Polvgon Reconstruction from Visibility: Informarion

LILLANXT ELAINE JACKSON
B.Sc.. University of Alberia, 1983

A Thesis
Submitted to the Council on Graduate Studies
of the University of Lethhridge
in Partial Fullillment of the
Requirements for the Degree

MASTER OF SCIENCE

LETHBRIDGE, ALBERTA
April 3, 1996

©LillAnne Elaine Jackson, 1996

To my husband.
Gerry Patrick Jackson.

—
—
=1

Abstract

Reconstruction results attempt to rebuild polygons from visibility information.
Reconstruction of a general polygon from its visibility graph is still open and only
known to be in PSPACE; thus additional information, such as the ordering of the
vdpes around nodes that corresponds to the order of the visibilities around vertices is
freguently added.

The first section of this thesis extracts, in O(F) vime, the Hamiltonian cycle that
corresponds to the boundary of the polygon from the polygon’s ordered visibility
graph. Also, it converts an unordered visibility graph and Hamiltonian cycle to the
ordered visibility graph for that polygon in O(F) time.

The second, and major result is an algorithm to reconstruct an orthogonal poly-
gon that is consistent with the Hamiltonian cycle and visibility stabs of the sides of
an unknown polvgon. The algorithm uses O(nlogn) time, assuming there are no

collinear sides, and O(n®) time otherwise.

iv

Acknowledgements

There are many people who have contributed snbstantially (o this thesis, My
appreciation goes oul to every person.

Alv supervisor, Professor Stephen K. Wismath, is an excellent teacher and rve-
scarcher whose patience, encoutagement and motivation were instrumental in com-
pleting this thesis. The friendship Steve, his family and colleagties have provided
throughout this educational time in my life is greatly appreciated,

The Math and Computer Science department. at the University of Tethbridge and
the Electronics Engtnecring Technology department at the Lethbridge Community
College are two groups of incredibly supportive people whose positive feedback has
contributed substantially to the completion of this thesis. Also, T am grateful for
the time and financial assistance provided to me by my employer, the Lethbridge
Community College, which allowed me to consider working toward a Master of Seience
degree in the first place.

My husband and our circle of {riends and family have always had confidence in
me, even when T had none myself. Without them, ncither T nor this thesis would

exist. Thank you.

Contents

1 Introduction

1.1 Ant Gallery Problems © 0 0 L 0 00 o 0o oo oo oo s oo
1.2 Implementations 0L 0oL 00 e e e e e
T3 OvervIew . . L o . . e L e e e e e e e e e e e e e s

2 Definitions

2.1 Complexity Theoryo o0 oo i e
22 Graph Theory oL e e e
23 GromelIY . . L i et e e e e e e e e e e e e e e e e
2.4 Visibility and Visibility Graphso 00 o000

3 Ordered Visibility Graphs of Polygons

3.1 Ordered Visibility Graph Specified o oo o000 oL

3.1.1 Algorithm: Determine Hamiltonian Cycle
3.2 Hamiltonian Cycle Specifiedo o oo L
33 SHMMALY . . . L . e e e e e e e e e e e e e e e e

4 Orthogonal Polygon Reconstruction

4.1 Horizontal Rectangles vttt ii ..
4.2 Tdentification of Rectangles o o oo oo
4.3 Algorithm - Determine CONVEX/REFLEX
4.3.1 Classify and Identify Rectangles: Types 0 to 11
4.3.2 Tdentify Rectangles: Type 12
4.3.3 Determine Convexity of Vertices
4.4 Algorithm - Reconstruct Polygon
45 Related Results e e e e e e e e e e e e e
4.5.1 TEdge Visibility Trees o oot oo
45.2 Bar Visibility Graphs
4.6 The Collinear Sides Assumption

4.7 Summary

5 Conclusions and Open Problems

vi

List of Figures

1.1 NMuminating the Interiorof a Building 0. 00 2
21 AnExampleofa Graph 0 ... i
2.2 A Simple and a Non-Simple Polygon i3
2.3 AnOrthogonal Polygon i
2.4 Object x is Visible to Object ybutnot = 15
2.5 The Data Structure that Stoves a Visibility Graph 0. . 17
3.1 Left Side and Right Side of a Visibility Only Edge 23
32 OneWitnessonTLeft Side 24
3.3 More than One Vertex on Each Side of the Polygon . . . 0 0 . .. L. 25
34 psAdjacency Row . .. o L Lo e 29
3.5 NodetsListand Pointertop 30
4.1 Example Input for the OPR Problem o000 000 36
4.2 An Orthogonal Polygon with Horizontal Stabs 37
4.3 The Twelve Possible Hovizomal Rectangles 0. 00000 L. 38
4.4 The Two TypeORectangles 38
4.5 Turning Toward and Away from Rectangle 39
4.6 Two Vertices Correspond to Rectangle Corners 40
4.7 AVertexisPartof 3Rectangles 0. 42
4.8 Two Orientations of Rectangles Around a Vertex 43
4.9 same and opposile Sets Corresponding to a Type 6 Rectangle 46
410 A Type 12 Rectangle L o 47
4.11 A Polygon with Vertices Isolated by Type 12 Rectangles . o 48
412 A Polygon with O(n} Type 12 stabs to Some Vertical sides 49
4.13 Predecessor Segments and Preceding Vertices 55
414 Xand Y Digraphso L. 58
4.15 Reconstructed Polygon, from Figure 4.14 59
4.16 Join Sides x and ¥ through the Polygon’s Interior 61
417 JoinSideszandy, 63
418 oo Visible Rectangles 65
4.19 A Graph with Cutpoints on Exterior Face 67
4.20 Extra Rectangles Possible with Collinear Sides 69
4,21 Collinear Sides Along the siabs of a Type 1 Rectangle 70

e
vit

Chapter 1

Introduction

Computational geometry is a study of the complexity of computer algorithms that
solve pgeometric problems. In the preface of Computalional Geomelry - Methods,
Algorithins and Applications, Biere and Wiirzburg [BN91] describe computational
peometry as a;
“nearly mathematical discipline, dealing mainly with complexity ques-
tions concerning geometrical problems and algorithms. But ... increas-

ingly, questions ol a more practical relevance are central, such as applica-
bility, numerical hehavior and performance for all kinds of input size.”

Several excellent surveys of the field are available [LP84], [PS83), [O'R93b), IEde87).
1.1 Art Gallery Problems

An emerging area of computational geometry is the study of art gallery problems.
The classic art gallery problem is to determine the minimum number of security
prople needed to guard the valuables in an art gallery. This could also be stated as,
determining how many lights are needed to light up every corner of the interior of
a building. A related problem asks how many security check points are needed to

ensure that a guard walks around every part of a patrolled building. Another similar

prablem, the prison yard problem. determines the minimut sumber of suard towers
that are needed on the perimeter of a prison yvard to be sure that no part of the
extertor fenee ts hidden from view. Inherent in cach of these problems is the question
of where to place guards, check points. or lights, as well as how many of each are
needed and the algorithmic complexity of placing them. In each case, the patrobled
or illuminated arca is modeled by a polygon. To be illuminated or puarded, theee
must be at least one light or guard that is not obstructed from secing a part of the

polygon.

Figure 1.7: THuminating the Interior of a Building

In the art gallery, lighting, or security guard problems the shaded areas ol the
polvgon of figure 1.1 would be illuminated, or guarded by placing lights, guards, or
check points on vertices », and #,, but there is an obstruction (the side of the polygon)
that hides the non-shaded area. Using vertex v, instead of , however, would guard
or light the entire arca. The polygon of figure 1.1 in the prison yard application
would nced at least three guard towers, located, for example, at vertices vy, uy,, and
v;. Applications of art gallery theorems arise in many diverse areas, such as graphics

(eg, hidden line removal [PS85]), CAD [BM93], robotics [K1e82] [LOSI5), VLST design

=

[Len90].

All art gallery problems are concerned with the visibility relationship between a set
of objects. That is, the problems study which other objects can be seen by each of the
objects of the set. Obviously, if there is an obstruction, such as a wall of the gallery,
separiting two objects in the set, they cannot see each other. In the literature, the
visihility between many kinds of objects has been studied. For example, the visibility
among the vertices of a polyvgon, the sides of a polygon, line segments in the plane,
rectangles in the plane, and various other objects in two and three dimensions, have
all been recently considered.

A visibility graph is a model that indicates the visibility between each pair of
ohjects in the set. For example, an internal vertex visibility graph has a node for
cach vertex of a polyvgon and an edge joining a pair of nodes if the corresponding
vertices can see each other through the inside of the polygon. An endpoint visibility
graph of a set of line segments has a node for each segment endpoint, and an edge
joining a pair of nodes if the corresponding endpoints can see cach other. These are
only two of many examples of different visibility graphs that are considered in the
visibility literature.

In the study of visibility, the following problem types have emerged:

o Construction: Given a set of objects in the plane, construct the corresponding
visibility graph. Considerable literature exists on construction of chese graphs.
For the visibility graph of the endpoints of a set of line segments Sudarsan and

Rangan [SR90] presented an O(|m|log” n) algorithm, where m is the number

of edges in the visibility graph and » the number of nodes, For the visibility
graphs of polvgons O(r7) algorithms have been presented by Asano, Asano,
Guibas, Tlershboerger, and Tmai [AAGHS6} and by Welzl [Weldh]. For vertices
of polygons, & more efficient O(m + nloglogn) algorithm was presented in
Hevshberger [Her87], where 2 is the number of vertices in the polvgon, and
m is the number of internal visibilities between pairs of vertices, In I':‘;c‘l.. the
nloglogn factor reflects the wiangulation' algorithm of Tavjan and Van Wyk
[TV88]. Chazelle [Chad1] has since presented a triangulation algorithm that
uses only O(n) time. Using Chazelle's algorithm the Hershberger result. becomes
O(m + n), which is more properly expressed as O(m), since 2n — 3 < m <

(n* — m)/2 for the visibility graph of any polygon®.

e Characterization and Recognition: Characterization and recognition are
related activities. The first involves characterizing the essential features of visi-
bility graphs, while the second determines if a given graph is a visibility graph.
Characterization and recognition have been examined for varions objects, e.g.,
for simple polygons by Ghosh [Gho88] and for funnel-shaped polygons by Choi,
Shin, and Chwa [CSC92], but in general the problems are not yet. completely
solved. Everett and Corneil [EC93] presented some negative characterization
results for polygons, and Everett [Eve90] showed that the problem of recogniz-

ing a graph representing the vertices of a polygon is in PSPACE®. Towever,

'The triangulation of a polygon involves adding the maximum uumber of noncrossing internal
diagonals to the polygon.

2Sce page 166 of [O'R87] for derivation of this inequality.

3This term is defined in section 2.1

file:///YelS5

Coullard ana Lubiw [C191] have presented an algorithm that solves the recog-
nition problem for distance visibilite graphs, The distance visibility problem is:
viven an edge-weighted graph G ods it the visibility graph of a simple polyvgon

with the given wetzhts as Euclidean distances?

¢ Reconstruction: Reconstruct the set of objects from its visibility graph. The
Reconstruction problem is currentdy unsolved, except in very restricted cases.
Often rescarchers angment the visibility graph with additional information, in
order to complete the task. ORourke and Streinu [0S95] have shown that
reconstruction of a pscudo-polygon from a vertex-edge visibility graph is in
NP. This vertex-edpge visibility graph is a bipartite graph that has nodes rep-
resenting both vertices and sides of the polygon, and edges joining nodes when

corresponding vertices can sce corresponding sides.

Goud coverage of existing visibility literature is presented in the book, Art Gallery
Theorems and Algorithms, by O Rourke [O'R87] and is updated by Shermer {She92]
in the article Recent Resulls in Art Galleries. In the Compualional Geomelry Column
of the SIGACT News [O'R93a], O'Rourke classifies and references results on visibility

graphs prior to 1993,
1.2 Implementations

Software that implements computational geometry algorithms include: GraphEd
[Braj, the Workbench for Computational Geometry [KMM*90] and GeoLab (an envi-

ropment for development of Algorithms in computational geometry) [dRJ93]. LEDA

(Library of Efficient Data types and Algorithms) [NU9G] is a library of C+ + routines
to assist in the development of implementations of computational geometry (andd
other) algorithms. A madel, called Mocha [BCLTG). has been developed that uses
the TlotJava [GM95] browser to display animations of geometry algorithms for the
World Wide Web,

A limited amount of work has heen done writing tmplementations of visibility al-
gorithms. At Smith College in Massachusetts. USAL a program that draws a polypon
and then determines its vertex visibility graph was developed by Alel and Streinu
[AS93]. VisPak [IPW95], a package of implementations of visibility algorithms uses
LEDA to construct visibility graphs of various objects and was developed at the
Untversity of Lethbridge. VisPak contains a drawing editor o inpul virious geo-
metric objects, and has programs that determine the visibility graphs oft vertical
line segments, rectangles, the vertices of a general simple polygon, the vertices of
an orthogonal simple polygon, and the endpoints of a set of disjoint line segments,
Also, VisPak contains an implementation of an algorithm written by Keil and Wis-
math [KW95] to determine the visibility polygons of the endpoints of a set of line

segments.
1.3 Overview

This thesis presents two solutions related to reconstruction of objects from visibility
information. As with all previous results, this work does not completely solve the
reconstruction problem, only a restricted case,

The first result presented here could be a useful tool for future reconstruction so-

lutions. Notiee that a visibility graph (also called an unordered visibility graph) does
not contain any ordering information. The layout, or order, of the nodes of the graph
bears no relation to the lavour for the objects it represents. When reconstructing
a polygon from Hs visibility graph, researchers often include the ITamiltonian cycle
of the polygon to the input of the problem. The Tamiltonian cycle of a polygon is
a list of the vertices in the order they appear on the boundary of the polygon. Tt
identifies which edges of the graph represent sides of the polygon, as well as the order
in which those sides occur. When reconstructing a set of line segments from their
visibility graph, some researchers expeet the edges about cach node to be presented
in cvelic order [Wis94]. That is, the eyclic order of edges around each node of the
graph arce in the same order as the visibilities to other segment endpoints as seen
from the corresponding endpoint. The new work in chapter 3 presents an algorithm
that converts the internal visibility graph (unordered) of the vertices of a polygon and
its Hamiltonian cycle, to a cyvclically ordered visibility graph, and vice versa. The
purpose of this algorithm is to allow techniques developed for visibility graphs of the
endpoints of disjoint line segments in the plane to be applied to visibility graphs of
the vertices of a polygon.

