Hugenholtz, Christopher
Permanent URI for this collection
Browse
Browsing Hugenholtz, Christopher by Subject "Climate change"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAeolian dune field geomorphology modulates the stabilization rate imposed by climate(Blackwell Publishing Ltd., 2012-06-14) Barchyn, Thomas E.; Hugenholtz, Chris H.The activity of inland aeolian dune fields is typically related to the external forcing imposed by climate: active (bare) dunes are associated with windy and/or arid settings, and inactive (vegetated) dunes are associated with humid and/or calm environments. When a climate shifts the dune field reacts; however, the behavior, rate, and potential impact of diverse dune geomorphologies on these transitions are poorly understood. Here, we use a numerical model to systematically investigate the influence of dune field geomorphology (dune height, organization and collisions) on the time a dune field takes to stabilize. To generate diverse initial un-vegetated dune field geomorphologies under unidirectional winds, we varied pre-stabilization growth time and initial sediment thickness (termed equivalent sediment thickness: EST). Following dune field development from a flat bed, we introduced vegetation (simulating a climate shift) and transport-vegetation feedbacks slowly stabilized the dune fields. Qualitatively, very young and immature dune fields stabilized quickly, whereas older dune fields took longer. Dune fields with greater EST stabilized quicker than those with less EST. Larger dunes stabilized quicker because of low celerity, which facilitated higher vegetation growth rates. Extended stabilization times were associated with the extension of parabolic dunes. Dune-dune collisions resulted in premature stabilization; the frequency of collisions was related to dune spacing. Quantitatively comparing the distribution of deposition rates in a dune field to the deposition tolerance of vegetation provides a promising predictor of relative stabilization time. Dune fields with deposition rates dominantly above the deposition tolerance of vegetation advanced unimpeded and prolonged stabilization as parabolic dunes. Paleoenvironmental reconstructions or predictions of dune field activity should not assume that dune activity directly translates to climate, considerable lags to stabilizing climate shifts may exist in unidirectional dune forms.
- ItemLaboratory and field performance of a laser particle counter for measuring aeolian sand transport(Blackwell Publishing Ltd., 2011-02-23) Hugenholtz, Chris H.; Barchyn, Thomas E.This paper reports the results of laboratory and field tests that evaluate the performance of a new laser particle counter for measuring aeolian sand transport. The Wenglor® model YH03PCT8 (Wenglor) consists of a laser (655 nm), photo sensor, and switching circuit. When a particle passes through the 0.6 mm diameter, 30 mm long laser beam, the sensor outputs a digital signal. Laboratory tests with medium sand and a vertical gravity flume show that the Wenglor count rate scales approximately linearly with mass flux up to the saturation point of the sensor, after which the count rate decreases despite increasing mass flux. Saturation depends on the diameter and concentration of particles in the airstream and may occur during extreme events in the field. Below saturation sensor performance is relatively consistent; the mean difference between average count rate response was between 50 and 100 counts. Field tests provide a complimentary frame of reference for evaluating the performance of the Wenglor under varying environmental conditions and to gauge its performance with respect to a collocated piezoelectric impact sensor (Sensit H11-B). During 136.5 h of deployment on an active sand dune the relative proportion of time sand transport recorded by two Wenglors was 0.09% and 0.79%, compared to 4.68% by the Sensit H11-B. The weak performance of the Wenglors is attributed to persistent lens contamination from adhesion of sand grains on the sensors after rainfall. However, during dry and windy conditions the Wenglor performance improved substantially; sensors measured a concentration of sand particles in the airstream more than seven times greater than that measured by the Sensit. Between the two Wenglors, the mean absolute count rate difference was 6.16 counts per second, with a standard deviation of 8.53 counts per second. For short-term measurement campaigns in dry conditions, therefore, the Wenglor is relatively consistent and can outperform the Sensit in detecting particles in the airstream. The Sensit, however, is more reliable in detecting particle transport during longer unattended deployments. Two additional field tests show that the sensor is well-suited to the measurement of snow drifting but could be ineffective in dusty settings because of lens contamination. Overall, the main advantages of the Wenglor include (1) insensitivity to particle momentum; (2) low measurement variability; (3) low cost ($210 USD); and perhaps most important of all, (4) a consistent design that will improve comparison of results between investigations. At present, no other particle detector used in aeolian research can claim all these characteristics.
- ItemPredicting vegetation-stabilized dune field morphology(Blackwell Publishing Ltd., 2012-09-12) Barchyn, Thomas E.; Hugenholtz, Chris H.;The activity of inland aeolian dune fields is typically related to the external forcing imposed by climate: active (bare) dunes are associated with windy and/or arid settings, and inactive (vegetated) dunes are associated with humid and/or calm environments. When a climate shifts the dune field reacts; however, the behavior, rate, and potential impact of diverse dune geomorphologies on these transitions are poorly understood. Here, we use a numerical model to systematically investigate the influence of dune field geomorphology (dune height, organization and collisions) on the time a dune field takes to stabilize. To generate diverse initial un-vegetated dune field geomorphologies under unidirectional winds, we varied pre-stabilization growth time and initial sediment thickness (termed equivalent sediment thickness: EST). Following dune field development from a flat bed, we introduced vegetation (simulating a climate shift) and transport-vegetation feedbacks slowly stabilized the dune fields. Qualitatively, very young and immature dune fields stabilized quickly, whereas older dune fields took longer. Dune fields with greater EST stabilized quicker than those with less EST. Larger dunes stabilized quicker because of low celerity, which facilitated higher vegetation growth rates. Extended stabilization times were associated with the extension of parabolic dunes. Dune-dune collisions resulted in premature stabilization; the frequency of collisions was related to dune spacing. Quantitatively comparing the distribution of deposition rates in a dune field to the deposition tolerance of vegetation provides a promising predictor of relative stabilization time. Dune fields with deposition rates dominantly above the deposition tolerance of vegetation advanced unimpeded and prolonged stabilization as parabolic dunes. Paleoenvironmental reconstructions or predictions of dune field activity should not assume that dune activity directly translates to climate, considerable lags to stabilizing climate shifts may exist in unidirectional dune forms.
- ItemReal barchan dune collisions and ejections(Blackwell Publishing Ltd., 2012-01-26) Hugenholtz, Chris H.; Barchyn, Thomas E.From high-resolution satellite imagery of barchan sand dunes, we provide geomorphological evidence of collisions that result in the ejection of a barchan from the wake of another barchan dune. Previous interpretations suggest this outcome is evidence of soliton or solitary wave behaviour; however, the physical mechanisms for mass exchange are not fully understood, resulting in debate. Our evidence and interpretation indicates that mass is transferred to the upwind barchan by shadowing a portion of downwind barchan's stoss slope. Turbulent, unsaturated airflow erodes the surface between the dunes, creating a smaller dune that ejects from the wake region. Previous observations lacked the spatial resolution required to document this process; therefore, our observations clarify the collision dynamics of barchans. A broader implication of our observations is the role of collisions in maintaining an equilibrium size distribution in barchan swarms.