Wetmore, Stacey
Permanent URI for this collection
Browse
Browsing Wetmore, Stacey by Subject "Adducts"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemChalcogen versus dative bonding in [SF3] + Lewis acid−base adducts: [SF3(NCCH3)2] +, [SF3(NC5H5)2] +, and [SF3(phen)]+ (phen = 1,10-phenanthroline)(American Chemical Society, 2021) Turnbull, Douglas; Chaudhary, Praveen; Hazendonk, Paul; Wetmore, Stacey D.; Gerken, MichaelThe Lewis-acid behavior of [SF3][MF6] (M = Sb, As) salts toward mono- and bidentate nitrogen bases was explored. Reactions of [SF3][MF6] with excesses of CH3CN and C5H5N yielded [SF3(L)2]+ (L = CH3CN, C5H5N) salts, whereas the reaction of [SF3][SbF6] with equimolar 1,10-phenanthroline (phen) in CH3CN afforded [SF3(phen)][SbF6]·2CH3CN. Salts of these cations were characterized by low-temperature X-ray crystallography and Raman spectroscopy in the solid state as well as by 19F NMR spectroscopy in solution. In the solid state, the geometries of [SF3(NC5H5)2]+ and [SF3(phen)]+ are square pyramids with negligible cation–anion contacts, whereas the coordination of CH3CN and [SbF6]− to [SF3]+ in [SF3(NCCH3)2][SbF6] results in a distorted octahedral coordination sphere with a minimal perturbation of the trigonal-pyramidal SF3 moiety. 19F NMR spectroscopy revealed that [SF3(L)2]+ is fluxional in excess L at −30 °C, whereas [SF3(phen)]+ is rigid in CH2Cl2 at −40 °C. Density functional theory (DFT-B3LYP) calculations suggest that the S–N bonds in [SF3(NC5H5)2]+ and [SF3(phen)]+ possess substantial covalent character and result in a regular AX5E VSEPR geometry, whereas those in [SF3(NCCH3)2]+ are best described as S···N chalcogen-bonding interactions via σ-holes on [SF3]+, which is consistent with the crystallographic data.
- ItemLewis acid behavior of MoF5 and MoOF4: syntheses and characterization of MoF5(NCCH3), MoF5(NC5H5)n, and MoOF4(NC5H5)n (n- 1, 2)(ACS Publications, 2021) Bykowski, Janelle; Turnbull, Douglas; Hahn, Nolan R. J.; Boeré, René T.; Wetmore, Stacey D.; Gerken, MichaelThe Lewis acid–base adducts MoF5(NC5H5)n and MoOF4(NC5H5)n (n = 1, 2) were synthesized from the reactions of MoF5 and MoOF4 with C5H5N and structurally characterized by X-ray crystallography. Whereas the crystal structures of MoF5(NC5H5)2 and MoOF4(NC5H5)2 are isomorphous containing pentagonal-bipyramidal molecules, the fluorido-bridged, heptacoordinate [MoF5(NC5H5)]2 dimer differs starkly from monomeric, hexacoordinate MoOF4(NC5H5). For the weaker Lewis base CH3CN, only the 1:1 adduct, MoF5(NCCH3), could be isolated. All adducts were characterized by Raman spectroscopy in conjunction with vibrational frequency calculations. Multinuclear NMR spectroscopy revealed an unprecedented isomerism of MoOF4(NC5H5)2 in solution, with the pyridyl ligands occupying adjacent or nonadjacent positions in the equatorial plane of the pentagonal bipyramid. Paramagnetic MoF5(NC5H5)2 was characterized by electron paramagnetic resonance (EPR) spectroscopy as a dispersion in solid adamantane as well as in a diamagnetic host lattice of MoOF4(NC5H5)2; EPR parameters were computed using ZORA with the BPW91 functional using relativistic all-electron wave functions for Mo and simulated using EasySpin. Density functional theory calculations (B3LYP) and natural bond orbital analyses were conducted to elucidate the distinctive bonding and structural properties of all adducts reported herein and explore fundamental differences observed in the Lewis acid behavior of MoF5 and MoOF4.