The second and major result of this thesis is the reconstruction of an orthogonal
polygon from its (extended) visibility information. The general visibility reconstruc-
tion problem is sufficieatly difficult that it has not yet been completely solved. There
are a few results that reconstruct specific objects from their visibility information,
with various additional inputs. For example, ElGindy [EIG85] reconstructed mono-
tone polygons from maximal outerplanar graphs. The reconstruction solution of this

T

thesis is a link between two previous vesults. the Fdge Visibility Trees of Boothe and
ORourke [O'RST] and Wismath's Bar Visibility Graphs [Wis85]. which were previ-
ously viewed as unrelated special cases of the reconstruction problem. The Orthogonal
Polygon Reconstruction (OPR) result of this thesis expects the visibility information
1o be input as the internal and external stabs of the sides of the polygon, For a stde
75 of a polygon, the stab(rr;) is delined to be the first side of the polygon interseeted
by a ray from v to »;. 1M the ray does not intersect any side, stab(re;) is set to co.
Note that for cach polygon side, there are two stabs: stab(ee;) and stab(u;e,). This
could also be expressed as: there are two stabs, one horizontal and one vertieal, lrom
cach vertex. In addition this result uses the Hamiltonian cycle of the polygon, Note
that. the orthogonal restriction of the polygon reduces the possible angle measures at
each vertex from an infinite number to exactly two, T1/2 and 317/2. This significant
restriction still leaves the OPR. problem challenging to solve, assuming the polygon
has more than four vertices. An O{nlogn) algorithm that solves OPR. is presented.
The remaining chapters are organized as follows: Definitions from the fields of
complexity theory, graph theory, geometry and visibility are reviewed in Chapler 2;
terms used in this work generally conform with existing literature, Any differences
are slight and are described in the chapter. Chapter 3 presents the first result of
this thesis: conversion (both directions) between an ordered visibility graph and the
Hamiltonian cycle of the vertices of a simple polygon. The theory and algorithms
ol the orthogonal polygon reconstruction result, are presented in Chapter 4. As well,
a comparison is made between this result and closely related literature. Finally, the
results are summarized and related open problems are discussed in Chapter 5.

8

file:///YisS5

Chapter 2

Definitions

This chapter contains terms and notation that will be used throughout the remainder
of this thesis. Oceasional differences between terminology used here and that found
in the literature are indicated. Terms from complexity theory are presenied because
the field of computational geometry is concernced with presenting efficient algorithms.
Since praph theory and geometry are fundamental to the study of visibilities, some
definitions from these fields are covered. Finally, existing visibility concepts are de-

fincd.
2.1 Complexity Theory

The definitions of this section follow Inireduction to Algorithms by Cormen, Leiserson
and Rivest [CLR90]. Assume that z is the size of the input to a computer algorithm,
and f(x) is a lunction of z.

Algorithms are usually analysed in terms of their asymptotic running times, that
ts, the limit as the input size increases, of the running time of the algorithm. The

two asymptotic running times or bounds of an algorithm are expressed by O or (.

The upper bound or (-notation is defined as:
Olg{x)) = {f(r) : Tpositive constants camd o, .00 < fLe) < ege)yr >)

The upper bound is often used to bound the worst case running time of an algorithm

for any input. The lower bound or {2-notation is defined as:
Qg(r)) = {f(x) : Ipositive constants cand x, 50.0 < ey < S} Vr > r,)

A polynomial algorithm or more properly, a polynomially bounded algo-
rithm is one whose running time is O(xc*) for some constant. k. A problem that ean
be solved by an algorithm whose running time is polynomially bounded is said to he
in the complerity class P. Some problems have not been shown to have polynomially
bounded algorithms, but a (guessed) solution to a given problem of this type ean
be checked, i.e., shown (o be correct or incorrect, in polvnomial time. These prob-
lems, including those that are in P, are said to be in the complexity class NP, where
NP stands for non-delerminisiic polynomial, We know that 7 C NP, hut whether
P = NP is not known.

In NP there is a group of problems that are called NP-Complete. Nune of these
problems have been shown to have a lower hound that is more than polynaomial, but.
as yet no polynomial time solutions have been found. To prove that a given problem is
NP-Complete, it must be shown to be in NP and a transformation must be presented
that converts a known NP-Complete problem to the given problem in polynomial
time. In fact, if 2 polynomial algorithm that solves one NP-Complete problermn is

ever found, all NP-Complete problems will have polynomial time solutions, Since

10

much offort has been spent trving to find such a solution. most rescarchers view
N P-Complete problems as intractable ones.

NP-Hard problems have polynomial time transformations from N P-Complete
problems, but are not known to be in NP

Discusstons of algorithm complexity often involve an examination of the amount of
time required to solve the problem. Another issue ts the amount of space the algorithm
uses. An problem that is in PSPACE is one that uses a polynomial amount. of space.
A PSPACE-complete problem is one that is in PSPACE and there is a polynomial
wransformation from another problem that is PSPACE-complete to the given problem.

The above terms will be used throughout the thesis to express the efficiency of

alporithms, or the difficulty of finding solutions to problems.
2.2 Graph Theory

A graph is 4 mathematical abstraction of real world objects that consists of a set
of nodes and a set. of pairs of nodes called edges. An example is given in figure

2.1. Usually the nodes represent various objects and the edges indicate some type of

4

b c

Figure 2.1: An Example of a Graph

relationship between them. The letter n will be used to indicate the number of nodes

11

in a graph and F 1o indicate the nmber of edges.

A planar graph is one that can be redrawn in the plane so that none of its edpes
intersect, except at nodes. The graph of figure 2.1 is planar since redrawing it with
node [inside the triangle of nodes bed would not change the nodes and edges of the
graph, but would avoid any edge crossings. A graph is called connected il hetween
every pair of nodes in the graph there is a path of edges, otherwise it is disconnected.
A 1-connected graph is one in which the removal of any one node and its incident
cdges would result in a disconnected graph. In a l1-connected graph, any node whose
removal causes the graph to be disconnected is called a cutpoint. The praph in
figure 2.1 is 1-connected, and nodes b and ¢ are cutpoints. A 2-connected praph
is one that is not T-connected and the removal of some two nodes and their incident
edges would result in a disconnected graph. A sequence of edpes that goes through
number of nodes of a graph and back to the original node is called a cycle, o, edges
(b.c), (c,d) and (d,b) in figure 2.1 form a cycle. A Hamiltonian cycle is a cyele
that passes through every node of the graph exactly once. Some graphs do not have a
Hamiltonian cycle, as illustrated by the graph of figure 2.1. A connected graph that
has no cycles (Hamiltonian or not} is called a tree.

In this thesis, upper case letters, A4, B,C,... are used for the names ol entire
graphs. Lower case letters, a,b, ¢, ..., name the nodes of any single graph, and edges

are expressed as unordered pairs of nodes such as (n, b).

12

2.3 Geometry

All geometric objects considered in this work are two dimensional: they can be drawa
in the plane. The individual points comprising the plane are tdentified by the Carte-
stan coordinate system.

A line segment is defined as two distinet points in the plane and ail points
hetween them on the unique line that contains the points. The two extreme points
of the line segment are called its endpoints.

A polygon is a connected set of line segments with every segment endpoint shared
by exactly two segments, The ordered line segments that define a polygon are called
its boundary, and the endpoints of cach of the segments are the vertices of the
polygon. The boundary segments will also be called sides of the polygon. In the
literature, the word edge: is often used as a synonym for side (or boundary segment)
of a polygon. We will not use this term here, in order to avoid confusion with its use
in graph theory. A simple polygon is one in which the only common points between
consccutive segments of the polygon boundary are vertices, and non-consecutive seg-

ments have no common points (figure 2.2). A simple polygon divides the plane into

d) Simplc b) Non-Simple

Figure 2.2: A Simple and a Non-Simple Polygon

13

an interior and exterior as shown in figure 2.2

An orthogonal polygon is a polygon that has an internal angle of TT1/2 radians
or 3T1/2 radians at every vertex, as in figure 2.3 for example. A vertex with interior
angle of TI/2 is called convex while one with an interior angle of 317/2 is reflex. All
orthogonal polvgons considered will also be simple polygons, It is assumed, without
loss of generality, that the sides of an orthogonal polygon are oriented parallel 1o the
A or ¥ axes of the cartesian coordinate system. Collinear sides of an orthogonal
polygon are two or more non-adjacent boundary segments that share the same X or

¥ coordinate.

convex vertex

= a

refllex vertex

—~—

Figure 2.3: An Orthogonal Polygon

Throughout this thesis the letter n is used to indicate the number of vertices

and sides of the polygon. The notation used to identify the vertices of a polygon is

U, Vg, Uz, ..Uy, While its sides arc described as 577z, T30, T304, ... 0 0.
2.4 Visibility and Visibility Graphs

Visibilily is described in terms of both geometric objects such as points, line segments,
polygons, etc., and in terms of graphs.

An object x is visible to an object y il therce exists a point «; on x and 2 point y;

14

on gy snch that the line segment 737, connecting the points intersects no other ohjects
of the set of objects, Figure 2.4 contains two sets of objects, and indicates a visihility

and an invisibility in each set. The polygon of figure 2.4b wses the vertices of the

a) b)

Figure 2.4: Object = is Visible to Object 3 but not z

polygon as primary objects, and the sides of the polygon as objects that may obstruct
visibility,

A wvisibility graph abstractly represents the visibility among the objects of in-
terest. It has a node for each object in the set and an edge joining two nodes if the
corresponding objects are visible to cach other. For example, the visibility graph rep-
resenting a simple polvgon could have a node representing each vertex of the polygon,
with edges indicating that the two corresponding vertices are visible to each other.
In another context, each node of a visibility graph of a simple polygon represents a
side of the polygon and the edges of the graph indicate that the corresponding poly-
gon sides are visible to cach other. As with general graphs, visibility graphs can be
redrawn in the planc in any configuration that maintains the nodes and edges of the
graph. The graph does not need to be l2id out in a lashion that corresponds to the

original objects. Tn fact, the ordering of the visibility edges around each node does

15

not need to be maintained in the ordinary, unordered visibility graph.

An ordered visibility graph of & set of objects has the same nodes and edges
as an ordinary visibility graph. however, the order of visthilities about each node
does correspond to the order of visibilities around each object in e geometrie st
of abjects, and further, the ordering about each node is nl\\';\:\'s in the siune direction
{e.g., clockwise). Thus lor each node in the graph there is a evelie list that represents
the clockwise (or counter clockwise} cvele of the objects seen [rom the corresponding
vbject.

Below, the visibility graphs of some specific vbjects are defined so they van be
casily referenced later.

The internal vertex visibility graph, 15,(7?), of 2t simple polvgon, P, is a graph
whose nodes correspond to vertices of the polvgon and whose edges arve incident,
with pairs of nodes that represent vertices that are visible through the interior of the
polvgon. The two endpoints of cach boundary segment are defined as being visibie
to each other. The ordered internal vertex visibility graph, V,,()}, of 7 is an
ordered version of V,(/?). An internal side visibility graph, V (), of a simple
polygon, P, is a graph whose nodes correspond to sides of the polygon, and edges
join sides that are visible to each other through the interior of the polygon. (In the
literature, this graph is usually called the internal edge visibility graph.) Tt is possible
to order the edges of V,(P), thus giving an ordered internal side visibility graph,
Vio(P). Some references in the literature also consider an external vertex visihility
graph of a polygon (chapter 6 [O'R87]). However, in this thesis, such a graph will

not be used.

