next 

segment on the Hamiltonian cycle, a vertical segment, must be an up segment, 

otherwise the first segment would not be a t ymin and furthermore the corner 
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between the two must bo a convex corner. 

Recall that, the sides of the; polygon have boon named hi, v\, / i ^ , v-t, ... hnf^ *•*„/•,> 

along the* Hamiltonian cycle. For a horizontal (respectively vertical) segment,, 

define its predecessor segment to be the horizontal (respectively vertical) 

segment immediately before it on the Hamil tonian cycle, (hi a predecessor is 

and » / s predecessor is Vj-\.) On any segment, vertical or horizontal , 

define its two preceding vertices to be the two vertices between /?, and 

or between and W i _ j . Figure 4.13 shows a horizontal segment and a vertical 

hi's" y x 
predecessor 

Figure 4.13: Predecessor Segments and Preceding Vertices 

segment and their respective predecessor segments. T h e arrows indicate the 

direction of the Hamil tonian cycle. Tn each case, vertices x and y a re the 

preceding vertices to the segment. 

For each of the remaining segments, in the cycle, if the preceding vertices have 

the same convexity, the segment must be opposi te its predecessor segment , in 

the s ame dimension. Tf the preceding vertices have opposi te convexity, the 

segment is t he same as its predecessor segment , in the s ame dimension. Tn this 

way, assign up/down, left/right to each segment of the polygon. 

predecessor 
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Again, this step traverses the Hamiltonian eyrie, examining a constant number 

of sides and vertices on each s tep. Thus a total of C)[i}) t ime and space is used. 

4. Create two digraphs. A" and >', with a node in the A" graph for each vertical 

side, and a node in the Y graph for each horizontal side. Add arcs as follows: 

• On the A" graph , direct arcs from the node corresponding to the xmtH side 

to every other node, and from all nodes to the node corresponding the 

Xmax side. Th is s tep adds (n — 2) arcs to the A" digraph. 

• For every right segment in the polygon, pu t an arc in the A" digraph from 

the node corresponding to the side containing the first endpoint to the 

node corresponding to the side containing the second endpoint . 

• For every left segment in the polygon, p u t an arc in the A" digraph from 

the node corresponding to the side containing the second endpoint to the 

node corresponding to the side containing the first endpoint . This step and 

the immediately preceding one add a total of n / 2 arcs to the A' digraph. 

• For every s t ab to a right segment pu t an arc from the node corresponding 

to the side containing the first endpoint of the s tabbed segment, to the 

node corresponding to the side containing the endpoints of the s tabb ing 

segment, and ano the r from the node corresponding to the side containing 

the endpoints of the s tabb ing segment to the node corresponding to the 

side containing the second endpoint of the s tabbed segment. 

• For every s t a b to a left segment put an arc from the node corresponding 

t o the side containing the second endpoint of t h e s tabbed segment, to t h e 
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node corresponding to the side containing the endpoints of the s tabbing 

segment, and another from the node corresponding to the side containing 

the endpoints of the s tabb ing segment to the node corresponding to the 

side containing the first endpoint of the s tabbed segment. This s tep and 

the immediately preceding one add a t most n arcs to the A" digraph (stabs 

to oo do not add arcs) . 

Tims, the A" digraph contains less than 5 n / 2 — 2 = 0(n) arcs . T h e arcs for the 

Y digraph arc; created in a similar fashion, subs t i tu t ing up for right, and down 

For left. T h e two digraphs represent partial orders for the x and y coordinates 

of the sides of the polygon. Figure 4.14 gives an example of the two digraphs. 

Crea t ing the two digraphs requires, two traversals of the Hamil tonian cycle 

doing constant work on each s top , and will use a total of 0(n) t ime. Since the 

two digraphs together have n nodes and 0(n) arcs, 0(n) space is used. 

5. Use a topological sort on each digraph to order the nodes from minumum to 

maximum. As described in Graph Algorithms and NP Completeness [Meh84], 

a topological sort of n vertices and e edges uses 0(n + e) t ime. Each of the two 

digraphs have r / /2 vertices and 0{n) edges, thus the two topological sorts will 

require only 0(n) t ime. 

