Leca, Jean-Baptiste
Permanent URI for this collection
Browse
Browsing Leca, Jean-Baptiste by Subject "Behavior systems"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBehavior systems approach to object play: stone handling repertoire as a measure of propensity for complex foraging and percussive tool use in the genus Macaca(SciKnow Publications, 2017) Pelletier, Amanda N.; Kaufmann, Tatjana; Mohak, Sidhesh; Milan, Riane; Nahallage, Charmalie A. D.; Huffman, Michael A.; Gunst, Noëlle; Rompis, Aida; Wandia, I Nengah; Arta Purta, I Gusti A.; Pellis, Sergio M.; Leca, Jean-BaptisteStone handling (SH), has been identified in four closely related primate species of the Macaca genus. We provide the first ethogram of SH in long-tailed macaques (Macaca fascicularis), a primate species known to use stones for extractive foraging. A total of 62.7 hrs of video recorded data were scored from a population of Balinese long-tailed macaques living in Ubud, Bali, Indonesia, and a total of 36 stone handling patterns were identified. Behavior discovery curves were generated and showed that the minimum threshold of completeness was exceeded for the SH repertoire in this group. A “foraging substitute” hypothesis for the expression of SH was proposed, suggesting that SH consists of performing foraging-like actions on non-edible objects. We used a “behavior systems” framework to test this prediction, finding that all 36 stone handling patterns could be reliably categorized in a foraging behavior system, supporting the hypothesis that stone handling can be considered pseudo-foraging behavior. Our “behavior systems” approach will serve as a foundation for the future testing of the motivational basis of stone handling. Additionally, a comparison of 39 stone handling patterns performed by three macaque species (M. fascicularis, M. fuscata and M. mulatta) showed overlapping behavioral propensities to manipulate stones; however, the differences suggest that long-tailed macaques might be more prone to use stones as percussive tools in a foraging context. This work could offer insights into the development and evolution of complex activities such as percussive stone tool use in early humans.
- ItemIs play a behavior system, and, if so, what kind?(Elsevier, 2019) Pellis, Sergio M.; Pellis, Vivien C.; Pelletier, Amanda; Leca, Jean-BaptisteGiven that many behavior patterns cluster together in sequences that are organized to solve specific problems (e.g., foraging), a fruitful perspective within which to study behaviors is as distinct ‘behavior systems’. Unlike many behavior systems that are widespread (e.g., anti-predator behavior, foraging, reproduction), behavior that can be relegated as playful is diverse, involving behavior patterns that are typically present in other behavior systems, sporadic in its phylogenetic distribution and relatively rare, suggesting that play is not a distinct behavior system. Yet the most striking and complex forms of play have the organizational integrity that suggests that it is a behavior system. One model that we develop in this paper, involves three stages of evolutionary transition to account for how the former can evolve into the latter. First, play-like behavior emerges from the incomplete development of other, functional behavior systems in some lineages. Second, in some of those lineages, the behavior patterns typical of particular behavior systems (e.g., foraging) are reorganized, leading to the evolution of specific ‘play behavior systems’. Third, some lineages that have independently evolved more than one such play behavior system, coalesce these into a ‘super system’, allowing some animals to combine behavior patterns from different behavior systems during play. Alternative models are considered, but irrespective of the model, the overall message from this paper is that the conceptual framework of the behavior system approach can provide some new insights into the organization and diversity of play present in the animal kingdom.