16

The endpoint visibility graph., 1.(5). of a set of line segments. S, is a graph
whaose nodes correspond to the endpoints of a set of disjoint line segments, and edges
juin pairs of nodes that represent endpoints that are visible,. The two endpoints of
cach segment are considered to be visible to each other. When the cyclic ordering
of the edpes around each node is specified, this is called the ordered endpoint
visibility graph, V,,(5). A bar visibility graph, 1,(S), of a set of parallel line
sepments, S, is a graph that has a node for each segment (also called bar} in the set
and an edge joining pairs of nodes that correspond to bars that are visible to cach
other through a visibility path that is perpendicular to the direction of the bars. The

ordering of this graph gives an ordered bar visibility graph, V3,(S).

b
a
C
¢ d
Vu(P)
a.___}d.__. >-.b.__->e.
b| =2 ¢ e > > al *
¢ > b~ dl -
d > ¢ | T al — T ¢l 77> b|-*
¢ > n [——t o +——] a]-

Figure 2.5: The Data Structure that Stores a Visibility Graph

The data structure used to store cach of the visibility graphs described above is

an array of adjacency lists. That is, for every node 7 of the graph there is 2 list that
contains cach of the nodes that are incident to 7. The example given in tigure 2.5
shows a polygon. P, its corresponding internal vertex visibility graph, 1V,(/) and the
adjacency lists that store Vo (P). 1 the visibility graph is not ordered, the nodes are
stored in random order in each list. If it is ordered, the order of each node in the
list corresponds to the order of the vertices about the corresponding, vertex. In the

ordercd graph, it s assumed that the node at the end of each list i Tinked to the

node at the beginning of the same list. creating a cyvelie list,

18

Chapter 3

Ordered Visibility Graphs of
Polygons

Reconstruction problems in general are the reverse of construction problems. For
example, given a set of points in the plane, constructing the cyclic ordering of all
other points about cach point is easily computed in O(n®logn) time. However, the
corresponding point recoustruction problem is known to be NP-Hard [Sho91]. The
Point Reconstruction, PR, problem is defined as: given the cyclic ordering of all
other points around each point (unembedded), determine an embedding of the points
in the plane, consistent with the ordering information.

A related problem, the Line Segment Reconstruction, LSR, problem is defined
as: reconstruct a set of line segments from the clockwise ordered visibilities around
the endpoints of a set of (unembedded) line segments in the plane. An instance of
PR can be transformed, in polynomial time, to LSR by stretching each of the points
to a small line segment. Thus it is natural to allow additional input information to
the visibility graph in order to reconstruct the line segments.

Reconstruction of a polygon from its visibility graph is a related unsolved prob-

lem. One result, by O"Rourke and Streinu [0S95), shows that reconstruction of a

19

pseudo-polygon from a vertex-edge visibility graph is in VP, To simplifv the prob-
lem of reconstructing a polygon, P. from its internal vertex visibility graph, V(7).
the Hamiltonian cycle of the polvgon is frequently added as part of the input. A
visibility graph could contain many different Tamiltonian exeles. Determining if a
graph contains a Hamiltonian cyele is N P-Complete [GI79]. The Hamiltonian cyele
used as input and referred to in the remainder of this chapter is the one that follows
the boundary segments of the corresponding polygon.

Techniques for reconstructing a set of line segments are being developed indepen-
dently from those for reconstructing a polvgon. Typically, line segment reconstruction
techniques use the ordered endpoint visibility graph instead of a Tamiltonian eyvcele.
The two reconstruction problems, polygons and line segments, are similar, but due
to the differing input, a solution to one does not imply a solution to the other. This
chapter presents algorithms to convert Vi,(P) of a polygon, P, and its Hamiltonian
cycle to the ordered internal vertex visibility graph, Vi,.(P), of that polygon, and vice
versa.

The chapter first presents an algorithm that extracts the Hamiltonian cycle of the
boundary segments of a simple polygon from its ordered visibility graph, V(). The
algorithm performs this operation in O(F) time, where FE is the number of edges in
Voo{P). Recall that, for a simple polygon, 2n —3 < E < (n* — n)/2.

Also, an algorithm to create an ordered visibility graph, V,,(P), from the Hamil-
tonian cycle and unordered visibility graph, V,,(P), of a simple polygon is presented.
The routine, as developed here, also uses O(E) time.

Both results are thus worst case optimal and sensitive to the size of the output.

20

Using the results of this chapter, techniques presented for reconstructing a set of

line segments can be applied to reconstructing a polygon.

3.1 Ordered Visibility Graph Specified

INPUT:
- Vou{P) : The Ordered Vertex Visibility graph
of » simple polygon, P.

OUTPUT:
- The Hamiltonian cycle of V,,(P) that corresponds

to the boundary of the polygon, P.

In this section the Hamiltonian cycle of the polygon, P, is extracted from the poly-
gon’s ordered internal vertex visibility graph, V,,(P). Lemma 3, the main lemma of
this scction, is instrumental in the algorithm. Tt determines which edges of V,,,(P)
represent. sides of the polygon. First, some definitions and lemmas are presented.

Recall that an ordered vertex visibility graph of a polygon has a cyclic linked lisi
(unidirectional) for each vertex of the polygon. The order of the nodes in each list
corresponds to the clockwise order of cach of the corresponding vertices around the
given vertex.

An edge of the graph corresponds to either a boundary segment of the poly-
gon, or a visibility only segment between two vertices through the interior of the
polygon. However, V,,(P) contains no indication of whether an edge represents a
boundary or a visibility only segment.

A witness of a boundary segment or a visibility only segment of a simple polygon

is defined as a vertex that can see both endpoints and the entire segment behiween
the endpoints. Thus, in the corresponding visibility graph (ordinary or ordered), the
witness is adjacent to both nodes that represent the vertices at the endpoints of the
segment.

Every node in the visibility graph of a polygon is adjacent to at least two other
nodes. Il a node, a, has exactly two neighbours, b and ¢, then node « (and corre
sponding vertex v,) is called a blind ear, and («,h) and {a. ¢) are edges of the graph

that represent boundary segments (T, and T.7.) of the polygon.

Lemma 1 Fuery edye of the visibility graph of a polygon. V,(P) or VL, (P). thal

represents a boundary seqmendt of the polygon has al least one wilness.

Proof: The triangulation theorem ([O'R87], page 12) shows that every polygon
must admit a triangulation. Each triangle of a triangulation is on the interior of the
polygon. Assume an arbitrary polygon P and 2 given triangulation of that polygon,
Every boundary segment of P is part of one of the triangles of its triangulation.
The vertex at the apex of that triangle is a witness of that boundary segment. This
guarantees one witness for every boundary segment of the polygon. Since a polygon
could have many different triangulations, 2 boundary segment may have more than

one witness, O

Lermma 2 Fvery edge of the visibility graph thal represends o visibilily only seqment

of the polygon has al least two wilnesses, one on each side of the seqrnent.

22

Proof: Any arbitrary visibility only segment can be used to cut a polygon into
two separate polvgons, with the segment (along the cut) as a part of the boundary
of each of the new polygons. Applying the proof of Lemma 1 to cach of the new
polygons, ensures that the segment (along the cut) has at least one witness in cach
new polygon. Thus the visibility only segment has at least two witnesses, one on each

side of the polygon. O

A visibility only segment, 5, with endpoints v, and », is adjacent to two chains or
sides of the polygon, the left side from v, to v,, and the right side from v, to v,

as shown in figure 3.1.

right side

Figure 3.1: Left Side and Right Side of a Visibility Only Edge

Since our ultimate goal is to classify the edges of V,,{P), we now consider how

the witnesses of the previous lemmas can be used in this endeavor.

Lemma 3 An cdge, (a,b), in an ordered wvisibility graph with more than 2 nodes
represents a visibilily only segment in e corresponding polygon if and only if at least

one of the following three conditions exist:

1. One of the witnesses to (a,b) is a blind ear.

2. Some witness of {a,b) sces another node between a and b (with respect to the

ordering around that witness).

3. There exists a pair of wilnesses that see (a.h) consccubively and in opposite
order, t.c., one sees first a then b, the other sees first b then a with no other

nodes belween them.

Prool: (=} Let nodes « and b correspond to vertices n, and # on the polypon.
Lemma 2 states that there is at least one witness vertex on cach side of the visibility

segment, T,0,. Call these vertices . and vy, and their corresponding nodes, ¢ and d.

o Case 1: Assume that there is only onc vertex, ., on the left side (similavly for

the right side) of the segment, then », must be the witness for that side. (see

figure 3.2) There are two possibilities:

Left Side

e

Right Side

Figure 3.2: One Witness on Left Side

— None of the vertices of the polygon, P, that are visible to ., arc in the
sweep of the arc v,v,m. Then, in V,,(P), node ¢ is adjacent to just two
nodes, a and 4. Thus ¢ is 2 blind ear, which is condition 1. On a blind
ear, we have no indication of the ordering of the two nodes @ and b, but,

24

we do know that edges (e e) and (e, b) represent boundary segments of the
polypon, and that b is a witness to (e, a). and @ is a witness to {e, b).
— There exists at least one vertex, o, of the polveon that is visible to ¢, and
- AP

in the are #eo.ey. Thus, »,. and 2, are visible and, in 1,,(P) about node e,

x oceurs between a and b, This is condition 2.

o Case 2: There is more than one vertex on cach side of the polygon.(sce figure

3.3) There are two possible situations:

Figure 3.3: More than One Vertex on Each Side of the Polygon

— There exists at least one vertex v, of the polygon that is visible to a witness
1, ol segment 77, and in the arc v,v.v,. Thus, v, and v, are visible and,

in V,,,(’) about node ¢, = occurs between a and b. This is condition 2.

— There are no visible vertices in either arc v,v vy or v,vqet, where v, and
1y are witnesses of segment 7,7, on opposite sides of the polygon. Since
Vio(P) is constructed in a consistent (clockwise) order witness ¢ will see

first then b, and witness d will see b first then a. This is condition 3.

(3]
[+]]

Since no other possibilities exist, an edge in V,.{P) that represents a visibility only

segment implies that one of conditions 1, 2, or 3 are true.

(<) Now, assume at least one of the three conditions 1. 2, or 3 is met.

e Case 1: Assume condition 1 is met. Thus, one of the witnesses, sav o, to edpe,
(n,b), is a blind car. On a blind ecar, cach of the edges attached to & represents
a boundary segment of the polygon. Tl e also represents a boundary segment
the polygon would be closed after only 3 vertices, violating one of the premises
of the lemma. Thus, if a witness to an edge is a blind car, that edge represents

a vistbility only segment of the polygon.

e Case 2: Assume condition 2 is met. That means, at least one witness of the
edge (a, b) sees another node, x, between a and b Assume that {a,) represents
a boundary segment, called T;7,. Vertex v, that corresponds to node x, must,
be between z, and v, as seen by the witness. Thus o, must cither be in front of
or behind segment 757, The triangle formed by 777, and the witness is emply,
$0 7, is not in front of m. Then the vertex w, must be placed behind g7,
By the definition of visibility, the witness will not see #. since it is behind a
boundary segment. Thus T;7; cannot be a boundary segment; it must he a

visibility only segment, and (rz, b) must represent a visibility only segmenl.

e Case 3: Assume condition 3 is met. There exists one witness, x, of (a,5) that
sees first u then b with no other nodes hetween them, and one witness, % that,

sees first & then o with no other nodes between them. Becanse the lists for each

26

node are constructed in clockwise order, the corresponding witnesses vertices o
and #, mst be on opposite sides of 75, (Recall that the left side of a visibiliny
only segment was previously defined to be the chain of vertices from 1, to
and the right side to be the chatn of vertices from #, to #,.) Boundary segments

have only one side, thus (@,) must represent a visibility only segment.

So, if at least one of the conditions 1, 2, or 3 are met, then edge (a,b) of the

visibility graph represents a visibility only segment, O

Equivalently, an cdge represents a boundary segment of the polygon if and only
il none of the conditions 1, 2, or 3 of lemma 3 are satisfied in the ordered visibility
graph.

For a single node a in an ordered visibility graph, finding an adjacent edge that
represents a boundary segment of the polygon would require searching through the
lists of nodes adjacent to a for existence of any of the three conditions of lemma 3.
Depending on the degree of a this could involve searching all of the edges, E, of the
graph, or O(FE) searches.

Tt is assumed that the ordered visibility graph, V,,(P), is stored as »n adjacency
lists, one for each vertex, and that the lists are circular, that is, the end of the list
has a link to the beginning. The order of the nodes in each list corresponds to the
clockwise order of the corresponding vertices around the given vertex. For every node,
exactly two of the edges in its list represent boundary segments of the polygon. Due

to the ordering of V,,(P), those two edges are adjacent in the list.

(S
|

3.1.1 Algorithm: Determine Hamiltonian Cycle

The algorithm to determine the Hamiltonian eycle from the ordered visibility praph

begins by finding one edge of 15,,(P) that definitely represents a boundary segment. of

the polygon, then goes through each adjacency list of 11,(P). finding the neighbouring,

node that also represents a boundary segment. The algorithm is described brietly

Lelow;

1.

o

Choose any starting node, call it p. Traverse p's list, counting the number of

visible nodes.