6. Assign x and y integer t rack numbers to the nodes in the sorted order defined 

by the topological sorts . Each vertex will have an x track number and a y track 

number . Tn each case the track numbers are uniquely chosen from the range 

[ l . . n /2 ] , where n is the number of vertices in the polygon. Draw out the tracks 
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Side Orientation Stab Convexity Direction Kxtremo 

ah horizontal cc cc Convex right 
be vertical CO el Convex down 
cti horizontal cc Reflex right 

de vertical cc cc Convex down 
ef horizontal cc cc Convex left 

vertical oo a b Convex up 

fih horizontal be j * Keflex left 

hi vertical a b 0 0 Keflex down 

ij horizontal CO Convex left 
vertical oo cc Convex «1» 

Figure 4.14: A* and Y Digraphs 

in each direction and follow through the Hamil tonian cycle laying each vortex on 

its respective track, pu t t ing a segment between each pair of consecutive vertices. 

T h e result ing orthogonal polygon respects the given Harniltonian cycle and stabs 

and has no collinear sides. Th i s s tep , also uses 0(n) t ime. Figure 4.15 assigns 

integer track numbers and draws the polygon using the d a t a of the example in 

figure 4.14. 
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Figure 4.15: Reconstructed Polygon, from Figure 4.14 

Tiie first s tep of this algori thm uses O ( n l o g n ) t ime and 0(n) space, the rest use 

only 0(v) t ime an<l spacer. Therefore, the overall t ime used to solve the Orthogonal 

Polygon Reconstruct ion problem, O P R , is 0(n log7*.) and the overall space is 0 ( r ; ) . 

4.5 Related Results 

T h e reconstruction result of this chapter is closely related to two others in the visibility 

l i terature: Realization of Visibility Trees by Booth and O'Rourke [0 'R87] , and Bar 

Visibility Graphs by Wismath [WisS5] ( independent ly by Tamassia and Tollis [TT86]), 

Both of these results arc; discussed more fully in Chap te r 7 of O'Rourke 's classic text 

[0 'R87] . A summary of the two results and a comparison of each to O P R follows. 

4.5.1 Edge Visibility Trees 

Tn the Booth and O'Rourke work, sides of an orthogonal polygon are represented by 

nodes in the visibility graph, and pairs of nodes a re connected by edges if there is 

a horizontal or vertical line of sight between them t h a t is inside the polygon. T h e 



resulting visibility graph is disconnected, ami is actually two trees, one representing 

horizontal and one representing vertical visibility. Booth ami O'Rourke reconstruct 

an orthogonal polygon from two given labelled trees, /.r., the nodes of the two trees 

are numbered (labelled) 1.2. ...H in the order that the corresponding sides appear on 

the polygon. 

For every node in the horizontal tree with degree* greater than one. an absolute 

ordering of the vertical sides in the visibility polygon abou t tha t node is made. T h e 

absolute orderings are then combined into one partial ordering of the x coordinates 

of the vertical sides. T h e same approach is applied to get a part ial ordering of the 

y coordinates . Next, the two part ial orderings are each assigned integer coordinates, 

from 0 to n/2, with two sides whose order is indist inguishable being assigned the 

same coordinate . Then each vertex is assigned the x and // coordinates from the 

two sides (horizontal and vertical) adjacent, to it, ami a polygon is drawn using these 

coordinates . Finally, t he construction may require slight adjustment, of some side 

lengths to avoid collision of same coordinate sides, and cullincaritics. 

T h e two labelled trees of Booth and O'Rourke can be extracted from the s tabs 

and Hamil tonian cycle that, are input to the OPR. problem, as follows: 

1. Run the CONVEX/REFLEX algori thm of section 4.3. 

2. Crea te a graph with n nodes, one for each side of the polygon, babel the nodes 

so they correspond to the Harniltonian cycle, i.e., the node representing the 

side between vertices 1 and 2 on the Hamil tonian cycle, is labelled 1, the node; 

representing the side between vertices 2 and 3 on the Hamil tonian cycle, is 
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labelled 2. etr . 

Create the vertical tree part of the visibility graph from the vertical s tabs of 

rrjlrx vert ices. Refer to figure 4.1 fi. First . join the nodes represent ing the hori-

A x 
i 
i 
i 

V 

Shaded 
region 
indicates 
interior 

i') c) 

Figure? 4.1 fi: Join Sides s. and // through the Polygon's Interior 

zontal side a t tached to each reflex vertex to the node representing the horizontal 

side s tabbed by that vertex's s t ab (diagram a) . Next,, whenever a vertical side 

has reflex cornel's on both ends, join the two nodes representing the horizontal 

sides s tabbed by both vertical s tabs (diagram b) . Finally, whenever a vertical 

side has a reflex corner on one end and a convex corner on the other , join the 

node representing the horizontal side a t tached to the convex corner to the node 

representing the horizontal side s tabbed by the vertical s t ab of the reflex corner 

(diagram c) . 

