Geography and Environment
Permanent URI for this community
Browse
Browsing Geography and Environment by Subject "Airborne laser scanning"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemQuantifying land use effects on forested riparian buffer vegetation structure using LiDAR data(2015) Wasser, Leah; Chasmer, Laura; Day, Rick; Taylor, AlanQuantifying variability of forested riparian buffer (FRB) vegetation structure with variation in adjacent land use supports an understanding of how anthropogenic disturbance influences the ability of riparian systems to perform ecosystem services. However, quantifying FRB structure over large regions is a challenge and requires efficient data collection and processing methods that integrate conventional in situ vegetation sampling with remote sensing data. This study uses automated algorithms to process airborne light detection and ranging (LiDAR) data for mapping of riparian vegetation height, canopy cover and corridor width along 5,900 transects using methods validated in 80 mensuration plots in central Pennsylvania, USA. The key objective of this study was to use airborne LiDAR data to quantify differences in edge vs interior vegetation structure as influenced by buffer width and adjacent land use type, continuously throughout a watershed. Riparian vegetation height, canopy cover and buffer width were estimated along FRB transects adjacent to developed (residential/commercial and agricultural) and undeveloped (grassland) land use types and compared to reference transects within larger forested areas and thus without an edge. On average, buffers adjacent to developed land use types were narrower than those adjacent to natural, undeveloped land use types. Approximately 50% of streams in the watershed had FRB corridors 30 m wide. Only 23% of streams had a corridor width 200 m, the width recommended to support key ecosystem services. Undeveloped land use types contained taller riparian vegetation and wider corridors, whereas developed land use types contained shorter riparian vegetation and narrow FRB corridors. Edge effects also affected vegetation structure. Vegetation height was 5–8 m shorter at the interface between the FRB and the adjacent land use (the matrix) than in the naturally occurring stream edge or in the corridor interior. Canopy cover was not influenced by adjacent land use type or width. This study demonstrates that airborne LiDAR data can be used to accurately map riparian buffer vegetation width, height and canopy cover to support ecological based management of riparian corridors over wide areas.
- ItemQuantifying lidar elevation accuracy: parameterization and wavelength selection for optimal ground classifications based on time since fire/disturbance(MDPI, 2022) Nelson, Kailyn; Chasmer, Laura; Hopkinson, ChristopherPre- and post-fire airborne lidar data provide an opportunity to determine peat combustion/loss across broad spatial extents. However, lidar measurements of ground surface elevation are prone to uncertainties. Errors may be introduced in several ways, particularly associated with the timing of data collection and the classification of ground points. Ground elevation data must be accurate and precise when estimating relatively small elevation changes due to combustion and subsequent carbon losses. This study identifies the impact of post-fire vegetation regeneration on ground classification parameterizations for optimal accuracy using TerraScan and LAStools with airborne lidar data collected in three wavelengths: 532 nm, 1064 nm, and 1550 nm in low relief boreal peatland environments. While the focus of the study is on elevation accuracy and losses from fire, the research is also highly pertinent to hydrological modelling, forestry, geomorphological change, etc. The study area includes burned and unburned boreal peatlands south of Fort McMurray, Alberta. Lidar and field validation data were collected in July 2018, following the 2016 Horse River Wildfire. An iterative ground classification analysis was conducted whereby validation points were compared with lidar ground-classified data in five environments: road, unburned, burned with shorter vegetative regeneration (SR), burned with taller vegetative regeneration (TR), and cumulative burned (both SR and TR areas) in each of the three laser emission wavelengths individually, as well as combinations of 1550 nm and 1064 nm and 1550 nm, 1064 nm, and 532 nm. We find an optimal average elevational offset of ~0.00 m in SR areas with a range (RMSE) of ~0.09 m using 532 nm data. Average accuracy remains the same in cumulative burned and TR areas, but RMSE increased to ~0.13 m and ~0.16 m, respectively, using 1550 nm and 1064 nm combined data. Finally, data averages ~0.01 m above the field-measured ground surface in unburned boreal peatland and transition areas (RMSE of ~0.19 m) using all wavelengths combined. We conclude that the ‘best’ offset for depth of burn within boreal peatlands is expected to be ~0.01 m, with single point measurement uncertainties upwards of ~0.25 m (RMSE) in areas of tall, dense vegetation regeneration. The importance of classification parameterization identified in this study also highlights the need for more intelligent adaptative classification routines, which can be used in other environments.