Il p has only two visibilities, a and &, it is a blind car. Adjacent edges (p,) and
{p, b} both represent boundary segments of the polygon, 7%, and 77, Choase
one of them, say (p,a), and determine which direction (p,n) or (n,p) is in the
same direction as the ordered visibility graph was constructed. (Examine b's
ordered visibility list and choose the order of p and « there. This is possible

since the degree of & is greater than or equal to three.)

If p has k visibilities (2 < k£ < n), find an edge that represents & boundary
segment of the polygon that is adjacent to node p. This is done by searching the
visibility list of p for a node a such that (p,a) does not. mect cither concitions
2 or 3 of lemma 3. Edge (p,a) would represent, a boundary segment, of the

polygon.

. Starting at the boundary segment found above, walk through the ordered visi-

bility lists, building the Hamiltonian cycle along the way, until returning to the

28

1 1 if nnde is adjacent

. to p, 0 otherwise
poadj_ron

2l oo |alo}o ol o 0| directional indicator

Figure 3.4: p’s Adjacency Row

starting node p.

In order to analyse the above algorithm, more specific implementation details are

required.

1. Traversing the chosen node p's list will require O(n) time.

2. Tt only requires constant time to check if the number of visibilities in p’s list is
two. If p is determined to be a blind ear, one of p’s adjacent edges, say (p,a)
must, be ordered consistently with V,,(P)’s construction. {Assume a and b are
the two nodes adjacent to p.) The process of ordering of an edge will require
traversing b’s list until p and a are found, and using this order. Since b's list
could have up to n vertices in it, and p and a could appear at the end, this step

of the algorithm requires O(n) time.

3. This step requires several substeps for efficient completion:

o Create a 2xn matrix. Call this structure, p_adj_row, for p’s adjacency row.
See figure 3.4. In the first row, place 2 1 in any location that is indexed by a
node that is in p’s visibility list, and a 0 in any other location. This is anal-

ogous to one row of an adjacency matrix. Fill the second row with 0’s. This

29

L e — -.L}‘q -h‘,“p.— L

.,
[
y
o

A

ppnirlt
Figure 3.5: Node i's List and Pointer to p

second row is used as an ordering indicator. For node &, p_adj_row(i, 2]= 1
implies that the order (p,7} was indicated: padi.rew(i,2]= -1 implies
that the order (i, p) was indicated; and p_adj_rew(i, 2]= 0 implics that no
information on the ordering of the edge has been indicated. The creation
of this list requires O(n) time.

e Find the node p, in each of the, at most n, lists that are visible to p, and
place a pointer, ppaine there in cach list. Sce figure 3.5. This could vequire

searching all the edges in all the lists, which neceds O(F) time.
s Searching for condition 3 of lemma 3, go through the O(n) pointers:

~ Let q be the node before the pointer (ppgin). Check if p_adj_row(q, 1] =
1. If so, check padj_row{q, 2]. If this entry is 0, set it to —1 to indicate
the ordering (g¢,p). If this entry is —1 do nothing. Tf this entry is 1,
then condition 3 of lemma 3 has heen met, and (¢, p) must he removed
é.s a potential boundary segment. That is, set pudj_rowq, 11= 0.

— Let r be the node after the pointer (ppuwin). Check if poadi_row(r, 1)
= 1. 1f so, check p.adj_row[r,2). 1f this entry is 0, set it to 1 to indicate
the ordering (p,7). If this entry is 1 do nothing. If this ertry is =1,

then condition 3 of lemma 3 has been met, and (p,) must be removed

30

file:///fpjidjjrow/q

as a potential boundary segment. That s, set poadj_row(r, 1]= 0.
Thus O(n) x O(1) = O(n) time is required.

o (o through the, at most n, lists of vertices that are visible to p, searching

for condition 2 of lemma 3:

—~ For node := the node after r to the node before ¢,

cheek if poadj_row[node 1] = 1. 10 it is, reset it to 0.

This could require checking O(E} edges, cach needing O(1) time for a total
of O(F) time,

e What remains in p.adj_row’s first row now is only two 1's. Both nodes,
together with p, make edges of the visibility graph that represent. boundary
segments of the polygon. Go through poadj_row’s first row until the first
1 is found, create an edge with this node and p, in the order indicated in
the sceond row. Since the two 1°s may be at the very end of padj_row,

O(n) time is needed.

The sum of the substeps, indicates that O(F) time is needed to check for con-

ditions 2 and 3 of lemma 3.

. The final walk through that creates the Hamiltonian cycle is accomplished as
follows: Put the two nodes found above into the partial Hamiltonian cycle in
the indicated order. While the cycle is less than n in length: search through
the adjacency list of the last node in the partial cycle until the second last node

of the partial cycle is found, and append its successor onto the partial cycle.

31

Since each vertex is nltimately in the Hamiltontan evele, all o edge lists will
be examined: in the worst case, all edges will be constdered, vesulting in O(F)

titme.

So, the overall complexity of the algorithm is G(n) + O(n) -+ O(EY + O(F), which is

O(F).

3.2 Hamiltonian Cycle Specified

INPUT:
- Vu(P) : The Unordered Vertex Visibility graph
of a simple polygon, P.

- The Hamiltonjan cycle of 1,,(”) that corresponds
to the boundary of the polygon, P.

OUTPUT: _
-~ Vio(P) : The Ordered Vertex Visibility graph
of the polygon, P

The routine to convert from a ITamiltonian evele and an nnorderad visibility graph,
Vu(P), to an ordered visibility graph, V,,(P), simply newds to sort each of the n
lists inte Hamiltonian ¢ycle order. The lists conld each be of length o~ 1, so this
operation might appear to require n x O(nlogn) = O(n?logn) time, to sort each of
the n lists. However, in each list the entries are unique integers in the vange 1,2, .0,
If the length of each list is /;, a linear tite sort, like bucket and counting sort! ean be
used to sort cach list in O(l;) time, and all lists could be sorted in O(F) time sinee
©, L = O(E).

The conversion algorithm is:

'These are deseribed chapter 9 of [CLR20).

32

. Assmming the Hamiltonian evele is not in numerical (or alphabetic) order use a
counting sort to create another array that is the inverse of the permutation of

1.2, .0 that represents the Hamiltonian cyvele,

™

For each of the unordered lists of the visibility graph use a bucket sort to put
the nodes into Mamiltonian cvele order, Tere the inverse arvay will be used to
convert the actual node (or vertex) number into the appropriate location of the

Hamiltonian evele,

All the elements of the Tlamiltonian cycle will be unigque integers in the range
1,2,...n, so counting sort can be used here, and step 1 of the algorithm uses O(n)
time. The bucket sort assumes that the input is well distributed over the range of
buckets. 1 the length of each list is /;. the bucket size for that list is set to be n/l..
The fact that the entries in a list are unique numbers in the range 1, 2, ...n ensures the
entries in cich list are distribued into vavious buckets, Thus all I; bucket sorts will
be completed in O(1) + 1y + ...1,) = O(F) time. Therefore the entire ordered visibility

graph can be computed in O(E) time, and furthermore, the space used is also O(FE).
3.3 Summary

This chapter presented an algorithm that converts the ordered visibilicy graph of a
simple polygon to its Hamiltonian cycle in O(F) time, where E is the number of
edges of the given visibility graph. A second algorithm in the chapter converted
the Hamiltonian cycle and unordered visibility graph of a simple polygon to the

corresponding ordered visibility graph in O(FE) time. Both algorithms are optimal.

33

These two results are interesting primarily because they link the results of two
previously unrelated subareas in the visibility literature: line segments and polygons,
For the reconstraction of a set of line segments, S, from the endpoint visibiliey graph,
10(S) is frequently supplied, whereas for the recanstruction of a polvgon, P, from its
vertex visibility graph, it is generally 1,(7) and the Hamiltonian cyele that is con-
sidered. Neither of these two reconstruction problems has been completely resolved
in the general case.

In the next chapter, the reconstruction of an orthogonal polygon is considered,

using line of sight visibility in the direction of each of the sides of the pulygon.

Chapter 4

Orthogonal Polygon
Reconstruction

An orthogonal polygon is 2 poiygon that has an internal angle of TT/2 (CONVEX)
or 3N/2 (REFLEX) radians at all corners. In this chapter, it is assumed that the
orthogonal polygon is simple, has more thn four vertices, and has no collinear sides.
In section 4.6, the collinear sides assumption is discussed. A stab of a vertex of a
simple polygon is an indication of the next side of the polygon seen by the vertex
in the direction of the side. Both interior and exterior stabs of the polygon are
specified. Every vertex of an orthogonal polygon has two stabs, one in the horizontal
dircction, and one in the vertical direction. If there is no side that is stabbed in the
indicated direction, the stab is said to be 2 stab to infinity (denoted as o0). The
Hamiltonian cycle of a polygon is a list of its vertices, in the order they appear
around the polygon.

This chapter contains two algorithms; the second one relies on information pro-
vided by the first. The input to the algorithms is the set of stabs and the Hamiltonian
cyvcle of an unknown orthogonal polygon. The first algorithm determines whether each

vertex is forced by the stab information to be CONVEX or REFLEX. This is equiva-

35

lent to determining whether the stab is through the interior or exterior of the polygon,
since stabs from convex vertices are on the exterior of the polvgon and from reflex
vertices are interior to the polvgon. The second algorithm reconstruets an orthogonal
polygon that is consistem. with the input stabs and Hamiltonian evele, (Actually,
the reconstructed polygon is just one of a family of polygons that satisilies the input
information.}) Define the Orthogonal Polygon Reconstruction (OPR) probiem
to be the reconstruction of an orthogonal polyron given only its Tamiltonian cyele

and stabs. Figure 4.1 is an example of the input information required by the OPR

problem.
Side Orientation Stab
ab hortzontal o0 o
be vertical 00 ef
ed hotizontal fig oo
de vertica) oo 00
of horizontal 00 00
fr vertical 00 ab
gh horizontal be i
hi vertical 2% -
ij horizontal fir [ore)
in vertical [e) o0

Figure 4.1: Example Input for the OPR Problem

The remainder of this chapter is organized in six sections. Section 4.1 defines and
characterizes horizontal rectangles that are delimited by the horizontal stabs and the
sides of the polygon. These rectangles are instrumental in determining the convexity
of the vertices of the orthogonal polygon. Section 4.2 describes how to identily cach
of the horizontal rectangles. The first algorithm, determining whether each vertex is
CONVEX or REFLEX, is presented in section 4.3. The algorithm to reconstruct the

36

orthogonal polvgon is in section 4.4, Section 4.5 compares this OPR result to other
sitntlar results in the lirerature, and section 4.6 presents an OPR routine that allows

the reconstructed polypon to have collinear sides.

B e s S i >
~<---==-=-- - -
-<-------I-.>
s - =
<—-———l->-
s ==
R et 3
- >
R e R R R >

Figure 4.2: An Orthogonal Polygon with Horizontal Stabs

4.1 Horizontal Rectangles

The first, algorithm of this chapter determines whether each vertex is CONVEX or
REFLEX. Tn ovder to do this, the plane containing the polygon to be reconstructed
is partitioned into rectangles, and those rectangles are classified. Tt is from this
classification that the convexities of vertices are established.

Figure 4.2 is an examnple of an orthogonal polygon with all horizontal stabs drawn
in. Notice that the plane is divided into a collection of different rectangles. Tt is
assumed that those rectangles with stabs to infinity are completed by a pseudo side
at infinity. Depending on how the stabs hit the sides of the polygon, twelve diflerent
types of rectangles, as enumerated in figure 4.3, are possible, ignoring horizontal and
vertically symmetric situations.

Natice that every stab is part of exactly two rectangles, one above and one below

37

L.

_I. _LT . _L

Type 1 Type 2 Type 3 Type
- \j— — - |
’;_ - |
Type d Type 6 Type 7 Type 8
_______ ———a PSR I B
T T 1T 1
Type ¢ Type 10 Type 11 Tyvpe 12

Figure 4.3: The Twelve Possible Horizontal Rectangles

it. For the previously stated assumption of no collinear sides, there exists a unigue top
most side and a unique bottom most side, cach of which partially bound degenerate
rectangles as shown in figure 4.4. These will be called type 0 rectangles and are casily

identifiable.

S S D

Figure 4.4: The Two Type 0 Rectangles

Lemma 4 Aside from the lwo type 0 reclangles, reclangles of lypes 1 through 12 are

the only possible reclangles created from the sides of an vrthogonal polygon and iy

38

horizontal stabs.

Prool: Every rectangle has exactly four corners. Tt is possible that zero to four of

those corners correspond to vertices of the polvgon.

o Case 0: If zero corners of a rectangle correspond (o vertices of the polygon,
. [4 .
there is 0ol= 1 possible rectangle. The only rectangle that has no polygon

vertices on ils corners is type 12,

e Case 1: If one corner of a rectangle corresponds to a vertex of the polygon,
4 . .

there are (1) = 4 possible locations for that correspondence. At that corner,

the polygon could turn toward the rectangle, or away from it, as in figure 4.5

thus giving 4 x 2 = 8§ rectangles. Ignoring the four horizontal and vertically

T

Figure 4.5: Turning Toward and Away from Rectangle

symmetric situations leaves only two different rectangles. The two rectangles

with one corner corresponding to vertices of the polygon are types 10 and 11.

o Case 2 If two corners of a rectangle correspond to vertices of the polygon, there
4 . . .
are (5) = 6 possible locations for those correspondences, as shown in figure

4.6.