4. Crea te the horizontal tree from the horizontal s tabs in a similar fashion. 

Now the reconstruction can be completed using the 0(n) a lgori thm designed by 

Booth and O'Rourke. T h e resulting orthogonal polygon agrees with the internal 

s tabs , bu t may not be consistent with external s tabs . T h e conversion from s t abs and 
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Hamil tonian cycle to labelled t i e s uses 0(n logn) t ime and the Booth and O'Rourke 

algori thm uses O(n) t ime to reconstruct . So. the overall analysis of 0 ( n logn) is not 

improved, and the resulting polygon is less constrained than the OPR result. 

Tt should be noted that the Booth and O'Rourke algori thm cannot be directly 

extended to polygons with both internal and external visibilities, since the horizontal 

and vertical graphs would each contain cycles, ami thus the initial absolute orderings 

could not, be made. Moreover. <h::ie is no obvious way of extending their result. 

4.5.2 Bar Visibility Graphs 

In [WisS5], a visibility graph represents a set. of vertical line segments. (The segments 

arc not connected into a polygon.) Every node in the graph represents a segment 

in the set. and two nodes are johuxl if the corresponding segments can see each 

o ther horizontally through a rectangle of non-zero height. Tamassia and ToIIis[TTSfi] 

have labelled this as e visibility. T h e restraint tha t disallows collinear sides of the 

orthogonal polygon problem is similar, but. s t ronger than e visibility. T h e no adlinmr 

sides model creates a more restricted class of graphs than e visibility. This is dm; to 

the fact t h a t three or more endpoints of consecutive* line segments may line up on the 

same A" (or Y) coordinate , a condition tha t could never occur with the vertices of a 

non-collinear orthogonal polygon. From the s t ab information of the O P R problem, 

two e visibility graphs can be extracted, one in each of the x and y dimensions. 

1. Run the CONVEX/REFLEX algori thm of section 4..'1. 

2. Crea te the vertical visibility graph from the* vertical s tabs . Rr*fe*r to figure: 4.17. 

Fi rs t , join the node representing the horizontal side a t tached to each vertex to 



i 

Figure! 4.17: Join Sides x and y 

the nodi; representing the horizontal side s tabbed by tha t vertex's vertical s tab , 

as in figure 4.17 a. Next , whenever a vertical side has similar convexity corners 

on both ends, join the two nodes representing the horizontal sides s tabbed 

by both vertical s tabs , as in figure 4.17 b . Finally, whenever a vertical side 

has opposi te convexity corners, join the node representing the horizontal side 

a t tached to one; end of the vertical side to the node representing the horizontal 

side1 s tabbed by the vertex a t the o ther end of the vertical side (diagram c). 

3. Create! the horizontal visibility graph from the horizontal s tabs similarity. 

In fact, these; two graphs are similar t o the visibility trees of t h s Booth and 

O'Rourke work, except t ha t both external and internal visibility is considered. For 

the O P R result, it docs not ma t t e r whether the s t ab is on the inside or the outside 

of the polygon. 

Wisma th reconstructs the set of line segments using an st* number ing of the nodes 

of the visibility graph. Before defining an st* numbering, a rplated concept, an st 

numbering, developed by Hopcroft and Tarjan [HT74] as an equivalent definition of 

A x 
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biconnectiviiv. must be considered. 

An st numbering of a grapli of n nodi's is a one-to-one function A that maps 

each node of the graph to a unique integer from {1.2. . . / ;} in such a way that every 

node, except two. have an adjacent node with a number lower and an adjacent node 

with a number higher than its own. T h e two exceptions are special adjacent nodes, 

labelled as s and /. with A(.s) — 1 and X[l) = « . Vertex n has no adjacent node with 

a lower number and /. has no adjacent node with a higher number. 

Define Xmin to be a node that has no lower numbered adjacent node (only .«* in an 

st. numbered graph) , and A m a x to be a node tha t has no higher numbered adjacent 

node (only /. in an st. numbered graph) . An st* numbering of a graph is a relaxation 

of the st numberings to allow more than one A m ;„ and more than one A, i m j -. A graph 

is said to be si* numberable if there is a one-to-one function, A, that, maps each 

node of the graph to a unique integer {1 . . .7 1 } , and a planar embedding of the graph 

such that, all A m o x and A m u i nodes are on the exterior face, and they are separable in 

such a way t h a t all Xmax nodes can be connected to one new node and all A m m nodes 

can be connected to another , and the resulting graph remains planar. 