- ItemReactions of molybdenum and tungsten oxide tetrafluoride with sulfur(IV) Lewis bases: structure and bonding in [WOF4]4, MOF4(OSO), and [SF3][M2O2F9] (M = Mo, W)(American Chemical Society, 2020) Turnbull, Douglas; Chaudhary, Praveen; Leenstra, Dakota; Hazendonk, Paul; Wetmore, Stacey D.The structure of [WOF4]4 has been reinvestigated by low-temperature X-ray crystallography and DFT (MN15/def2- SVPD) studies. Whereas the W4F4 ring of the tetramer is planar and disordered in the solid state, the optimized gas-phase geometry prefers a disphenoidally puckered W4F4 ring and demonstrates asymmetric fluorine bridging. Dissolution of MOF4 (M = Mo, W) in SO2 and SF4 results in the formation of MOF4(OSO) and [SF3][M2O2F9], respectively. Both SO2 adducts and [SF3]- [Mo2O2F9] have been characterized by X-ray crystallography. The crystal structure of [SF3][Mo2O2F9] reveals dimerization of the ion pair that results in a rare heptacoordinate sulfur center. Optimization of the {[SF3][M2O2F9]}2 dimers in the gas phase, however, results in the elongation of one contact such that the sulfur centers are effectively hexacoordinate. Meanwhile, the crystal structure of [SF3][W2O2F9]·HF instead demonstrates hexacoordinate sulfur centers and a highly unusual coordination to [SF3]+ from [W2O2F9]−through an oxido ligand. While [SF3][W2O2F9] does not decompose at ambient temperature, MOF4(OSO) and [SF3][Mo2O2F9] are unstable toward evolution of SO2 or SF4. Computational studies reveal that the monomerization of [WOF4]4 in the gas phase at 25 °C is thermodynamically unfavorable using SO2, but favorable using SF4, consistent with the relative thermal stabilities of WOF4(OSO) and [SF3][W2O2F9].
- ItemSyntheses, characterization, and computational study of AsF5 adducts with ketones(Elsevier, 2019) Stuart, Daniel; Wetmore, Stacey D.; Gerken, MichaelLewis acid-base adducts between AsF5 and the ketones, acetone, cyclopentanone, and adamantanone, were synthesized from SO2 and CH2Cl2 solutions. These adducts, which contain O---As pnictogen bonding interactions, were found to be stable in solutions at room temperature. Raman and NMR spectroscopy of the solid adducts showed a characteristic decrease in the C=O stretching frequency, as well as dramatic deshielding of the 13C resonance of the carbonyl group upon adduct formation. Fluorine-19 NMR spectroscopy showed the two fluorine environments of the O–AsF5 moiety. Optimization of the gas-phase geometry using DFT calculations yielded geometries with essentially planar CC=OAs moieties. NBO analyses of the adducts and the free ketones show the polarization of the C=O bond upon adduct formation. The lowering of the LUMO energies upon adduct formation is more dramatic than what was found for protonation of ketones and reflects the substantially enhanced electrophilicity of the adducted ketones.
- ItemSynthesis, characterization, and Lewis acid behavior of [W(NC6F5)F4]x and computational study of W(NR)F4 (R = H, F, CH3, CF3, C6H5, C6F5), W(NC6F5)F4(NCCH3), and W(NC6F5)F4(NC5H5)n (n = 1, 2)(American Chemical Society, 2019) Turnbull, Douglas; Wetmore, Stacey D.; Gerken, MichaelAmorphous [W(NC6F5)F4]x has been synthesized by the reaction of [C5H5NH][W(NC6F5)F5] with AsF5 in CH2Cl2. The reaction of [W(NC6F5)F4]x with CH3CN yields monomeric W(NC6F5)F4(NCCH3), whereas reaction with a sub-2-fold excess of C5H5N in CH3CN results in quantitative conversion to W(NC6F5)F4(NC5H5). Meanwhile, the reaction of W(NC6F5)F4(NCCH3) with a large excess of C5H5N results in the precipitation of W(NC6F5)F4(NC5H5)2. These compounds have been characterized in the solid state by Raman spectroscopy and in solution by multinuclear NMR spectroscopy. The crystal structures of W(NC6F5)F4(NCCH3) and W(NC6F5)F4(NC5H5), as well as improved structures of WOF4(NC5H5)n (n = 1, 2), have been obtained at low temperatures. Furthermore, density functional theory (DFT-B3LYP) calculations have been conducted on the W(NR)F4 (R = H, F, CH3, CF3, C6H5, C6F5) series as well as W(NC6F5)F4(NCCH3) and W(NC6F5)F4(NC5H5)n (n = 1, 2), providing optimized gas-phase geometries, vibrational frequencies, molecular orbitals, fluoride-ion affinities, and natural bond orbital (NBO) analyses.