39

http://zr.ro

A :
al : :
errerntomnrnanennnacar M iiiiiersiiaeeeans -
...................... & .;?;\
h.1 h2: :
Wrssernctarnareroraniot e iiieiasiensiarsenss -
E IRETEERETE Nrrebaaarwr ? ARRRAARAAAEER LY

: : .9l
c] Com o .
b bmeatansany P B rtttentaieitiaaatan, &

Figure 4.6: Two Vertices Correspond to Rectangle Corners

Notice that locations 2.1 and a.2 differ by a vertical flip, and thus will be con-
sidered as equivalent. Locations 5.1 and 5.2 and locations .1 and .2 diller from

their partners by a horizontal flip, and thus will each be considered equivalent.

— In case a, the vertices can both turn away from the rectangle, one turn
toward the reetangle and one turn away from the rectangle, or both turn
away from the rectangle. This gives three possible configurations, thai

correspond to rectangles of types 1, 2, and 3.

— Tn case b, the polygon vertices can turn in the same three directions as in

case a. These configurations are rectangles of types 4, 5, and 6.

— In case ¢, the vertices can only turn toward the rectangle and be conseculive
on the Hamiltonian cycle. If either or both turned away, a stab would
be created that defines part of the rectangle, and the vertex would then
not correspond to a corner of the rectangle. IT both turned away from the
rectangle and were not consecutive on the Flamiltonian cycle, collinear sides

would be created. The one rectangle obtained bere is a type 9 rectangle.

40

Thus, there are seven possible rectangles that have two corners that correspond

to vertices of the polygon.

e Case 3: Il three corners of a rectangle correspond to vertices of the polyvgon,
4 . . .
there are (3) = 4 possible locations for those correspondences, all of which

are symmetrically related, leaving only one possibility.

= The two of the three vertices cannot turn away from the rectangle, since
this would result in an orthogonal polygon with collinear sides, violating

one of the assumptions of this chapter.

— The three vertices could have one turning away from the rectangle, and
two turning toward it. However, in order to avoid collinear sides, the three
vertices must be consecutive on the Hamiltonian cycle ol the polygon. This

is a type 7 rectangie.

~ The three vertices could all turn toward the rectangle. However, in order
to avoid collincar sides, the three vertices must then be consecutive on the

Hamiltonian cycle of the polygon. This is a type 8 rectangle.

Thus, there are two possible rectangles that have three corners that correspond

to vertices of the polygon.

e Case 4: If the four corners of the rectangle correspond to the vertices of a
. [4 . . .

polygon, there is (4) = 1 possible location for this correspondence. However,

this case is not possible under the given assumptions of: a simple polygon with

more than four vertices and no collinear sides.

41

Therefore. there are exactly twelve possible configurations of rectangles created from
the sides and horizontal stabs of an orthogonal polygon, and they are the types 1

through 12 rectangles as defined previously, 0

Lemma 5 Et}cry verter of the polygon is part of cxactly three horizontal reclangles.

Proaf: Refer to figure 4.7. There is one horizontal rectangle above and one below

Above Stab

___________ S

Behind Vertex Below Stab

Figure 4.7: A Vertex is Part of 3 Rectangles

cvery horizontal stab, and one rectangle behind the vertex, O
Corollary 6 Around cach verlex, there is either:

o one horizonlal rectangle ebove and lwo below il, or

e lwo horizonlal reclangles above and one below 1.

Proof: Since these are the horizontal rectangles created by the horizontal stahs,

these are the only possible configurations. Sce figure 4.8. O

42

Above Stab 1\3’,:?;:3 Above Stab
---------- > |
__' __________ -
Behind Bel tal
Vertex clow Stab Below Stab

Figure 4.8: Two Orientations of Rectangles Around a Vertex

4.2 Identification of Rectangles

This section uses the characterizations of the previous section to identily the type
ol each horizontal rectangle. The identification of all rectangles of type 0 to type
11 will be shown to be an O(n) step, but identification of type 12 rectangles require
O(nlogn) time. This typing will be used in the CONVEX/REFLEX algorithm in
section 4.3,

Starting at one vertex of the polygon, and traversing through the Hamiltonian
cvele, the algorithm determines the three types of rectangles around each vertex.
Define the value returned by the function stab[v] to be the side that is stabbed by
vertex » along a horizonlal stab. Also, define siabv].ver to be one of the vertices
that are on the vertical side that is stabbed by vertex ». (Which of the two vertices
depends on the orientation of the rectangle and the layout order, clockwise or counter
clockwise, of the Tlamiltonian cycle and is left as an implementation detail.) The
boolean function TsHoriz(77Ti4) determines whether the given side is horizontal or
not. If i is the current vertex on the Hamiltonian cycle, then 7 +1 and 7 — 1 (modulo

n arithmetic) respectively refer to the next and previous vertices on the Hamiltonian

43

cycle. Refer to figure 4.3 while reading the descriptions.

Identifving the types 0 through 11 rectangles can be achivved by testing the fol-

lowing conditions for a vertex i

Type 0: stabli] = oc and stabi + 1] = o0 AND IsHloriz(Fr57)
Type 1: stabli] = stab{i + 1] AND NOT I«Horiz(FT5)

Type 2: stabfi] = stabli + 2] AND NOT (a type 1 rectangle)

Type 3: stabli] = stabli + 3] AND NOT (a type 1 or type 2 rectangle)
Type 4: stabstabfil.ver]wer =i

Type 5: stab[stab{i].ver +1]wer =i

Type 6: stablstabli]ver + 1)wer — 1= ¢

Type T: stab[i]lver =i+ 2

Type 8: stablilver =i+ 3

Type 9: stabli].ver + 1 = stabli — 1].ver AND IsIToriz(Tm7)

Type 10: stab{stab{t].ver] = stabli — 1] AND IsHoriz(77m57) AND NOT (a
type 4 rectangle)

Type 11: stab[stabi].ver + 1] = stal{i — 1] AND IslToriz(Tmo7) AND NOT (a
type 3 or type 5 rectangle)

For a given vertex i, detecting the tyvpes 0 through 11 rectangles incident. upon
i requires O(1) time.

Type 12: A type 12 rectangle is detectable when two pairs of vertices have

common stabs. (That is, stab[i] = slab[f +1] and stab[i+1] = stab]j], assuming

I'sHoriz(ww71) and TsHoriz(77;57)). Detecting this type of reclangle will
require examining all horizontal stabs to cach vertical side. Since it is possible
that O(n) stabs could hit one side (sce figure 4.12, for example), it might appear
that this operation could take O(n?®) time. However, in section 4.3, a data

44

structure is presented that reduces the overall time needed to identify all type

12 rectangles 1o O(n logz) time in total.

4.3 Algorithm - Determine CONVEX/REFLEX

INPUT:
— The stabs of the horizontal and vertical sides
of an unknown simple orthogonal polygon, P.

— The Hamiltonian cycle that corresponds
to the boundary of the polygon, P.
OUTPUT:

— The convexity (gONVEX/REFLEX) of each vertex
of the polygon, P.

The following algorithm determines the convexity of the vertices of an orthogonal
polygon given the Hamiltonian cycle and the stab information. Traversing the Hamil-
tonian cycle of the polvgon, all sides are assigned to be cither horizontal or vertical:
hyy vy, hay va, o oo huge, 9. First, the algorithm will identify the rectangles adjacent
1o cach horizontal stab. Each rectangle contains two, three, or four vertices of the
polygon, and the convexity properties of the involved vertices are not independent.
For each vertex, », of the polygon, the algorithm maintains two sets, same(v] and
opposilc[s]. Ultimately, all the vertices on a rectangle containing v will be included
in cither same[v] or opposite[n]. These two sets indicate whether those vertices have
the same or opposite convexity as ». For example, figure 4.9 shows a type 6 rectangle,
and the corresponding same and opposile sels associated with each polygon vertex
of the rectangle. Note that at this stage it has not yet been established whether the

rectangle is in the interior or exterior of the polygon. In the final step, using all these

. :_ same[a]: g opposite[a]: b, h

same(b]: h opposite[b]: a,n

- samefg]: a oppusitelg]: b.h

a b samefh]: b oppositefh]: a. g

Figure 4.9: same and opposite Sets Corresponding to a Type 6 Rectangle

sets, the algorithm will assign the labhel CONVEXN o REFLEX to each vertes.
The algorithm is deseribed in three parts: classifving tepes 0 through 11 vectangles
and identifying the vertices on cach, identifving vertices on tvpe 12 rectangles, and

finally determining the convexity of cach of the vertices,
4.3.1 Classify and Identify Rectangles: Types 0 to 11

This part of the algorithm walks through the Hamiltonian evcle of the polygon,
checking each horizontal stab for inclusion as part of any type 0 through 11 rectangles.
For each vertex, », append the other vertices on the same rectangle Lo either its
samelv] or oppositelr] set, and count the number of rectangles to which it has been
assigned.

e Inilialize: For cach vertex », in [lamiltonian cycle order do:

—

. number_of_rectangles[v] := 0.

(3]

. initialize same[v] to the empty set.

[N

. initialize opposile[n] to the empty set.
o Classify/Identify: For each vertex, », in Hamiltonian cycle order do;

— if conditions 0 to 11 of section 4.2 are satisified with vertex »:
= For every pair of vertices, j and k, on the rectangle
1. increment nturnber_of_rectangles(j

2. either INSERT (j, samnelk]) or INSERT(j, opposite(k])
appropriately!

"This is casily determined from figure 4.3

46

Analvsis: The inibiali ze loop uses O{n) time since each of the operations inside

the loup use constant time, and the loop is excented n times. In the classify/identify
loop, checking cach of conditions (0 through 11 requires constant time (as shown in
section 4.2). Sinee every vertex is part of exactly three horizontal rectangles, each
of which contains from two to four vertices of the polygon. the same and opposite
sets for each vertex will together contain no more than twelve vertices, a constant
munber. Inserting a constant number of vertices into constant length sets is an O(1)
time operation, as is incrementing a variable. So the classify/identify loop also uses
O(n) time, and the overall analysis of this part of the algorithm is O(n). Also, the
space used by the above routines is bounded by O(n).

Now, label any vertex that has been assigned to three rectangles as classified and
the rest as unclassified. The next section will use this classified /unclassified labelling

to identify the type 12 rectangles,
4.3.2 Identify Rectangles: Type 12

A type 12 rectangle could be on either the inside or the outside of the polvgon. Any

vertex that is now unclassified must be part of some tvpe 12 rectangle. The difficulty

Figure 4.10: A Type 12 Rectangle

is identifying which other stabs are also part of this same rectangle; refer to figure

A7

4.10. The stab = that is on the .other end of the horizontal side from < can be
identified in constant time, simply by looking at the stab of the next vertex on the
Hamiltontan cyele. The two stabs s and s of the same rectangle are more diflicult
to find.

The necesstty of identilving type 12 vectangles is shown by the polvgon of ligure
411, Il trpe 12 rectangles are not considered. the marked vertices would not appear in
the same or opposile sets of any of the other vertices. The marked vertices and more,

would be isolated if we examined the vertical, instead of the horizontal rectangles.

Figure 4.11: A Polygon with Vertices Isolated by Type 12 Rectangles

Even though the total number of all types of rectangles created by o polygons
horizontal stabs is O(n), there could be O(n) type 12 rectangles. A natural conjecture
would be that each of the O(n) vertical sides stabbed by type 12 rectangles, only have
a constant number of such stabs. Vertical side, s, on the polygon of figure 4,12 shows

that this conjecture is incorrect and a more elaborate procedire is reeuired.

48

SN

ore,

e

Figure 4.12: A Polygon with O(n) Type 12 stabs to Some Vertical sides

This part of the algorithm traverses the Hamiltonian cycle of the polygon several
times. The {irst pass initializes counters and binar: search trees for each vertical
side, while the second pass determines the number of type 12 vertices that stab each
vertical side. The third creates a binary tree for cach vertical side and matches the
vertices on each type 12 rectangle. For every adjacent pair of type 12 vertices (e.g.,
sy $2 in figure 4.10) one vertex of the pair is included in the binary tree of the vertical
side stabbed by the other. When inserting into these binary trees, a vertex to be
inserted that already exists in the trec was placed there by the other pair of type 12
vertices that stabbed the same vertical sides. This condition indicates that all four
vertices of a type 12 rectangle have been identified.

e Initialize: For cach vertical side, s, in Hamiltonian cycle order do:

— unelassified_count|s] := 0.