Wismath showed t h a t a graph is rcprcscnlablc by a set or vertical line segments 

if and only if it is st* numberable and furthermore tha t an st* numbering can be 

determined in 0(n) t ime. In an a l te rna te characterizat ion Ik; showed t h a t a graph 

is rcpresentable by a set of vertical line segments if and only is there is a planar 

embedding of the graph with all cutpoints on the exterior face. T h e two graphs 

created from the s t a b information of the orthogonal polygon can be shown to have 

jus t such a p lanar embedding. 
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L e m m a 8 The horizontal and vertical risibility yraphs extracted from an orthogonal 

polygon (in section 4-4) have a planar embedding with all outpoints on the exterior 

face. 

Proof: T h e proof is similar for the horizontal and vertical graphs, so only the1 

vertical is considered. Locale the node that represents each horizontal segment on 

the midpoint of the segment. .Join interior visible nodes through the interior of the 

polygon and exterior visible; nodes through the exterior of the polygon, each along 

the path of visibility. This creates a p lanar embedding of the visibility graph, and is 

the embedding assumed in the remainder of this proof. 

For every boundary segment or part of a boundary segment, s, of the polygon 

tha t has no segment directly below it. (sec figure 4.18), imagine a rectangle with s 

as one side, —oo as the opposi te side, and two parallel lines connecting the two. Do 

the same for segments or part ial segments of the polygon with no segment directly 

above; it. Call these cc visibility rectangles. T h e nodes on the exterior face of the 

Figure 4.18: oo Visible Rectangles 

p lanar graph described above, correspond to a boundary segment of the polygon t h a t 
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is either part of an cc visible rectangle (segment x in figure 4.IS), or a segment that 

has a s t a b through one of the cc visible rectangles (segment /; in figure 4.18). 

Assume there is a cutpoint that is not on the exterior face of this embedding. 

Every node that is not. on the exterior face has at least one node that is visible 

above it and one that, is visible below it. So, if the cutpoint mule is removed, the 

segment below and the segment, above the cutpoint will be disconnected. But. since' 

t he cu tpoin t is not on the exterior face of the graph, there must, be a path to the 

left and a pa th to the right of the cutpoint . These pa ths will connect, the two nodes 

t h a t were supposedly disconnected by the removal of the cutpoint.. Therefore, the 

assumpt ion is incorrect, and all cutpoints must be on the exterior face of the graph, 

as laid out. in this p lanar embedding. • 

T h e converse of lemma 8 is not t rue . 

Lemma 9 A planar wnbedding of a graph with all outpoints OIL the. exterior face, i s 

not necessarily a horizontal or vertical visibility graph of an orthogonal polygon. 

Proof: Figure 4.19 is an example of a planar embedding of a graph with all 

cu tpo in ts on the exterior face. T h e figure ai?o shows an orthogonal polygon tha t 

a t t e m p t s to realize the given horizontal visibility graph. T h e polygon floes not realize 

the graph since the graph edge between nodes g and / does not have a corresponding 

visibility p a t h . Th is graph could not be a horizontal or vertical visibility graph of an 

orthogonal polygon, since the face bounded by dfg has only 3 edges. The horizontal 

and vertical visibility graphs of an ortfiogonal polygon would need all interior faces 
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Figure 4.19: A Graph with Cutpoin ts on Exter ior Face 

to have a t least, four edges. • 

An st* numbering of the horizontal (or vertical) visibility graph extracted from an 

orthogonal polygon can be made, by including two super nodes, one a t + 0 0 and one 

a t —00. Assuming the embedding of the graph, as described in the proof of l emma 8, 

extend the graph by adding connections between all nodes located on segments t h a t 

are pa r t of an 00 visible rectangle to the appropr ia te new node: + o c or —cc. 