49

4.3.3

- initialize binary-treels] to cpty.

o Counl stabs:

For each vertex, v, in Hamiltonian evele order do:

= If (number_of _rectangles[e] = 2) increment unclassified_count{stab]r]].

e Create Trees: For cach vertex. e, in Hamiltonian evele order do:

= il (number_of _rectanglesfe] = 2) AND (number_of rectangles[e+1] -2 3)

« il (unclassified_count|stabe]}] < unclassi ficd_count[stable + 1]])
/* vertical side stab[r] is the least stabbed of the two sides */

- il (MEMBER(stably + 1), binary_treelstab[e]]))

- J* a type 12 rectangle has been found. */

- For every pair of vertices, j and &, on the rectangle:
INSERT(j, same[k])

- DELETE(stable + 1], binary_treeln])

- clse INSERT (stab{u + 1], binary_tree[stab[s]}]).
+ % clse /* vertical side stabfy] is NOT the least stabbed of the two sides

*/

il (M EM BER{stab{v], inary_tree[stable +1]]))

- /* a type 12 rectangle has been found. */

- For every pair of vertices, § and k, on the rectangle:
INSERT(j, samelk])

- DELETE(stab[s], binary_trecfy + 1))

- clse INSERT (stabju]. binarydrcelstably +1]]).

Analysis: The inifialize and count stabs loops ave each O(n) loops. The rreale

trees loop is an O(nlogn) loop, since it is exceuted n times, and cach binary tree
could have O(n) entrics in it. (Scarching, and inserting into a balanced binary trec
of size O(n) requires Oflogn) time.) So, the overall time needed by this part of
the algorithm is O(nlogn). However the space required here is only O(n), since the

number of entries in all the binary trees never exceeds 7.

Determine Convexity of Vertices

This stage starts with any vertex, », that has a stab to infinity, marks it as CONVEX,

and initializes a queue (called lode_done) with this vertex. Then a loop is created

30

that dequenes a vertex, #, from the front of the quene, marks the vertices in samef{r)]
as the same convexity as , and those in opposite[v] as opposite to v, For cach of
these vertices, il they were not previously marked, enqueue them to the back of the

quene. The loop continues until the queue is empty.

o initialize Lo bedone to be an EAMPTY queuc.
e fuilialize: For cach vertex, v, in Hamiltonian cycle order do:

- has.been_quenedfy) .= false
— il (stab[v] = oo} and (lodedone = EMPTY)
* ENQUEUE(v, lobedonc)

* hasbeen_queved(v] := true

* yertex[v] .= CONVEX
o Delermine Convezily: While (tobe_done # EMPTY) do:

— 1:= DEQUEUFE (to-bedone)
— for cvery vertex, j, in sameli] do:
x if NOT (hasbecn_queued(;))
- ENQUEUE(3, lobedone)
- hasbeen_quened[j) 1= true
* i (werlex[i]] = CONVEX) then vertez[j] == CONVEX
x clse vertex[j] ;== REFLEX
~ for every vertex, j, in oppostie[i] do:
x if NOT (hasbeen_queued[j])
- ENQUEUE(j,lobe_done)
- has_heen_queued[j] := true
* if (werlex(i] = CONVEX) then vertex[j] := REFLEX
* clse vertez|j] ;== CONVEX

Analysis and Correctness: The inilialize loop clearly uses O(n) time. The cor-

rectness of the delermine converity loop requires the following definition and lemma.
Define an isolated group of vertices to be a proper subset, K, of all the vertices

ol an orthogonal polygon such that these vertices appear in each other’s same and

51

oppostie sets, but not in the same and opposite sets of any other vertices. Further-
more, the same and opposite sets of the vertices of A do not contain any vertices

that are not in R,

Lemma 7 Afler the algorithms to classify and dentify types O through 12 reclungles

m subsections 4.3.1 and {.3.2. an isolaled group of vertices does nol exist,

Proof: Assume an isolated group of vertices does exist and that the original or-
thogonal polygon is P. The vertices must all be on rectangles that are defined by the
vertices of the group. From lemma 5 we know that every vertex is part of exactly 3
horizontal rectangles, and from corollary 6 we know that at least one of those three
must be above the vertex and one below it. So, every vertex will be part of the same
or apposile set of the vertices on one rectangle above it and one below it. Every
rectangle has at least one vertex on its top edge and at least. one vertex on its hottom
edge. Thus there is a strip extending from the top of the plane to the bottom, con-
sisting ol rectangles that were created from the isolated group of vertices. Tlowever,
there must be some vertices, and thus some rectangles that are not, part of the group
since an isolated group is a proper subset of the total set of vertices. So there is
another strip going from the top of the plane to the hottom consisting of rectangles
that were created from vertices that are not part of the isolated group. These two
strips must be mutually exclusive. Note that the horizontal segment with the highest
y-coordinate delineates the upper type 0 rectangle, and that this rectangle extends
completely across the plane, from right to left - similarly for the lower type 0 rect-

angle. So, the two strips of rectangles would have the upper and lower rectangles in

52

common. Thus the two strips cannot be mutually exclusive and therefore the isolated

proup of vertices cannat exist, O

Lemma 7 indicates that the drrh:r"mim: converity loop correctly identifies all the
vertices as CONVEX or REFLEX. since there are no isolated vertices. The loop does
not terminate until the quene is empty, which will only happen when all are marked.
Each vertex is put onto the quene once, and pulled off once. Thus the delermine
convexily loop is excented exactly » times, with cach iteration requiring constant
time. Therelore, this entire stage of the algorithm uses O(n) time.

Thus, the time used to determine whether each vertex of an orthogonal polygon of
n vertices is CONVEX or REFLEX is dominated by the O(n logn) nceded to identify

the type 12 rectangles. The space requirement is only O(n).

4.4 Algorithm - Reconstruct Polygon

UT:
~ The stabs of the horizontal and vertical sides
of an unspecified simple orthogonal polygon, P.

- The Hamiltonian czcle that corresponds to
the boundary of the polygon, P.

OUTPUT: .
- An orthoFonal polygon, P, that abides by the
input information.

In this scetion, an efficient algorithm is presented to reconstruct an orthogonal poly-
gon from its stabs and Tamiltonian cycle, after the convexity of the vertices is estab-

lished. This algorithm creates two lists, representing the relationships between the x

and y coordinates of all vertices. One Hist {0, e} represents the o coordinates

of each of the vertical sides. the other Tist {#n. o tinae b represents the g coordinates

of the horizontal sides. These two Tists will be created in such o way that when the

sides are laid out on the x and ¥ coordinates, the result will be an orthogonal polvgon,

The lists are not unique since it is not possible to determine the relationships hetween

the stabs on opposite sides of any boundary segment, Placing all vertices on these

coordinates, however, does reconstrnet an orthogonal polygen that respeets the given

stabs and Hamiltonian cycle.

1.

Run the convex/reflex algovithm of sectton 4.3, O(nlogn) time and Ofn) space

is needed to complete this task.

. Find the four segments with both horizontal and vertical stabs to infinity. The

two vertical ones must be located at x,,;, and x,,.., while the two horizontal
ones must. be at i and Ymae. Start with a horizontal extreme segment, assign
it L0 Ypmin. then follow through the Hamiltonian cycle. Assign the other three
segments L0 Tmin, Ymar ANA Lhyae. These assignments will lay ont the polygon
so that its Hamiltonian cycle is in clockwise order. Completion of this step
requires one pass through the cycle, doing a constant amount. of work on each

vertex. Therefore O(n) time is needed.

The segment, that runs horizontally along y,,;,, is 1aid out from right 10 lefi, sinee
the Hamiltonian cycle is in clockwise order. Call this a left segment. The next.
segment on the Hamiltonian cycle, a vertical segment, must be an up segment,
otherwise the first segment would not be at 4, and furthermore the corner

54

between the two must be a convex corner.

Recall that the sides of the polygon have been named Ay, oy, ha, va, .0 By, 200
along the Hamiltonian cycle. For a horizontal (respectively vertical) segment,
define its predecessor segment to be the horizontal (respectively vertical)
segment, immediately before it on the Hamiltonian cycle. (h;'s predecessor is
Bict, and »;°s predecessor is »;-;.) On any segment, vertical or horizontal,
define its two preceding vertices to be the two vertices between h; and h;_,

or hetween #; and »;_;. Figure 4.13 shows a horizontal segment and a vertical

hi
X¢—D—e ;'8
predecessor v;
v
gty
hy's v X
predecessor

Figure 4.13: Predeccssor Segments and Preceding Vertices

scgment and their respective predecessor segments, The arrows indicate the
direction of the Hamiitonian cycle. In cach case, vertices x and y are the

preceding vertices to the segment.

For cach of the remaining segments, in the cycle, if the preceding vertices have
the same convexity, the segment must be opposite its predecessor segment, in
the same dimension. If the preceding vertices have opposite convexity, the
segment is the same as its predecessor segment, in the same dimension. In this

way, assign up/down, left/right to each segment of the polygon.

[+)]
(91

Agatn, this step traverses the Hamiltontan cycele. examining a constant number

of sides and vertices on each step. Thus a total of O(x) time and space s used.

. Create two digraphs, X' and Y, with a node in the X graph for each vertical

side, and a node in the ¥ graph for each horizontal side. Add ares as follows:

¢ On the X graph, direct ares from the node corresponding to the x,,,;, side
to every other node, and from all nodes to the node corresponding the
Tuae side. This step adds (n — 2} ares to the X digraph.

e For cvery right segment in the polygon, put an arc in the X digraph from
the node corresponding to the side containing the first endpoint to the

node corresponding to the side containing the second endpoint.

o Tor cvery left segment in the polygon, put an arc in the X digraph from
the node corresponding to the side containing the second endpoint Lo the
node corresponding to the side containing the first endpoint. This step and

the immediately preceding one add a total of n/2 ares to the X digraph,

o For every stab to a righi segment put an arc from the node corresponding
to the side containing the first endpoint of the stabbed segment, 1o the
node corresponding to the silde containing the endpoints of the stabbing
segment, and another from the node corresponding to the side containing
the endpoints of the stabbing segment to the noclcjcorrwpnnding to the

side containing the second endpoint of the stabbed segment.
e For cvery stab to a left segment put an arc from the node corresponding
to the side containing the second endpoint of the stabbed segment, to the

56

b1 |

node corresponding to the side containing the endpoints of the stabbing
segment, and another from the node corresponding to the side containing
the endpoints of the stabbing segment to the node corresponding to the
side containing the first endpoint of the stabbed segment. This step and
the immediately preceding one add at most » arcs to the X digraph (stabs

1o 00 do not add arcs).

Thus, the X digraph contains less than 5n/2 -2 = O(n) arcs. The ares for the
Y digraph are created in a similar {ashion, substituting up for right and down
for left. The two digraphs represent partial orders for the = and y coordinates
of the sides of the polygon. Figure 4.14 gives an example of the two digraphs.
Creating the two digraphs requires, two traversals of the Hamiltonian cycle
doing constant work on cach stop, and will use a total of O(n) time. Since the

twe digraphs together have n nodes and O(n) arcs, O{n) space is used.

Usc a topological sort on cach digraph to order the nodes from minumum to
maximum. As described in Graph Algorithms and NP Completeness [Meh84],
a topological sort of n vertices and e edges uses O(n +) time. Each of the two
digraphs have n/2 vertices and O(n) edges, thus the two topological sorts will

require only O(n) time.

Assign x and y integer track numbers to the nodes in the sorted order defined
by the topological sorts. Each vertex will have an « track number and a y track
number. In cach case the track numbers are uniquely chosen from the range
[1..n/2], where 7 is the number of vertices in the polygon. Draw out the tracks

a7

Side Orientation Stab Convexity Direction Lxtreme
“ab horizontal o o Convex right Ymazs
b Yortical 0 ¢l Convex down
cd horizontal S el Reflex righe
de verncal S N Convex down Lonvar
of honzontal oo X0 - Convex lofe Hhnin
fu vertical) ab Couvex up
eh horizontal be Ja ~ Retlex left
X vertical ab o - Reflex down
ij horizontal fir o0 Convex left,

i vertical ca x Convex up Tonn

Y digraph: hn Y digeaph: ™Y

graph: Hmar A Adugraphs de
ab)
cd l
. b hi
1
of Ja
Yemin Tmin
¥ Topological Sort: X Topological Sort:
1 2 |3 4 15 1 2 31 41 5
ef | ijled]gh| ab bl ha | Nel bael due

in each direction and follow through the Hamiltonian cycle laying cach vertex on
its respective track, putting a segment between each pair of conseentive vertices.
The resulting orthogonal polygon respects the given Hamiltonian cycle and stabs
and has no collincar sides. This step, also uses O(n) time. Figure 4.15 assigns

integer track numbers and draws the polygon using the data of the example in

figure 4.14.

Figure 4.14; X' and Y Digraphs

W

........................

......................

[J%]
e
—

Ter T

Figure 4.15: Reconstructed Polygon, from Figure 4.14

The first step of this algorithm uses O(nlogn) time and O(n) space, the rest use
only O(n) time and space. Therelore, the overall time used to solve the Orthogonal

Polygon Reconstruetion problem, OPR, is O(nlogn) and the overall space is O(n).
4.5 Related Results

The reconstruction result of this chapter is closely velated to two others in the visibility
literature: Realizalion of Visibility Trees by Booth and O'Rourke [O'R87], and Bar
Visibility Graphs by Wismath [Wis83] (independently by Tamassia and Tollis [TT86]).
Both ol these results are discussed more fully in Chapter 7 of O'Rourke’s classic Lext

[O'R87]. A summary of the two results and a comparison of cach to OPR follows.

4.5.1 Edge Visibility Trees

In the Booth and O'Rourke work, sides of an orthogonal polygon are represented by
nodes in the visibility graph, and pairs of nodes are connected by edges if there is

a horizontal or vertical line of sight between them that is inside the polygon. The

o9

resulting visibility graph is disconnected. and is actually two trees, one representing,
hovizontal and one representing vertical visibility, Booth and O'Rourke reconstrun
an orthogonal polygon from two given Iabelled trees, Le the nodes of the two trees
are numbered (Jabelled) 1,200 in the order that the corresponding sides appear on
the polygon,

For every node in the horizontal tree with degree greater than one, an absolute
orcering of the vertical sides in the visibility polvgon about that node s made, The
absolute orderings are then combined into one partial ordering of the & coordinates
of the vertical sides. The same approach is applied to get a partial ordering of the
y coordinates. Next, the two partial orderings are cach assigned integer coordinates,
from 0 to n/2, with two sides whose order is indistinguishable being assigned the
same coordinate. Then cach vertex is assigned the 2 and ¢ coordinates from the
two sides (horizontal and vertical) adjacent Lo it, and a polygon is drawn using these
coordinates, Finally, the construction may require slight adjustment of some side
lengths to avoid collision of same coordinate sides, and collinearities.

The two labelled trees of Booth and O'Rourke can be extracted from the stabs

and Hamiltonian cycle that are input to.the OPR problem, as follows:
1. Run the CONVEX/REFLEX algorithin of section 4.3,

2. Create a graph with n nodes, one for each side of the polygon. Label the nodes
so they correspond to the Hamiltonian cycle, i.c., the node representing the
side between vertices 1 and 2 on the Hamiltonian eycle, is labelled 1, the node

representing the side between vertices 2 and 3 on the Tlamiltonian cycle, is

60

Ianbelled 2, ete,

b4

3. Create the vertical tree part of the visibility graph from the vertical stabs of

refler vertices, Refer to figure 4,16, First, join the nodes representing the hori-

- X) —r < Shaded
/;k x " ' region
1 e ! indicates
'I___ | ¥ interior
a) h) c)

Figure 4.16: Join Sides 2 and g through the Polygon’s Interior

zontal side attached to each reflex vertex to the node representing the horizontal
side stabbaed hy that vertex's stab {diagram a). Next. whenever a vertical side
has reflex corners on both ends, join the two nodes representing the horizontal
sides stabbed by both vertical stabs (diagram b). Finally, whenever a vertical
side has a reflex corner on one end and a convex corner on the other, join the
node representing the horizontal side attached to the convex corner to the node
representing the horizontal side stabbed by the vertical stab of the reflex corner

(diagram c).
4. Create the hortzontal tree from the horizontal stabs in a similar fashion.

Now the reconstruction can be completed using the O{(n) algorithz: designed by
Booth and O'Rourke. The resulting orthogonal polygon agrees with the internal

stabs, but may not be consistent with external stabs. The conversion from stabs and

61

Hamiltontan cvele to labelled trees uses Q(nlogn) time and the Booth and O Rourke
algovithm uses Q(n) time to reconstruct. So, the overall analyvsis of O log) is not
improved. and the vesulting polygon is less constrained than the OPR vesult,

Tt should be noted that the Booth and O'Rourke algorithm cannot be divectly
extended to polygons with both internal and external visibilities, since the horizontad
and vertical graphs would each contain eveles. and thus the initial absolute orderings

could not be made. NMoreover. thore is no obvious way of extending theiv result.,

4.5.2 Bar Visibility Graphs

Tn [Wis83], a visibility graph vepresents a set of vertical line segments. (The sepments
arc not connected into a polygon.) Every node in the graph represents a segment.
in the set, and two nodes are joined il the corresponding segments can see cach
other horizontally through a rectzngle of non-zero height. Tamassia and Tollis| TTSG)
have labelled this as £ visibility. The restraint that disallows collinear sides of the
orthogonal polygen problem is similar, but stronger than ¢ visibility. The no collinear
stdes model creates a more restricted class of graphs than e visibility, This is due 1o
the fact that three or more endpoints of consecutive line segments may line up on the
same X (or 1) coordinate, a condition that could never oceur with the vertices of a
non-collinear orthogonal polvgon. From the stab infortnation of the OPR problem,

two £ visibility graphs can be extracted, one in each of the # and y dimenstons.
1. Run the CONVEX/REFLEX algorithm of section 4.3,

2. Create the vertical visibility graph from the vertical stabs, Refer to figure 417,
First, join the node representing the horizontal side attached to each vertex 1o

62

f\ X — A X
—— -

o v :
i) b} ¢

Figure 4.17: Join Sides = and y

the node representing the horizomal side stabbed by that vertex’s vertical stab,
l;i.s' in figure 4,17 a. Next, wheaever a vertical side has similar convexity corners
on both ends, join the two nodes representing the horizontal sides stabbed
by both vertical stabs, as in figure 4.17 b, inally, whenever a vertical side
has opposite convexity corners, join the node representing the horizontal side
attached to one end of the vertical side to the node representing the horizontal

side stabbed by the vertex at the other end of the vertical side (diagram c).
3. Create the horizontal visibility graph from the horizontal stabs similarily.

In fact, these two graphs are similar to the visibility trees of th2 Booth and
O'Rourke work, except that both ezxfernal and internal visibility is considered. For
the OPR result, it does not matter whether the stab is on the inside or the outside
of the polygon.

Wismath reconstructs the set of line segments using an si* numbering of the nodes
of the visibility graph. Before defining an six numbering, a related concept, an st

numbering, developed by Hopcroft and Tarjan [HT74] as an equivalent definition of

63

biconnectivity, must be considered.

An st nmumbering of a graph of n nodes is a one-to-one futction A that maps
cach node of the graph to a unique integer from {1.2..n} in such a way that every
node. except two. have an adjacent node with a number lower and an adiacent node
with a number higher than its own. The two exceptions are special adjacent. nodes,
labelled as s and £, with A(s) = T and A(f) = n. Vertex s has no adjacent node with
a lower number and ¢ has no adjacent node with a higher number.

Define Ayn to be a node that has no lower numbered adjacent node (only s in an
st numbered graph), and Ay, to be a node that has no higher numbered adjacent
node {only £ in an s/ numbered graph). An st numbering of a graph is a relaxation
of the s/ numberings to allow more than one A, and more than one M. A graph
is said to be si* numberable il there is a one-to-one function, A, that maps cach
node of the graph to a unigue integer {1..n}, and a planar embedding of the graph
such that all A, and A, nodes are on the exterior face, and they are separable in
such a way that all A,,.» nodes can be connected to one new noude and all A, nodes
can be connected to another, and the resuiting graph remains planar.

Wismath showed that a graph is representable by a set of vertical line segments
il and only if it is st* numberable and furthermore that an six numbering can bo
determined in O(n) time. In an alternate characterization he showed that a graph
is representable by a set of vertical line segments if and only is there is a planar
embedding of the graph with all cutpoints on the exterior face. The (wo graphs
created from the stab information of the orthogonal polygon can be shown to have

just such a planar embedding.

64

Lemma 8 The horizontal and verlical visibilily graphs extracted from an orthogonal

polygon (in section 4.4) have a planar embedding with all culpoints on the exterior

face.

Prool: The proof is similar for the horizontal and vertical graphs, so only the

vertical is considered. Locate the node that vepresents cach horizontal segment on
the midpoint of the segment. Join interior visible nodes through the interior of the
polygon and exterior visible nodes through the exterior of the polygon, cach along
the path of visibility. This creates a planar embedding of the visibility graph, and is
the embedding assumed in the remainder of this proof.

For every boundary segment or part of a boundary segment, s, of the polygon
that has no segment directly below it (see figure 4.18), imagine a rectangle with s
as one side, —o0 as the opposite side, and two parallel lines connecting the two. Do
the same for segments or partial segments of the polygon with no segment directly

above it. Call these oo visibility rectangles. The nodes on the exterior face of the

p——— -

|
|
I
]
W

Figure 4.18: oo Visible Rectangles

planar graph described above, correspond to a boundary segment of the polygon that

ix either part of an a¢ visible rectangle (segment o in figure 4.18). or a segment that
has a stab through one of the oo visible rectangles (segment g in ligure 4.18),
Assume there s @ entpoint that is not on the exterior face of this embedding,
Every node that is not on the exterior face has at least one node that is visible
above it and one that is visible below it So. if the cutpoint node is removed, the
segment. below and the segment above the cutpoint will be disconnected, But sinee
the cutpoint is not on the exterior face of the graph. there must be a path o the
left and a path to the right of the cutpoint. These paths will conneet the two nodes
that were supposedly disconnected by the removal of the cutpoint. Therefore, the
assumption is tncorrect, and all cutpoints must be on the exterior face of the graph,

as laid out in this planar embedding. O

The converse of lemma 8 is not. true.

Lemma 9 A planar embedding of a graph with all culpoinls on the exterior face is

nol necessarily a horizonlal or vertical visihilily yraph of an orthogonal polygon.

Proof: Figure 4.19 is an example of a planar embedding of a graph with all
cutpoints on the exterior face. The figure aizo shows an orthogonal polygon that
attempts to realize the given horizontal visibility graph. The polygon does nol realize
the graph since the graph edge between nodes ¢ and [does not, have @ corresponding
visibility path. This graph could not be a horizontal or vertical visibility graph of an
orthogonal polygon, since the face bounded by df ¢ has only 3 edges. The horizontal

and vertical visibility graphs of an erthegonal polygon would need all interior faces

66

b

Figure 4.19: A Graph with Cutpoints on Extetior Face

to have at least four edges. O

An six numbering of the horizontal (or vertical) visibility graph extracted from an
orthogonal polygon can be made, by including two super nodes, one at +oc and one
al, —oc, Assuming the embedding of the graph, as described in the proof of lemma 8,
extend the graph by adding connections between all nodes located on segments that
arc part of an o0 visible rectangle to the appropriate new node: +o00 or —oc.

Furthermore, if the correct choice of the si* numbering is made, the reconstructed
line segments represent. one dimension (horizontal or vertical) of the edges of the
orthogonal polygon. Notice that the topological sort numbering of section 4.3 is an stx
numbering. If that numbering is used, the bar reconstruction algorithm creates bars
that can be connected into an orthogonal polvgon. However, choosing this particular
numbering would require running the entire OPR algorithm. Unless another method
of choosing the st* numbering is found, it is more reasonable to just use the algorithm

of section 4.3.

67

4.6 The Collinear Sides Assumption

The algorithms of this chapter assume that the orthogonal puolygon has no collinear
sides. Allowing collinear sides is a natural extension of this problem, and needs to be
considered.

Lemma 4 of section 4.1 showed that rectangles of types 0 through 12 (figure 4.3)
were the only possible reciangles created from the sides of an orthoponal polygon and
its horizontal stabs, 1f collinear sides were possible, the number of rectangle types
would increase. Cases 0, T and parts a and b of case 2 of that proof, did not rely on
this assumption, so those cases contain the complete set of rectangles. Towever, part
¢ of case 2 and cases 3 and 4 both used this assumption, so the additional rectanpgles
of figure 4.20 would be introduced. Algorithmically, checking each of these additional
types of rectangles is no more difficult than checking eaclk-of types 0 through 11.

Tt is possible that along each siab of cach rectangle, any number of collinear sides
could exist, as shown in figure 4.21. Rechecking cach rectangle type, allowing for the
possibilities of such sides complicates the algorithm. Tt is necessary Lo traverse the list
of sides that are horizontally collinear and are guaranteed to have Lhe same convexity
on each side, to find the side that would be stabbed if the collinearity did not. exist.
Define a traversable horizantal side as one that has same convexity vertices on
each end, as indicated by a previously identified rectangle. For example, the botiom
sideof types 7, 8,9, 10, 11, 12 and 13 and the top side of types 9, 26,27,and 28 as drawn
in figures 4.3 and 4.20 are traversable. Also, define a non-traversable horizontal

side as one that has opposite convexity vertices, or has not yet been indentified as

68

TT IT k1 br b1k

Type 13 Type 14 Type 15 Type 16 Type 17 Tvpe 18
Type 19 Type 20 Type 21 Type 22 Type 23
- -<m = T' - - =
Type 24 Tvpe 25 Type 26 Type 27 Type 28

Figure 4.20: Extra Rectangles Possible with Collinear Sides

traversable. Recall that for non-collinear sides, siaby] is the side stabbed by the
horizontal stab emanating from vertex, ». For collinear sides, stabfv] is the collinear
verter stabbed by the horizontal stab from vertex, v. Assuming collinear sides are
identifiable in constant time from the stabs, a straightforward algorithm to identify
and classily rectangles is:

e for cach horizontal side, s, in Hamiltonian cycle order do:
~ sidefs]:=non-traversable.
o stab_can Change := FALSE

o for each vertex, v, in Hamiltonian cycle order do:

69

0 2 O B
S

Figure 4.21: Collinear Sides Along the stabs of a Type 1 Rectangle

- number_of_rectangles[u] 1= 0
e Repeat /*matching until below*/ :

— stabcan_Change := FALSE
— for cach vertex, », in Hamiltonian cycle order do:

* Check for types 0 through 11 rectangles and tyvpes 13 through 28
collinear rectangles. For every pair of vertices, j and &, on the identi-
fied rectangle
- increment number_of_reclanglesf]

- cither INSERT (5, same(k]) or INSERT(}, opposilelk]) appropri-
ately

* il the rectangle is type 7, 8, 9, 10, 11, 13, 26, 27, or 28:

- sidefjl:=traversable, where j indicates the vertices of the rectangle
that arc part of traversable sides, as indicated above.
- stab-can-Change := TRUFE.
— for each vertex, », in Hamiltonian eycle order do:
* if (stabl] is collincar to »)
- a = stabv], b := stab{v] + 1
- if ((side[ab) = traversable) and (b is horizontal)) then stab]p) :=
stab[b]
- clse
- a:=stably], b:= stabfv] - 1
- if ({side[ab] = traversable) and (ab is horizontal)) then stab[n) :=
stab[b]

Until (stab_can-Change = FALSE) /* Matches the repeat above */

e Check for type 12 rectangles.