Fur thermore , if the correct choice of the st* numbering is made , the reconstructed 

line segments represent, one dimension (horizontal or vertical) of t h e edges of the 

orthogonal polygon. Notice tha t the topological sort number ing of section 4.3 is an st* 

numbering. Tf tha t numbering is used, the bar reconstruction a lgor i thm creates bars 

t h a t a m be connected into an orthogonal polygon. However, choosing this par t icular 

number ing would require running the entire O P R algor i thm. Unless ano ther method 

of choosing the s t* numbering is found, it is more reasonable to j u s t use the algori thm 

of section 4 .3 . 
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4.6 The Collinear Sides Assumption 

The a lgor i thms of this chapter assume that the orthogonal polygon has no collinear 

sides. Allowing collinear sides is a natural extension of this problem, and needs to he 

considered. 

L e m m a 4 of section 4.1 showed that, rectangles of types 0 through 12 (figure 4.3) 

were the only possible rectangles created from the sides of an orthogonal polygon ami 

its horizontal s tabs . If collinear sides were possible, the number of rectangle types 

would increase. Cases* 0. 1 and par t s a and b or case 2 of tha t proof, did not rely on 

this assumpt ion , so those cases contain the complete set of rectangles. However, part 

c of case 2 and cases 3 and 4 both used this assumpt ion, so the addi t ional rectangles 

of figure 4.20 would be introduced. Algorithmically, checking each of these additional 

types of rectangles is no more difficult than checking each of types 0 through 11. 

It is possible t h a t along each slab of each rectangle, any number of collinear sides 

could exist, as shown in figure 4 .21. Rechecking each rectangle type, allowing for the 

possibilities of such sides complicates the a lgor i thm. It is necessary to traverse; the; list 

of sides tha t a re horizontally collinear and are guaranteed to have the same; convexity 

on each side, to find the side tha t would be s tabbed if the collinearity did not exist. 

Define a traversable horizontal side as one tha t has same convexity vertices on 

each end , as indicated by a previously identified rectangle. For example, t he bot tom 

side of types 7 , 8 , 9 , 1 0 , 1 1 , 1 2 and 13 and the t o p side of types 9, 2G,27,and 28 as drawn 

in figures 4.3 and 4.20 are traversable. Also, define a non-traversable horizontal 

side as one t h a t has opposite convexity vertices, or has not yet been indentified as 
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Figure 4.20: Ex t r a Rectangles Possible with Collinear Sides 

traversable. Recall t h a t for non-collinear sides, slab[v] is t he side s t abbed by the 

horizontal s t a b emana t ing from vertex, w. For collinear sides, stab[v] is t he collinear 

vertex s tabbed by the horizontal s t ab from vertex, v. Assuming collinear sides are 

identifiable in constant t ime from the slabs, a straightforward algori thm to identify 

and classify rectangles is: 

• for each horizontal side, s, in Hamil tonian cycle order do: 

- side[s]:=non-traversable. 

• stabjcav-Change := FALSE 

• for each vertex, v, in Hamil tonian cycle order do: 
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r"TrrrTT'" 
Figure 4.21: Collinear Sides Along the stubs of a Type 1 Rectangle 

— number JO J-rectangles[n] : = 0 

• Repeat, / *ma teh ing until below*/ : 

— stab jean-Change := FALSE 

— for each vertex, in Hamil tonian cycle order do: 

* Check for types 0 through 11 rectangles and types 13 through 28 
collinear rectangles. For every pair of vertices, j and k, on the identi
fied rectangle 
- increment number-of-rect.angles[j] 
- ei ther INSERT(j,sarnc[k}) or fNSERT(j,oj)j)osile[k}) appropri
ately 

* if the rectangle is type 7, S, 9, 10, 11 , 13, 2G, 27, or 2ft: 
- side[j]:=traversable, where j indicates the vertices of the rectangle; 
t h a t arc pa r t of traversable sides, as indicated above. 
- stab-can-Change := TRUE. 

— for each vertex, in Hamil tonian cycle order do: 

* if («/o6[?;] is collinear to v) 
• a := slab[v], b := st.ab[v] + 1 

• if ((.sirfefafc] = traversable) and [rib is horizontal)) then slab\o] :— 
stab[b] 

• else 
- a := stab[v], b := slab[v] — 1 
- if ((sirfcfS) = traversable) and (ah is horizontal)) then st.ab[t)] := 
slab[b] 

Until (stabjcan-Changc = FALSE ) / * Matches the repeat above * / 

• Check for type 12 rectangles. 

T h e par t of the a lgori thm t h a t traverses the collinear sides dominates the analysis. 

Since i t is possible t h a t a side may not become traversable until 0(n) o ther associated 
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rectangles haver fjc.r;n identified, the do/while loop could be executed 0{n) t imes. 