The part of the algorithm that traverses the collinear sides dominates the analysis.

Since it is possible that a side may not become traversable until O(n) other associated

70

http://L_-JJ_.L1.U-_U

1
I
il

rectangles have been identified, the do/while loop could be exceuted O(n) times.
Within the do/while loop are two O(n) for loops. Thus the analysis of the algorithm,

allowing collinear sides is a more expensive O(n®).
4.7 Summary

In summary, this chapter presented an algorithin that reconstructed an orthogonal
polygon when its TTamiltonian cycle and the stabs of its vertices are known. This
algorithm rans in O{n log n) time if the polygon is known to be without collinear sides
and O(n?) time otherwise. The result is related to but extends the Edge Visibility
Trees of O'Rourke and Booth[(O'R87] as described in section 4.5.1 and Wismath's Bar

Visibility Graphs{Wis85] discussed in section 4.5.2.

Chapter 5

Conclusions and Open Problems

The purpose of this thesis was to examine and solve visibility reconstruction problems,
that is, given visibility information of a set of objects, reconstruct the original objects.
The thesis presented two results related to visibility graph reconstruction.

In chapter 3, a conversion technique was presented. The existing work on recon-
structing polygons [rom their (unordered) vertex vistbility graphs normally assumes
the boundary Hamiltonian cycle of the polygon is known. Towever, when reconstryct-
ing a sct of line segments from their endpoint visibility graphs, it is often assumed
that the order of the edges around each node of the graph is in the same order as
visibilities to other endpoints as scen by the corresponding endpoint. This thesis pre-
sented algorithms for converting between the TTamiltonian cycle (with the unordered
vertex visibility graph) and the ordered vertex visibility graph for a simple polygon.
These two results link the results of two different, subareas in the study of visibility:
line segments and polygons.

In chapter 4, an cfficient algorithm for reconstructing orthogonal polygons was
presented. The algorithm expects the Hamiltonian cycle and the stabs of the sides

of the polygon as input. It determines whether cach vertex is convex or reflex and

creates a partial ordering of the horizontal sides of the polvgon in the Y-dimension
and an ordering of the vertical sides of the polvezon in the X-dimension of the cartesian
courdinate system. These X and Y dimension orderings of the sides can be used to
draw an orthogonal polygon consistent with the given stab information.

These results represent. a small fraction of the work to be done in the reconstructon
arca of the study of visibility graphs. Some direct refinements and extensions of the
presented results are discussed below,

The analyses of all non-collinear routines in chapter 4 were dominated by the
Ofnlogn) time needed to find the groups of four vertices that are on common type
12 rectangles, If this could be reduced to O(n) the entire analysis would be a more
pleasing O{n). Therefore, an open problem is to reduce the time needed to run the
type 12 algorithm presented or alternatively, to prove that Q(n logn) is a lower bound.

The orthogonal polygon reconstructed by the OPR algorithm is consistent with
the given stab information. An extension of the OPR problem would be to reconstruct
an orthogonal palygon that is consistent with the internal vertex visibility graph as
well as the stabs and Hamiltonian cycle. Line segment reconstruction results such as
[Wis94] together with the results of chapter 3 may be one approach to accomplish
this.

A planar straight line graph, or PSLG, as described in Preparata and Shamos
[PS85] is a general subdivision of the plane into attached polygons. A natural exten-
sion of the orthogonal polygon reconstruction of chapter 4 is to apply the algorithm
to PSLG’s that are orthogonal.

Other open problems include applying the techniques of the OPR algorithm to

73

general simple polygons, and extending the reconstruction vesult to three dimensional
orthogonal polyhedra, however these are significantly more difficult problems.

The VisPak project [JPWO5]. located av hitp://wwnw.cs.uleth.ca/depl fuismath
Juis.himl, is committed to implementing visibility algorithms, Currently, six visi-
bility algorithms have been implemented, details are found in chapter 1. Most of the
programs in the package are implementations of visibility graph construction algo-
rithms. The visual nature of the output of these programs has proved invaluable in
testing the correctness of research ideas velating to the design of visibility reconstruc-
tion results. Future releases of the package may include implementation of the OPR.

result of Chapter 4.

http://www.c%3e/ulvtk.va/dvpt/wismuth

Bibliography

[AAGT86] Ta. Asano, Te. Asano, L. 1. Guibas, J. Herskberger, and . Tmai. Visi-

[A595)

[BCLT9g]

[BM95]

[BNO1]

[Bra]

[Chad1]

[cLa1]

[CLR90)

[CSCo2)

bility of disjoint polvgons. Algorithmice, 1:49-63, 1986.

. Alel and L Streinn, A program the computes a visibility graph: xv-
sraph.c. Available by fip at Smith College, Massachusetts, 1995.

J. E. Baker, 1. F. Cruz, G. Liotta, and R. Tamassia. A new model for
algorithm animation over the www, Technical report, Brown University,
Pravidence, RI, USA, 1996.

P. Biscondi and J-NM. Moreau. Computer aided road network design.
lu Proceedings of the Seventh Canadian Conference on Compulalional
Gromelry, pages 229234, 1995,

1. Bicri and 1. Nottemeier, editors. Computational Geomelry - Methods,
Algorithms and Applicalions, chapter Preface. Proceedings of the Interna-
tional Workshop on Computational Geometry CG "91, Bern, Switzerland.
Springer-Verlag, Berlin Heidelberg, 1991,

F. J. Brandenburg. GraphEd. Universitact Passau, Passau, Germany,
version-4.0.2 edition.

B. Chazelle. Triangulating a simple polygon in lincar time. Discrele and
Compulalional Geomelry, 6:485-524, 1991,

C. Coullard and A. Lubiw. Distance visibility graphs. In Proceedings of

the scventh Annual ACM Symposium on Computational Geomelry, pages
289--296, 1991.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. niroduction Lo Algo-
rithms. The MIT Press, Cambridge, Mass., 1990.

S. T. Choi, S. Y. Shin, and K. Y. Chwa. Characterizing and recognizing

~.visibility graphs of funnel-shaped polygons. In Proceedings of the Tiird

Annual Internetionel Symposium on Algorithms in Computing (ISAAC
'92), 1992,

http://Algarilhmi.cn

[dR.JO3]

[EC93]

[EdesT]

[EIGS5]
[Eved0]

[GhoSs]

[GJ79]

[GMO3)

[Her87]

[HT74]

[TPW93]

[K1e92]

[KMM+90]

P.J de Rezende and WL RL Jacomettis Animation of geometrie algorithms
using geolab. In Proceedings of the ninth Annual ACM Symposium on
Computational Geometry, 1993,

IT. Everett and D.G. Cornetl. Negative results on characterizing visibil-
ity graphs. Computational Grometry Theory and Applications, 5:51 63,
1995.

1. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of
FATCS Monoyraphs on Theoretical Compuler Sciencr. Springer-Verlag,
Heidelberg, West Germany, 1987,

H. A. EIGindy. Hicrarchical Decomposition of Polygons with Applicalions.
PhD thesis, School of Computer Science. MeGill University, 1085,

H. Everett. Visibility Graph Recognition. PhD thesis, University of
Toronto, Department of Computer Science, January 1990,

S. K. Ghosh. On recognizing and characterizing visibility graphs of simple
polvgons. In Procecdings of the first Scandinavian Workshop on Algorithm
Theory, volume 318 of Leeture Noles in Compuler Science, pages 96 104,
Springer-Verlag, 1988.

M. R. Garey and D. S. Johnson. Compulers and Intruclabilily: A Guide
to the Theory of NP-Compleleness. W, H. Freeman, New York, NY, 1979,

J. Gosling and H. McGilton. The java language envivonment: A white
paper. Technical report, hitp://java/sun fcom fwhitePaper/ javawhitepa-
per.d.html, 1995,

J. Hershberger. Finding the visibility graph of a simple polygon in time
proportional to its size. In Proceedings of the third Annual ACA Synpo-
sturn on Comnpulalional Geomelry, pages 11-20, 1987,

J.E. Hoperoft and R.E. Tarjan. Efficient planarivy westing. Journal of the
Association of Compuling Machinery, 21:549 568, 1974,

L. Jackson, H. Pinto, and S.K. Wismath. VisPak: A Packape of Visibility
Algorithms written in LEDA. Technical Report Report TR-CS-01-95,
University of Lethbridge, Lethbridge, Alberta, 1995,

R. Klein. Walking an unknown strect. with bounded detour. Compula-
tional Geometry Theory and Applicalions, 1:325-351, 1992,

A. Kaight, J. May, M. McAffer, T. Nguyen, and).-R. Sack. A compu-
tational geometry workbench. In Proceedings of the sicth Annual ACM
Symposiumn on Compulational Geomelry, page 370, 1990,

[KWo3)

{Len00)]

[1.0S95)

[1.P84]

[Mch84]

[NUD5)
[O'RS7)
[O'R934]
[O"R93D)]

[0S95]

[PS83)
(She92]

[Sho91]

[SR90]

M. Keil and S.K. Wismath. Depth first spiralling on the endpoints of line
segments in output sensitive time. Technical Report Report TR-CS-02-
85, University of Lethbridge. Lethbridge, Alberta, 1995,

T. Lengauer. Combinalorial Algorithms for Integrated Circuit Layoul.
Applicable Theory in Computer Science. John Wiley & Sons, WestSussex,
England, 1990.

A. Lopez-Ortiz and S. Schuierer, Simple efficient and robust strategies to
traverse streets. In Proceedings of the seventh Canadian Conference on
Computational Geometry, pages 217-222, 1995,

D. T. Lee and F. P. Preparata. Computational geometry: a survey. IEEE
Transactions on Compulers, C-33:1072-1101, 1984.

K. Mehlhorn. Graph Algorithins and NP-Compleleness, volume 2 of Data
Structures and Algorithmns. Springer-Verlag, Heidelberg, West Germany,
1984.

S. Naher and C. Uhrig. The LEDA User Manual. Max-Planck-Institut
fur Informatik, Saarbrucken, Germany, release r 3.2 edition, 1995,

J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University
Press, New York, NY, 1987,

J. O'Rourke. Computational geometry column 18. Sigact News, 24(1):20~
25, 1993.

J. O'Rourke. Computational Geomelry in C. Cambridge University Press,
1993.

J. O'Rourke and I. Streinu. Visibility in pseudo-polygons and vertex-edge
pseudo-visibility graphs. Technical report, Smith College, Northampton,
MA, 1995,

F. P. Preparata and M. T. Shamos. Compulational Geomelry: an Iniro-
ducltion. Springer-Verlag, New York, NY, 1985.

T. C. Shermer. Recent results in art galleries. Proceedings of the IEEE,
80(9):1384-1399, September 1992.

P. W. Shor. Stretchability of pseudolines iz NP-hard. In Applied Geom-
clry and Discrele Mathemalics: The Viclor Klee Fesischrifl, volume 4
of DIMACS Series in Discrele Mathematics and Theorelical Compuler
Science, pages 531-554. AMS Press, 1991.

S. Sudarshan and C. Pandy Rangan. A fast algorithm for computing
sparse visibility graphs. Algorithmica, 5:201-214, 1990.

http://Kc.il
http://Geom.et.-nj

[TTS6)

(TV8s)

[Weis3]

[Wis85)

[Wis04]

R. Tamassia and I. G. Tollis. A unified approach to visibility representa-
tions of planar graphs. Discrete and Computational Geometry, 1(4):321
341, 1986.

R. E. Tarjan and C. 1. Van Wyk. An O(n loglog n)-time algorithm for
triangulating a simple polvgon. STAAM 1 Comput.. 17:143 178, 1988,
Erratum in 17(1988). 106.

E. Welzl. Constructing the visibility graph for n line segments in O(n7)
time. Inform. Process. Letl., 20167171, 1985,

S. K. Wismath. Characterizing bar linc-of-sight graphs. In Proceedings
of the first Annual ACM Symposium on Computational Geomelry, papges
147-152, 1985.

S. K. Wismath. Reconstruction of parallel line segments from endpoint.
visibility information. In Proceedings strth Canadian Conference on Com-
pulational Geomelry, pages 369-373, 1994,

78