Within the do/while loop are two (J{n) for loops. Thus the analysis of the algori thm, 

allowing collinear sides is a more; expensive 0{n'~). 

4.7 Summary 

In summary , this chapter presented an algori thm t h a t reconstructed an orthogonal 

polygon when its Hamiltonian cycle and the s tabs of its vertices are known. This 

algori thm runs in 0{v logn) t ime if the polygon is known to be wi thout collinear sides 

and Q(jr) t ime otherwise. T h e result is related to bu t extends the Edge Visibility 

Trees o r O 'Rourke and Booth[0 'RS7] as described in section 4.5.1 and W i s m a t h ' s Bar 

Visibility Graphs[Wis85] discussed in section 4.5.2. 
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Chapter 5 

Conclusions and Open Problems 

T h e purpose or this thesis was to examine and solve visibility reconstruction problems, 

t ha t is. given visibility information of a set of objects, reconstruct the original objects. 

T h e thesis presented two results related to visibility graph reconstruction. 

Tn chapter 3 , a conversion technique was presented. T h e existing work on recon

s t ruct ing polygons from their (unordered) vertex visibility graphs normally assumes 

the boundary Hamil tonian cycle of the polygon is known. However, when reconstruct

ing a set of line segments from their endpoint visibility graphs, it is often assumed 

tha t the order of the edges around each node of the graph is in the same order as 

visibilities to o ther endpoints as seen by the corresponding endpoint . Th is thesis pre

sented algor i thms for converting between the Hamil tonian cycle (with the unordered 

vertex visibility graph) and the ordered vertex visibility graph for a simple polygon. 

These two results link the results of two different subareas in the s tudy of visibility: 

line segments and polygons. 

Tn chapter 4, an efficient a lgori thm for reconstructing orthogonal polygons was 

presented. T h e algori thm expects the Harniltonian cycle and the s t abs of the sides 

of the polygon as input . I t determines whether each vertex is convex or reflex and 
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creates a partial ordering of the horizontal sides of the polygon in the V*-dimension 

and an ordering of the vertical sides of the polygon in the A*-dimension of the cartesian 

coordinate system. These A" and V* dimension orderings of the sides can be used to 

draw an orthogonal polygon consistent with the given s t a b information. 

These results represent a small fraction of the work to be done in the reconstructon 

area of the s tudy of visibility graphs. Some direct refinements and extensions of the 

presented results a re discussed below. 

T h e analyses of all non-collinear routines in chapter 4 were dominated by the 

0(7; logn) t ime needed to find the groups of four vertices tha t are on common type 

12 rectangles. Tf this could be reduced to 0(n) the entire analysis would be a more 

pleasing O ( n ) . Therefore, an open problem is to reduce the t ime needed to run the 

type 12 algorithm presented or alternatively, to prove t h a t l_(n logn) is a lower bound . 

T h e orthogonal polygon reconstructed by the O P R algori thm is consistent with 

the given s t ab information. An extension of the O P R problem would be to reconstruct 

an orthogonal polygon t h a t is consistent with the internal vertex visibility graph as 

well as the s tabs and Hamil tonian cycle. Line segment reconstruction results such as 

[Wis94] together with the results of chapter 3 may be one approach to accomplish 

th is . 

A planar s t ra ight line graph, or PSLG, as described in P r e p a r a t a and Shamos 

[PS85] is a general subdivision of the plane into a t tached polygons. A natura l exten

sion of the orthogonal polygon reconstruction of chapter 4 is to apply t h e a lgori thm 

to PSLG's t h a t a re or thogonal . 

Other open problems include applying the techniques of the O P R algor i thm to 
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general simple polygons, and extending the reconstruct ion result to three dimensional 

orthogonal polyhedra, however these are significantly more difficult problems. 

T h e VisPak project [.IPW95], located at hltp://www.c>\ulvtk.va/dvpt/wismuth 

/vis.html. is commit ted to implementing visibility a lgori thms. Currently, six visi

bility a lgor i thms have been implemented, details are found in chapter 1. Most of the 

programs in the package are implementat ions of visibility graph construction algo

r i thms. T h e visual na ture of the output, of these programs has proved invaluable in 

tes t ing the correctness of research ideas relating to the design of visibility reconstruc

tion results. Future releases of the package may include implementat ion of the O P R 

result of Chap te r 4. 
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